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a b s t r a c t

The dynamics of a finite extensibility nonlinear oscillator (FENO) is studied analytically by
means of two different approaches: a generalized decomposition method (GDM) and a lin-
earized harmonic balance procedure (LHB). From both approaches, analytical approxima-
tions to the frequency of oscillation and periodic solutions are obtained, which are valid
for a large range of amplitudes of oscillation. Within the generalized decomposition
method, two different versions are presented, which provide different kinds of approxi-
mate analytical solutions. In the first version, it is shown that the truncation of the pertur-
bation solution up to the third order provides a remarkable degree of accuracy for almost
the whole range of amplitudes. The second version, which expands the nonlinear term in
Taylor’s series around the equilibrium point, exhibits a little lower degree of accuracy, but
it supplies an infinite series as the approximate solution. On the other hand, a linearized
harmonic balance method is also employed, and the comparison between the approximate
period and the exact one (numerically calculated) is slightly better than that obtained by
both versions of the GDM. In general, the agreement between the results obtained by
the three methods and the exact solution (numerically integrated) for amplitudes (A)
between 0 < A 6 0.9 is very good both for the period and the amplitude of oscillation. For
the rest of the amplitude range (0.9 < A < 1), an exponentially large L2 error demonstrates
that all three approximations do not represent a good description for the FENO, and higher
order perturbation solutions are needed instead. As a complement, very accurate asymp-
totic representations of the period are provided for the whole range of amplitudes of
oscillation.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear phenomena is present in every branch of modern physics, being particularly important the emergence of non-
linear oscillators. Apparently, this notable interest lays in their wide range of applicability and their more efficient way to
model reality. It is possible to find nonlinear oscillators in quantum mechanics [1,2], biology [3,4] and, of course, classical
mechanics [5–7]. Although the most studied cases of nonlinearity are of polynomial-type, nonpolynomial nonlinearity (such
as the type of the title problem) has emerged over the last decades as an active field of quantum mechanics, specially non-
polynomial oscillators [8]. They are important, for example in nonlinear Lagrangian field theory and nonlinear optics [9], as
well as in elementary particle physics [10]. In the same sense, finite extensibility oscillators (FENOs) play an important role
in the theory of macromolecules, particularly in the theory of polymer dynamics [11], DNA dynamics [12], and in the sim-
ulation of non-Newtonian fluids [13]. For chain models in polymer dynamics, the nonpolynomial nonlinearity arises from the
physical situation where the bonds between molecules, modeled in a first simplified approximation by harmonic springs,
cannot be extended to infinity. For small amplitudes of vibration, these oscillators can be well described by a linear spring
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connectivity between monomers; however, the description becomes unrealistic when the molecules are highly stretched
and the forces are essentially nonlinear. From the large number of ways that may be possible to select to model a finite
extensibility oscillator, a finite extensibility nonlinear elastic potential (FENE) [14] is chosen for the title problem. The reason
for selecting this type of potential comes from the fact that it is widely used in computer simulations of polymers to prevent
the overstretching of the chains, thus avoiding unphysical conformations. Despite its fundamental importance, we do not
know of previous works on the problem, even in one dimension. However, the case of nonpolynomial (quantum) oscillators
(NPO) with a saturable nonlinearity, that appears when modeling optical pulse propagation in doped fibers [15] or, for in-
stance, in wave propagation in two dimensional quantum lattices [16] is closely related to it [17] but not the same. The main
difference with FENO lies in that the saturable nonlinearity represents a kind softening (nonpolynomial) nonlinearity in NPO,
whereas the FENO possesses a hardening one instead.

For the last decades, an enormous amount of work has been devoted to obtaining approximate analytical solutions to
nonlinear oscillators, their amplitudes and periods of vibration. Among them, it is possible to mention: perturbation meth-
ods [18], where the solution is expressed as a power series in a small parameter; homotopy perturbation methods [19,20],
which do not necessarily require a small parameter in the equation of motion to produce accurate results (a combination of
the perturbation expansion method and homotopy techniques); harmonic balance [21,22], which proposes a periodic solu-
tion as a Fourier series and always equates higher order harmonics to zero; linearized harmonic balance [23,24] which is the
linearized version of the harmonic balance method; the method of multiple scales [25], which introduces multiple time
scales that are powers of a small parameter; Adomian decomposition method [26,27], based on transforming the original
differential equation into an integral equation which is expanded into the so-called ‘‘Adomian’s’’ polynomials; and iterative
calculation techniques [28,29], which proposes a first order Taylor expansion of an artificial nonlinear term added to the ori-
ginal equation, provided that it is free from secular terms. From all of these techniques, we select a general decomposition
method approach (GDM) and a linearized harmonic balance procedure (LHB), since they have proven to exhibit accurate re-
sults when applied to a large variety of velocity-dependent nonlinear problems [30,31,24,32], as it will be shown later.

The main objective of this work is, then, to obtain an approximate expression for the periodic solution of the FENO as well
as for its period as a function of its amplitude of vibration. Then, this information could be used, for example, in a thorough
study of the dynamics of a chain of these oscillators, which constitute the basis of a real polymer chain, a DNA molecule or a
non-Newtonian fluid. Similarly, to know the period of the FENO (or frequency of oscillation) as a function of its amplitude
could allow to analyze a forced FENO and to study the resonance conditions (frequencies at which the amplitude of the sys-
tem is supposed to be unbounded only limited by the damping and the nonlinearity). Since the linearized frequency of the
FENO (the frequency at small amplitude of oscillation) can differ greatly from the actual frequency for large amplitudes, it is
not possible to address the problem of capturing these new resonances with the simplified linear model. Ultimately, these
resonance conditions, which lead to super or sub-harmonic resonances, are crucial to determine the system’s frequency
response.

The paper is organized as follows. Section 2, presents the mathematical formulation of the problem, a stability analysis
and the periodicity of solutions. Section 3 is devoted to obtaining approximate expressions for the amplitude of oscillation,
frequency and period. To this end, the problem is presented within the generalized decomposition method in two different
versions and the linearized harmonic balance procedure. Section 4 provides analytical asymptotic expansions for the period
of the FENO for the whole range of amplitudes. The numerical results and comparisons between the three approximate ana-
lytical approaches and asymptotic expansions for the period are presented in Section 5. Finally, concluding remarks are pre-
sented and discussed in Section 6.

2. Mathematical model

The FENE potential is used in this work to model the finite extensibility of the oscillator. Mathematically, it is represented
by the following expression:

VðxÞ ¼ �1
2

lnð1� x2Þ ð1Þ

where x represents the amplitude of the oscillator. Then, the equation of motion for the oscillator (being x = 1 its maximum
possible amplitude) yields

€xþ x
1� x2 ¼ 0 xð0Þ ¼ A; ðA < 1Þ; _xð0Þ ¼ 0 ð2Þ

where the dot indicates differentiation with respect to t and A is a constant (initial amplitude).

2.1. Stability character and periodicity of solutions

As a first approximation to the solution of (2), a stability study of all possible solutions for different values of A is pre-
sented. First, it is possible to note that (2) can be written as a system of two coupled first-order differential equations (Ham-
ilton’s equations)
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_y ¼ � x
1� x2

_x ¼ y ð3Þ

Additionally, it is possible to obtain the trajectories through the 2-dimensional phase space dividing both expressions in
(3):

dy
dx
¼ � x

1� x2

1
y
:

Integration of the above equation leads to an expression for y ¼ _x in terms of the total energy E and the potential energy V(x)
(FENE potential energy).

_x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E� 2VðxÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ lnð1� x2Þ

q
ð4Þ

The singular point or equilibrium point for this system is located at x = 0; y = 0 (velocity and acceleration are simulta-
neously zero) and the nullclines are: dy/dx = 0 (horizontal tangent) at x = 0 (y-axis) and dy/dx =1 (vertical tangent) at
y = 0 (x-axis). Then, since V(x) =�1/2ln (1 � x2) is a minimum for x = 0, the equilibrium point is stable (in the sense of Liapu-
nov) and a center [25]. As a consequence, the system performs a close trajectory surrounding the center if a small distur-
bance kicks it out. The motions corresponding to the closed curves are, then, periodic.

As an additional note, it is interesting to point out that (2) can be considered within the general case of a velocity-depen-
dent frequency oscillator if the conservation of energy is used. From (4), it is possible to write 1

1�x2 ¼ 1
1�A2 e� _x2 . Finally, (2) re-

sults in

€xþ e� _x2 x

1� A2 ¼ 0

where A = x(0) as usual.

3. Approximate analytical solutions

In this section, approximate analytical expressions for the amplitude of oscillation, frequency and period are obtained by
means of the generalized decomposition method and, additionally, by a linearized harmonic balance procedure.

3.1. Generalized decomposition method

Two different versions of the generalized decomposition method as presented by [30,31] are employed. The first one con-
sists basically in the introduction of an artificial ordering parameter in a nonlinear Volterra integral equation and the expan-
sion of the solution as a power series of the ordering parameter. The second one is based on an artificial parameter-
Lindstedt–Poincare technique and the expansion of the nonlinear term in a Taylor’s series about the equilibrium point.

3.1.1. First version
In this subsection, the method as presented in [30] is followed. First, in order to adapt (2) to the required form, it must be

rewritten to fit a linear harmonic oscillator in the RHS, plus a forcing term depending on displacement and acceleration in
the LFS. This results in

€xþx2x ¼ þx2x� xþ x2€x xð0Þ ¼ A; _xð0Þ ¼ 0 ð5Þ

which was obtained from (2) by multiplication by 1 � x2 and the addition of a linear stiffness term. Upon making the change
of variable h = xt, (5) yields

x00 þ x ¼ Fðh; x; x00;x2Þ ¼ x� x
x2 þ x2x00 xð0Þ ¼ A; _xð0Þ ¼ 0 ð6Þ

where the prime represents differentiation with respect to h, and x is the unknown frequency of oscillation. Applying the
method of variation of parameters, the solution to (6) is obtained:

xðhÞ ¼ A cosðhÞ þ
Z h

0
Fðs; x; x00;x2Þ sinðh� sÞds: ð7Þ

An artificial parameter p is then introduced in (7) which yields

xðhÞ ¼ A cosðhÞ þ p
Z h

0
Fðs; x; x00;x2Þ sinðh� sÞds; ð8Þ

clearly, (8) coincides with (7) upon setting p = 1. Now, (8) is appropriate to be solved by the generalized decomposition
method. First, the solution x(h) is expanded as
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xðhÞ ¼
X1
n¼0

pnxnðhÞ ð9Þ

and also the square of the frequency of oscillation is expanded in the same form

x2 ¼
X1
n¼0

pnx2
n ð10Þ

Then, if (9) and (10) are substituted into (8), the final expressions at Oðp0Þ; Oðp1Þ; Oðp2Þ and Oðp3Þ are

x0ðhÞ ¼ A cosðhÞ ð11Þ

x1ðhÞ ¼
Z h

0
Fðs; x0ðsÞ; x000ðsÞ;x2

0Þ sinðh� sÞds ð12Þ

x2ðhÞ ¼
Z h

0
Pðs; x0ðsÞ; x000ðsÞ;x2

0Þ sinðh� sÞds

x3ðhÞ ¼
Z h

0
Hðs; x0ðsÞ; x000ðsÞ;x2

0Þ sinðh� sÞds

The functions P(s,x(s),x00(s),x2) and H(s,x(s),x00(s),x2) result from a Taylor’s series expansion of F at ðx0; x000;x2
0Þ and are given

by

P ¼ @F
@x

x1 þ
@F
@x00

x001 þ
@F

@ðx2Þx
2
1 ð13Þ

and

H ¼ @F
@x

x2 þ
@F
@x00

x002 þ
@F
@x2 x2

2 þ
1
2

@2F
@x2 x2

1 þ
@2F

@ðx00Þ2
ðx001Þ

2 þ @2F

@ðx2Þ2
x4

1 þ 2
@2F
@x@x00

x1x001 þ 2
@2F

@x@x2 x1x2
1 þ 2

@2F
@x00@x2 x001x

2
1

( )

Then, solving (12) one obtains

x1ðhÞ ¼
1
2

A� A
x2

0

� 3A3

4

" #
h sinðhÞ � A3

32
ðcosðhÞ � cosð3hÞÞ ð14Þ

After eliminating the secular terms [33], the first correction to the frequency, x2
0 is obtained

x2
0 ¼

4

4� 3A2 ð15Þ

from which it is possible to deduce that A < 2=
ffiffiffi
3
p
� 1:154 in accordance with A < 1 from (2). For Oðp2Þ, the solution reads

x2ðhÞ ¼
1
2

Ax2
1

x4
0

� A3

32
1� 1

x2
0

� �
� A5

64

" #
h sinðhÞ þ A3

256
1� 1

x2
0

� �
� 17A5

768

" #
cosðhÞ

þ A3

256
1� 1

x2
0

� �
� 19A5

1024

" #
cosð3hÞ þ 11A5

3072
cosð5hÞ ð16Þ

Clearly, the secular term is eliminated if

x2
1 ¼

5A4x4
0

128
¼ 80

128
A4

ð4� 3A2Þ2
:

Finally, for Oðp3Þ one obtains

x3ðhÞ ¼
1
2

18A6

3072
�x2

2

x4
0

þ 59A4

3072
1� 1

x2
0

� �
þ 96A2

3072
x2

1

x4
0

þx4
1

x6
0

" #
h sinðhÞ

þ A3 620A2

294912
1� 1

x2
0

� �
� 4449A4

294912
þ 1152

294912
x2

1

x4
0

" #
cosðhÞ

� A3 64A2

32768
1� 1

x2
0

� �
þ 128

32768
x2

1

x4
0

� 351A4

32768

" #
cosð3hÞ

� A5 11
73728

1� 1
x2

0

� �
� 371A2

98304

" #
cosð5hÞ þ 59A7

98304
cosð7hÞ; ð17Þ
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from which x2
2 can be easily derived, after the elimination of the secular term corresponding to the coefficient of h sin(h),

x2
2 ¼ A6x4

0
11

512
þ 25

16384
x2

0A2
� �

:

Summarizing, using (11), (14), (16) and (17) it is possible to write a four-term approximation to the solution of (5) as
follows:

xðhÞ � A� A3

32
� 59A5

3072
� 1313A7

98304

" #
cosðhÞ þ A3

32
þ A5

64
þ 298A7

32768

" #
cosð3hÞ þ 11A5

3072
þ 360A7

98304

" #
cosð5hÞ þ A3

32
þ 59A5

98304

� cosð7hÞ:

For the frequency, the expression finally reads (upon setting p = 1)

x2 � 4

4� 3A2 1þ 5
128

A4 4

4� 3A2

� �
þ A6 4

4� 3A2

� �2 11
512
þ 25

16384
4

4� 3A2

� �
A2

� �

giving for the period T = 2p/x the following form:

TG1 ¼ 2p 1� 3
8

A2 � 23
256

A4 � 91
2048

A6 � 2713
131072

A8 þ � � �
� �

ð18Þ

3.1.2. Second version
If a linear stiffness term, x2x, is introduced to (2), a second version of the generalized decomposition method [31] can be

formulated. This gives

€xþx2x ¼ x2x� x
1� x2 xð0Þ ¼ A; ðA < 1Þ; _xð0Þ ¼ 0 ð19Þ

Upon introducing h = xt again, (19) reads

x00 þ x � Fðh; xðhÞ; x00ðhÞ;x2Þ ¼ x� 1
x2

x
1� x2 xð0Þ ¼ A; ðA < 1Þ; _xð0Þ ¼ 0: ð20Þ

where, as stated above, the primes represent differentiation with respect to h. Following a similar analysis as in Section 3.1.1,
x(h) and x are expanded as a power series in the same way. After introducing them in (8) and differentiating them with re-
spect to h twice, three ordinary differential equations for x0(h), x1(h) and x2(h) are obtained:

x000ðhÞ þ x0ðhÞ ¼ 0 x0ð0Þ ¼ A; _x0ð0Þ ¼ 0 ð21Þ
x001ðhÞ þ x1ðhÞ ¼ Fðx0ðhÞ; x000ðhÞ;x2

0Þ x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0

x002ðhÞ þ x2ðhÞ ¼ Pðx0ðhÞ; x000ðhÞ;x2
0Þ x2ð0Þ ¼ 0; _x2ð0Þ ¼ 0

Note that F and P are given by (20) and (13) respectively.
The solution to (21) is simply

x0ðhÞ ¼ A cosðhÞ: ð22Þ

After taking into account (20), the expression for x1(h) is

x001ðhÞ þ x1ðhÞ ¼ x0 �
1
x2

0

x0

1� x2
0

: x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0: ð23Þ

Finally, the differential equation for x2(h) is given by

x002ðhÞ þ x2ðhÞ ¼ x1 1� 1
x2

0

1þ x2
0

ð1� x2
0Þ

2

 !
þx2

1

x4
0

x0

1� x2
0

: x2ð0Þ ¼ 0; _x2ð0Þ ¼ 0: ð24Þ

The solution to (23) is obtained following Ramos [31]. Considering that x
1�x2 is an analytic function of x, it can be expanded in

a Taylor’s series about x = 0 as

x
1� x2 ¼ x

X1
n¼0

ðx2Þn

Then, introducing it into the RHS of (23) and using (22) one obtains

x001ðhÞ þ x1ðhÞ ¼ A 1� 1
x2

0

� �
cosðhÞ � 1

x2
0

X1
n¼1

A2nþ1 cos2nþ1ðhÞ x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0 ð25Þ
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With the help of Euler’s formula, De Moivre’s formula and Newton’s binomial theorem [34], it is not difficult to write
cos2n+1(h) as

cos2nþ1ðhÞ ¼
Xn

k¼0

an;k cosð2n� 2k� 1ÞðhÞ

where an,k is given by

an;k ¼
1

22n

2nþ 1
k

� �
ð26Þ

Substituting the above identity into (25) and eliminating the secular terms, the final expression for x2
0 reads

x2
0 ¼

X1
n¼0

A2nþ1 ð2nþ 1Þ!
22nðnþ 1Þ!ðn!Þ

¼ 1þ 3
4

A2 þ 10
16

A4 þ 35
64

A6 þ 126
256

A8 þ � � � ð27Þ

which represents the frequency at Oðp0Þ. It is worth noting that the series for x2
0 (27) is a convergent series as it can be pro-

ven, for example, by the ratio test [35] (using A < 1). The expression for the period, T = 2p/x, then results:

TG2 ¼ 2p 1� 3
8

A2 � 13
128

A4 � 55
1024

A6 � 1149
32768

A8 þ � � �
� �

ð28Þ

Finally, (25) can be written as

x001ðhÞ þ x1ðhÞ ¼ �
X1
n¼1

Hn cosðð2nþ 1ÞhÞ x1ð0Þ ¼ 0; _x1ð0Þ ¼ 0 ð29Þ

where the coefficient Hn is

Hn ¼
1
x2

0

X1
k¼n

A2kþ1 ð2kþ 1Þ!
22kðkþ 1þ nÞ!ðk� n!Þ

Solving (29), the solution to Oðp1Þ reads

x1ðhÞ ¼
X1
n¼1

Hn

4nðnþ 1Þ ðcosðð2nþ 1ÞhÞ � cosðhÞÞ ð30Þ

Following a similar procedure, using (22) and (30) for x0(h) and x1(h) and inserting them into (24), one arrives at an equation
for x2(h) with x2

1 as a function of A. However, the computations are too complex to be presented here and will be presented
in a subsequent paper.

3.2. Linearized harmonic balance method

The linearized version of the harmonic balance procedure consists mainly in expressing the second approximation to the
solution obtained within the harmonic balance method as the sum of the first approximation, which satisfies the initial con-
ditions and an unknown function, dx1(t), which results after a linearization of the final expression in the equation of motion.
Requiring that dx1(t) satisfies the homogeneous initial conditions, the harmonic balance method is applied again to obtain
more accurate results. To this end, (2) is conveniently rewritten as a first step to apply the method:

ð1� x2Þ€xþ x ¼ 0 xð0Þ ¼ A; ðA < 1Þ; _xð0Þ ¼ 0 ð31Þ

Next, following the lowest order harmonic balance method, a first initial approximation is proposed to be of the form
x1ðtÞ ¼ A cosðxtÞ where x is the unknown frequency to be determined. The substitution of x1(t) into (31) leads to

xHb1ðAÞ2 ¼
4

4� 3A2 ð32Þ

which coincides with the frequency provided by (15). A more accurate frequency of oscillation is obtained if the following
expression for the second-order approximation x2(t) = x1(t) + dx1(t) is replaced in (31) and second-order corrections in
(dx1(t))2 are discarded. Finally, the frequency reads

xLhb2ðAÞ2 ¼
80� 46A2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4096� 4352A2 þ 1236A4

p
144� 188A2 þ 55A4 : ð33Þ

And the period results

TLhb2 ¼ 2p 1� 3
8

A2 � 23
256

A4 � 361
8192

A6 � 3405
131072

A8 þ � � �
� �

ð34Þ
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Therefore, the second-order approximation to the solution is

x2ðtÞ ¼ x1ðtÞ þ dx1ðtÞ ¼ A cosðxLhb2tÞ þ c1ðAÞðcosðxLhb2tÞ � cosð3xLhb2tÞÞ ð35Þ

where c1ðAÞ ¼ ðx2
Lhb2ðA� 3

4 A3Þ � AÞ=ð1� ð1þ A2
=2Þx2

Lhb2Þ.

4. Asymptotic representation of the period

Asymptotic representations of the period of nonlinear oscillators are very useful from a practical viewpoint since they
provide, most of the times, very approximate analytical expressions of complex integrals which are very hard to obtain. This
section is divided into two considering the magnitude of the amplitude of oscillation A. In the first subsection, amplitude
values between 0 < A 6 0.9 are considered, and in the second subsection, A is taken for values very near to its maximum A = 1.

4.1. Small amplitudes of vibration

The exact value of the period for the FENO is, taking into account the initial conditions,

TðAÞ ¼ 4
Z A

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ lnð1� x2Þ

p ð36Þ

where E is the system’s total energy. If a new constant G is defined as G ¼ 1
1�A2 the period is now written as

TðAÞ ¼ 4
Z A

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðGð1� x2ÞÞ

p ð37Þ

For small amplitudes x� 1, it is possible to express the term under the radical up to Oðx4Þ as ln (G(1 � x2)) � lnG � x2 � x4/2.
Then, applying the linear transformation x ¼

ffiffiffiffiffiffiffiffiffi
ln G
p

u, (37) transforms into

TðAÞ � TsðAÞ ¼ 4
Z A=

ffiffiffiffiffiffi
ln G
p

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 � au4
p ð38Þ

where the constant a = lnG/2 and the subscript s indicates small amplitude approximation. The last integral can be written in
terms of an incomplete elliptic integral of the first kind K(q;k) [34]. The result is given by

TsðAÞ ¼ 8
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a
pp K

A

2
ffiffiffiffiffiffiffiffiffi
ln G
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

pq
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� 1

2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a
p

2a

� �s0
@

1
A ð39Þ

A second-order solution in A is possible to obtain expanding (39), so that

TsðAÞ � Ts1ðAÞ ¼ 2p 1� 3
8

A2
� �

ð40Þ

Unfortunately, it is difficult to get higher order approximations for the period starting from (39). Instead, higher order terms
can be obtained considering (37) and rearranging the terms under the radical, after a Taylor’s expansion:

lnðGð1� x2ÞÞ � ðA2 � x2Þ þ 1
2
ðA4 � x4Þ þ 1

3
ðA6 � x6Þ þ 1

4
ðA8 � x8Þ þ � � � ð41Þ

Substituting x = Au, the integral (39) for the period results

TðAÞ ¼ 4
Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ þ 1

2 A2ð1� u4Þ þ 1
3 A4ð1� u6Þ þ 1

4 A6ð1� u8Þ þ � � �
q ð42Þ

Again, the denominator of (42) can be approximated as follows:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1
2A2ð1�u4Þþ1

3A4ð1�u6Þþ1
4A6ð1�u8Þþ���

ð1�u2Þ

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ

p

� 1þ as1ðuÞA2 þ as2ðuÞA4 þ as3ð4ÞA6 þ as3ð4ÞA8 þ � � �
h i

ð43Þ

where

as1ðuÞ ¼ �
ð1� u2Þ

4
; as2ðuÞ ¼ �

7
96
� 7

48
u2 þ 7

96
u4

� �
; as3ðuÞ ¼ �

5
128
� 1

128
u2 � 1

128
u4 þ 5

128
u6

� �
;

as4ðuÞ ¼ �
787

30720
� 37

7680
u2 � 13

5120
u4 � 37

7680
u6 þ 787

30720
u8

� �
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Finally, substituting (43) into the integral (37) and integrating for u, the approximate expression for the period up to
eighth order in A is

Ts2ðAÞ ¼ 2p 1� 3
8

A2 � 23
256

A4 � 91
2048

A6 � 21829
786432

A8
� �

ð45Þ

4.2. Amplitudes near the maximum elongation of the oscillator, A = 1

Considering the expression for the exact period (36) and the conservation of energy (4), the following change of variable
can be set

1� x2 ¼ e�u2

then

dx ¼ ue�u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�u2
p du

With these relations, the period obtained is

TðAÞ ¼ 4
Z ffiffiffiffiffiffi

ln G
p

0

ue�u2
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E� u
p ð46Þ

with G as defined above. Making use of the initial conditions, it can be easily shown that lnG = 2E. After renaming lnG = b, and
a new change of variables z = u2, the expression for the period reads

TðAÞ ¼ 4
Z b

0

e�
z
2dz

2b1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p ffiffiffiffiffiffiffiffiffiffiffi

1� z
b

p ð47Þ

To compute (47) it is convenient to make a power series expansion of the term ð1� z
b Þ
�1=2

1ffiffiffiffiffiffiffiffiffiffiffi
1� z

b

p ¼ 1þ 1
2

z
b

� �
þ 3

8
z
b

� �2
þ 5

16
z
b

� �3
þ � � � ð48Þ

Then, inserting (48) into (47) results in

TðAÞ � TlðAÞ ¼ 4
Z b

0

e�
z
2

2b1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ez � 1
p 1þ 1

2
z
b

� �
þ 3

8
z
b

� �2
þ 5

16
z
b

� �3
þ � � �

� �
dz ð49Þ

Finally, it is easy to see that it is possible to extend the upper limit of integration to infinity, since for b ?1 the integrand is
I / e�

z
2ffiffiffiffiffiffiffiffi

ez�1
p ! e�z and therefore only exponentially small errors occur [36]. Then, the expression for the period taking (49) into

account and integrating up to Oðzb Þ
3 results in

Tl1ðAÞ ¼
2

b1=2 2þ a1

b
þ a2

b2 þ
a3

b3

� �
ð50Þ

where a1,a2,a3 are constants given by

Table 1
Comparison between the exact period T(A) (numerically integrated), the asymptotic representation of the period for small amplitudes Ts2(A), the period
obtained through a general decomposition method in its first version TG1(A) and in its second version TG2, and the period calculated using the linearized
harmonic balance TLhb2(A). Relative error (re) is computed as differences (%) between T(A) and all the other approximations.

A T(A) Ts2(A) reTs2 TG1(A) reTG1 TG2(A) reTG2 TLhb2(A) reTLhb2

0.01 6.28295 6.28295 0 6.28295 0 6.28295 0 6.28295 0
0.1 6.25957 6.25957 0 6.25956 1.5910�4 6.25956 1.5910�4 6.25957 0
0.2 6.18802 6.18802 0 6.18802 0 6.18789 0.00210 6.18801 1.6110�4

0.3 6.06634 6.06634 0 6.06634 0 6.06570 0.0105 6.06634 0
0.4 5.89047 5.89048 �1.6910�4 5.89051 �6.794 5.88831 0.0366 5.89050 �5.0910�4

0.5 5.65366 5.65381 �0.00265 5.65398 �0.00566 5.64792 0.101 5.65389 �0.00407
0.6 5.34482 5.34584 �0.0191 5.34659 �0.0331 5.33146 0.250 5.34614 �0.0247
0.7 4.94463 4.95021 �0.113 4.95277 �0.164 4.91565 0.586 4.95113 �0.131
0.8 4.41508 4.44155 �0.599 4.44899 �0.768 4.35312 1.40 4.44403 �0.655
0.825 4.25385 4.29254 �0.909 4.30206 �1.13 4.17845 1.77 4.29566 �0.983
0.85 4.07674 4.13334 �1.38 4.14543 �1.68 3.98446 2.26 4.13726 �1.484
0.875 3.87997 3.96310 �2.14 3.97834 �2.53 3.76598 2.94 3.96797 �2.27
0.9 3.65767 3.78085 �3.36 3.79994 �3.89 3.51491 3.90 3.78689 �3.53
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a1 ¼ 2� ln 4; a2 ¼
3
8
�2p2

3
þ 2ð8� 4 ln 4þ ðln 4Þ2Þ

� �
;

a3 ¼
5

16
2ð48þ p2ð�2þ ln 4Þ � ln 4ð24þ ln 4ð�6þ ln 4ÞÞÞ � 12fð3Þ
	 


and fðsÞ ¼
P1

k¼1k�s is the Riemann Zeta function.

5. Comparison of numerical calculations

Table 1 and Fig. 1 show a comparison for 0 < A 6 0.9 between the exact period T(A), obtained by means of an accurate
numerical integration and four different ways to approximate this value: the asymptotic representation of the period for
small amplitudes Ts2(A), the period obtained with a general decomposition method in its first and second version, TG1(A)
and TG2(A), and the calculations given by the linearized harmonic balance method TLhb2(A). The relative error is computed
as differences (%) between T(A) and the other four approximate representations of the period, which are columns reTs2, reT-
G1, reTG2 and reTLhb2 of Table 1. As it can be immediately seen from those values, the error never exceeds a maximum of 3.92%
for all the different approaches, which represents a very good value bearing in mind that almost the whole allowed range of
amplitudes of oscillation are considered. Moreover, for values of A < 0.8, the error is always less than 0.77 % for Ts2(A),TG1(A)
and TLhb2(A). The lowest relative error in Table 1 is obtained with the asymptotic representation of the period, Ts2(A). Then
follow in increasing order, the linearized harmonic balance method (TLhb2(A)), the first version of the GDM (TG1(A)), and fi-
nally the second version of the GDM (TG2(A)).

Table 2 and Fig. 2 exhibit a comparison between the asymptotic representation of the period obtained in Section 4.2,
Tl1(A), and T(A) for amplitudes 0.99 6 A 6 0.9999999. Naturally, values for A between 0.999 6 A 6 0.9999999 have only
an academic interest and are going to be considered here as a demonstration of the accuracy of the asymptotic solution.
Firstly, it must be noticed that the relative error never exceeds a maximum value of �3.19% for the considered range, and
it improves its approximation for increasing values of A. This is in agreement with the analytic predictions since, for Tl1(A)
to give a good approximation for the period, b ¼ lnð 1

1�A2Þmust be high (>10). Moreover, for 0.999 6 A 6 0.9999999 the agree-
ment is excellent, always less than 0.5%.

In order to produce a global estimator of the accuracy of the solutions, the L2 norm of a function f(x) is used to compare
the three different approximate solutions. The idea here is to know whether a good approximation to the period necessarily
represents a satisfactory approximation to the solution. The L2 norm of a function is defined as kfkL2

¼ ffip R
X f 2ðxÞdx, and it

represents the norm of a square-integrable function f(x) in the domain X [37]. From this definition, it is possible to induce
a distance between two functions (f(x) and g(x)) or ‘‘L2 error’’ as kf � gkL2

. Fig. 3 shows the L2 error between f(A) and three
approximate solutions of the FENO, fG1, fG2and fLhb2 over one period, T(A). As explained above, the ‘‘exact’’ solution f(A) is ob-
tained with an accurate numerical integration of (2). Two different situations can be observed in the figure. For 0 < A 6 0.6
the first version of the generalized decomposition method (fG1) gives the best approximation to the numerical solution. Then
follow, in decreasing order, fLhb2 and fG2. On the other hand, for 0.6 < A < 0.9, fLhb2 is the solution that shows the best agree-

Fig. 1. Graphical representation of the exact period T(exact), an asymptotic representation of the period Ts2, the two versions of the GDM: first (TG1) and
second (TG2), and the linearized version of the harmonic balance method TLhb2 for 0 < A 6 0.9.
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Table 2
Comparison between the exact period T(A) and Tl1(A) for 0.99 6 A 6 0.9999999. Relative error (re) is computed as differences (%) between T(A) and Tlb(A).

A b ¼ ln 1
1�A2

� �
T(A) Tl1(A) reTl1(A)

0.99 3.9170 2.26915 2.34159 �3.19
0.999 6.2151 1.71419 1.72219 �0.467
0.9999 8.5172 1.43181 1.43484 �0.212
0.99999 10.8197 1.25628 1.25787 �0.126
0.999999 13.1223 1.13333 1.13423 �0.0794
0.9999999 15.4249 1.04083 1.04137 �0.0519

Fig. 2. Graphical representation of the exact period T(A) and the asymptotic representation of the period, Tl1(A) for 0.99 6 A 6 0.9999999.

Fig. 3. L2 error as a function of the amplitude A for the general decomposition method, first (fG1) and second version (fG2) and the linearized harmonic
balance method fLhb2 (0 < A 6 0.9). The inset shows the L2 error for 0.9 6 A 6 0.99. It can be observed that the curves match exponential functions (solid
traces) for the three cases (fG1, fG2, fLhb2).
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ment with the numerical solution when compared to fG1 and alternatively to fG2. It is possible then to conclude that all three
perturbative schemes present also a good approximation to the solution itself for the considered range (0 < A 6 0.9).

Finally, the inset of Fig. 3 shows the L2 error for 0.9 < A 6 0.99. It can be observed that the error increases exponentially
with A for all three cases. This clearly shows that, in this limit, the three approximations to the solution do not represent a
good description for the FENO, and higher order perturbation solutions are needed to achieve a reasonable degree of
accuracy.

6. Conclusions

In this work, approximate analytical expressions for the solution and the period of a finite extensibility nonlinear oscil-
lator (FENO) are obtained by means of two perturbation methods: a general decomposition method (and a version of it) and
a linearized harmonic balance procedure. Considering the perturbative characteristics of the proposed methods, the results
show a very good agreement with the exact (numerically obtained) solution not only for the period, but also for the solution
itself for amplitudes lower than 0.9 (A 6 0.9). Within this range, it is possible to affirm the following. From the calculation of
the period, the results for the three methods show the same tendency of increasing the relative error with increasing ampli-
tude, but they never exceed a maximum error of 3.90% (for the second version of GDM at A = 0.9). It can also be observed that
the linearized harmonic balance provides a slightly better approximation to the period than the other methods. From the
point of view of the global quality of solutions (L2 error), the results reveal the same tendency of increasing error with
increasing amplitude in the three methods. However, the relative error is always bounded by a satisfactory value of 5% in
the worst case (second version of the generalized decomposition method (fG2)) for A = 0.9. Detailed calculations show that
(fG1) gives the best approximation for 0 < A 6 0.6, and fLhb2 is the solution that shows the best agreement for 0.6 < A 6 0.9.
From this point of view, it is possible to arrive at the important conclusion that a properly linearized model of the FENO (lin-
earized harmonic balance method) provides an excellent solution for a large range of amplitudes of oscillation (0 < A 6 0.9).

For the rest of the amplitude the range (0.9 < A < 1), it is possible to conclude that the three methods cease to provide a
good accuracy of the results for the orders of perturbation considered in the present work. This is evidenced by a calculated
exponentially large L2 error for all three approximations to the exact solution. Instead, an asymptotic representation of the
period is presented for the same range. This solution yields a relative error lower than �3.19% for A = 0.99 and improves its
accuracy as larger values of b (which increases with elongation) are considered. Moreover, the results show that the relative
error never exceeds 0.5% for 0.999 6 A 6 0.9999999. One must keep in mind that such large extensions of an oscillator might
have only an academic interest since a rupture of any physical mechanism of the oscillator may take place if one approaches
this limit.

A very interesting extension of this work would be to introduce damping into the model (of the viscous type or of the
Coulomb type) to study how damping affects not only the natural frequency of the FENO, but also its periodic motion. This
analysis, as stated in the introduction, would be the basis on which a profound study of the forced motion of the FENO may
lay.

Acknowledgements

The present study has been sponsored by CONICET and by Secretaría General de Ciencia y Tecnología of Universidad Nac-
ional del Sur at the Departments of Physics ( PGI 24F/041). The author is indebted to Professor T.A. Vilgis for inspiring this
work.

References

[1] P. Maniadis, G. Kopidakis, S. Aubry, Classical and quantum targeted energy transfer between nonlinear oscillators, Physica D 188 (2004) 153–177.
[2] A. Pathak, S. Mandal, Classical and quantum oscillators of sextic and octic anharmonicities, Physics Letters A 298 (2002) 259–270.
[3] J.A. Acebrón, R. Spigler, Uncertainty in phase-frequency synchronization of large populations of globally coupled nonlinear oscillators, Physica D 141

(2000) 65–79.
[4] Sandra R.F.S.M. Gois, Marcelo A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals 41

(2009) 2553–2565.
[5] J.I. Ramos, Linearized Galerkin and artificial parameter techniques for the determination of periodic solutions of nonlinear oscillators, Applied

Mathematics and Computation 196 (2008) 483–493.
[6] Z. Guo, A.Y.T. Leung, The iterative homotopy harmonic balance method for conservative HelmholtzDuffing oscillators, Applied Mathematics and

Computation 215 (2010) 3163–3169.
[7] R.E. Mickens, Quadratic non-linear oscillators, Journal of Sound and Vibration 270 (2004) 427–432.
[8] H. Scherrer, H. Risken, T. Leiber, Eigenvalues of the Schrödinger equation with rational potentials, Physical Review A 38 (1988) 3949–3959.
[9] H. Risken, H.D. Vollmer, The influence of higher order contributions to the correlation function of the intensity fluctuation in a laser near threshold,

Zeitschrift fr Physik A 201 (1967) 323–330.
[10] S.N. Biswas, K. Datta, R.P. Saxena, P.K. Srivastava, V.S. Varma, Eigenvalues of kx2m anharmonic oscillators, Journal of Mathematical Physics 14 (1973)

1190–1195.
[11] M. Febbo, A. Milchev, V. Rostiashvili, D. Dimitrov, T.A. Vilgis, Dynamics of a stretched nonlinear polymer chain, The Journal of Chemical Physics 129

(2008) 1549081–15490813.
[12] J.W. Hatfield, S.R. Quake, Dynamic properties of an extended polymer in solution, Physical Review Letters 82 (1999) 3548–3551.
[13] J. Koplik, J.R. Banavar, Extensional rupture of model non-Newtonian fluid filaments, Physical Review E 67 (2003) 115021–1150212.
[14] N. Kremer, Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, vol. 23, John von Neumann Institute for Computing, 2004.

6474 M. Febbo / Applied Mathematics and Computation 217 (2011) 6464–6475



Author's personal copy

[15] S. Gatz, J. Herrmann, Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change, Optics
Letters 17 (1992) 84–486.

[16] T.R.O. Melvin, A.R. Champneys, P.G. Kevrekidis, J. Cuevas, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity:
Existence, stability and dynamics, Physica D 237 (2008) 551–567.

[17] A. Khare, K. Rasmussen, M.R. Samuelsen, Avadh Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, Journal of Physics A
38 (2005) 807–814.

[18] R.E. Mickens, Construction of a perturbation solution for a non-linear, singular oscillator equation, Journal of Sound and Vibration 130 (1989) 513–515.
[19] J-H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics 20 (2006) 1141–1199.
[20] J-H. He, Addendum: New interpretarion of homotoy perturbation methods, International Journal of Modern Physics 20 (2006) 2561–2568.
[21] H. Hu, J.H. Tang, Solution of a Duffing-harmonic oscillator by the method of harmonic balance, Journal of Sound and Vibration 294 (2006) 637–639.
[22] H.P.W. Gottlieb, Harmonic balance approach to periodic solutions of non-linear Jerk equations, Journal of Sound and Vibration 271 (2004) 671–683.
[23] B.S. Wu, C.W. Lim, Large amplitude nonlinear oscillations of a general conservative system, International Journal of Non-linear Mechanics 39 (2004)

859–870.
[24] A. Beléndez, D.I. Méndez, T. Beléndez, A. Hernández, M.L. Álvarez, Harmonic balance approaches to the nonlinear oscillators in which the restoring

force is inversely proportional to the dependent variable, Journal of Sound and Vibration 314 (2008) 775–782.
[25] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, John Wiley and Sons, 1979.
[26] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, MA, 1994.
[27] M.M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Applied Mathematics and Computation 175 (2006) 1685–1693.
[28] R.E. Mickens, Harmonic balance and iteration calculations of periodic solutions to €yþ y�1 ¼ 0, Journal of Sound and Vibration 306 (2007) 968–972.
[29] R.E. Mickens, A generalized iteration procedure for calculating approximations to periodic solutions of truly nonlinear oscillators, Journal of Sound and

Vibration 287 (2005) 1045–1051.
[30] J.I. Ramos, Generalized decomposition method for singular oscillators, Chaos, Solitons and Fractals 42 (2009) 1149–1155.
[31] J.I. Ramos, Generalized decomposition method for nonlinear oscillators, Chaos, Solitons and Fractals 41 (2009) 1078–1084.
[32] A. Beléndez, C. Pascual, D.I. Mendez, C. Neipp, Solution of the relativistic (an)harmonic oscillator using the harmonic balance method, Journal of Sound

and Vibration 311 (2008) 1447–1456.
[33] L. Meirovitch, Methods of Analytical Dynamics, Dover, Mineola, NY, 2003.
[34] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Inc., 1996.
[35] T.M. Apostol, Mathematical analysis, second ed., Addison-Wesley, 1974.
[36] A. Beléndez, A. Hernández, T. Beléndez, C. Neipp, A. Márquez, Asymptotic representations of the period for the nonlinear oscillator, Journal of Sound

and Vibration 299 (2007) 403–408.
[37] K. Rektorys, Variational methods in mathematics, science and engineering, D. Reidel, Dordrecht, Holland, 1980.

M. Febbo / Applied Mathematics and Computation 217 (2011) 6464–6475 6475


