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We performed a predictive analysis based on Quantitative Structure–Activity Relationships (QSAR) of
a very important property of flavonoids which is the inhibition (IC50) of influenza H1N1 virus neur-
aminidase. The best linear model constructed from 20 molecular structures incorporated four molecular
descriptors, selected from more than a thousand geometrical, topological, quantum-mechanical and
electronic types of descriptors.

The obtained model suggests that the activity depends on the electric charges, masses and polariz-
abilities of the atoms present in the molecule as well as its conformation. The model showed good
predictive ability established by the theoretical and external test set validations.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Influenza virus expresses two envelope glycoproteins: hemag-
glutinin and neuraminidase (NA) [EC 3.2.1.18]. The hemagglutinin is
known to mediate the binding of viruses to target cells via sialic
acid residue in glycoconjugates. This binding is a key step of the
viral infection [1]. The NA facilitates the movement of the virus to
and from sites of infection in the respiratory tract by taking charge
of catalyzing the cleavage of neuraminic acid residues [1–3].
Therefore, the inhibition of influenza virus neuraminidase has the
possibility of blocking an influenza virus infection. Because of the
importance of this enzyme in the pathogenesis of influenza virus
infection and the close correspondence of the conserved residues of
the active sites from NAs of all influenza A viruses, the enzyme has
been regarded as a drug target for the treatment of influenza [4].

In recent years, several flavonoids and biflavonoids have been
reported as showing anti-influenza virus activity by inhibiting NAs
[3,5–8].

Flavonoids (substituted phenyl–benzopyranes) are low molec-
ular weight compounds that are widespread in the plant kingdom,
are relatively easy to synthesize and show several interesting bio-
logical activities in enzymatic systems.
x: þ54 11 6091 2100x3759.
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Clearly it is of great interest to be able to predict the NA inhibition
by compounds that have no experimental values yet, as well as
attempting to determine the structural parameters that the NA
inhibition depends on. A generally accepted approach for over-
coming the lack of experimental data in complex chemical
phenomena is the analysis based on Quantitative Structure–Activity
Relationships (QSAR) [9].

In the present study, we investigated a QSAR model for the inhi-
bition of NA enzyme by flavonoids that could serve as a guide for the
rational design of further potent and selective inhibitors of this family
of compounds; no such a study has been found in the literature.

A great number of structural molecular descriptors including
definitions of all classes was explored using the recently proposed
Enhanced Replacement Method (ERM) [10] to select the best subset
of variables.
2. Methods

2.1. Data set

In the present study we used a training set of 20 and a test set of
5 flavonoids and biflavonoid derivatives of different classes for
which their activities were reported in the literature [3,5–8].

The experimental influenza virus (H1N1) NA inhibitory activity
of the data set was measured using a standard fluorimetric assay
[11]. The 50% inhibitory concentration (IC50) is defined as the
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concentration (mg/mL) of NA inhibitor necessary to reduce NA activity
by 50% relative to a reaction mixture containing virus but no inhibitor.
Table 1 and Fig. 1 summarize the molecular structures, name of the
substance, experimental IC50 and log IC50 of the above mentioned
flavonoid derivatives. The IC50 of Oseltamivir and Zanamivir were
included at the end of Table 1 as reference substances, both of them
exhibit a very high NA inhibitory activity, nevertheless they are
synthetic compounds that may present many side effects in contrast
to flavonoids which as known are natural and innocuous.

2.2. Molecular descriptors

The structures of the compounds were firstly pre-optimized with
the Molecular Mechanics Force Field (MMþ) procedure included in
the Hyperchem 6.03 package [12], and the resulting geometries were
further refined by means of the semiempirical method PM3
(Parametric Method-3) using the Polak–Ribière algorithm and
a gradient norm limit of 0.01 kcal Å�1. The molecular descriptors
were computed using the software Dragon 5.0 [13], parameters of all
types were calculated such as Constitutional, Topological, Geomet-
rical, Charge, GETAWAY (Geometry, Topology and Atoms-Weighted
AssemblY), WHIM (Weighted Holistic Invariant Molecular descrip-
tors), 3D-MoRSE (3D-Molecular Representation of Structure based
on Electron diffraction), Molecular Walk Counts, BCUT descriptors,
2D-Autocorrelations, Aromaticity Indices, Randic Molecular Profiles,
Radial Distribution Functions, Functional Groups and Atom-Centred
Fragments [14]. In addition 4 quantum-chemical descriptors
(molecular dipole moments, total energies, homo–lumo energies)
not provided by the program Dragon were added to the descriptors
pool. The resulting total pool thus consisted of D ¼ 1186 descriptors.

2.3. Model search

It is our purpose to search the set D, containing D descriptors,
for an optimal subset d of d � D ones with minimum standard
deviation S,
Table 1
Experimental IC50 (mg/mL), experimental log IC50, predicted (Eq. (3)) log IC50 and residua

Number Class Compound name or chemical name

Training set
1 Flavones Luteolin
2 Hispidulin (Dinatin)
3 Scutellarein
4 Galuteolin (luteolin 7-O-b-D-glucopyranoside)
5 Kaempferol 3-O-b-xylopyranosyl-(1 / 2)-b-D-glucopyrano
6 5,7,40-Trihydroxy-8-methoxyflavone
7 Flavonols Kaempferol
8 Quercetin
9 Myricetin
10 Rutin
11 Isoflavones Daidzein
12 Genistein
13 Aurones Sulfuretin [2-(Z-30 ,40-Dihydroxyphenylidene)-6-hydroxy-2,

3-dihydrobenzofuran-3-one]
14 2-(E-40-Hydroxyphenylidene)-6-hydroxy-2,3-dihydrobenzo
15 2-(E-Benzylidene)-6-hydroxy-2,3-dihydrobenzofuran-3-one
16 2-(E-40-Hydroxyphenylidene)-4,6-dihydroxy-2,3-dihydrobe
17 Flavans 7-O-Galloyltricetinflavan
18 7,40-Di-O-galloyltricetinflavan
19 Biflavonoids Ginkgetin (biflavone)
20 Hinokiflavone-sialic acid

Test set
21 Flavones Apigenin
22 Vitexin
23 Chrysin
24 Flavonol Rhamnocitrin (3,40,5-trihydroxy-7-methoxyflavone)
25 Biflavonoid Hinokiflavone

Note: as reference IC50 values of synthetic compounds Oseltamivir and Zanamivir are 1.
S ¼ 1
ðN � d� 1Þ

XN

i¼1

res2
i (1)

by means of the Multivariable Linear Regression (MLR) technique.
In this equation N is the number of molecules in the training set,
and resi the residual for molecule i, the difference between the
experimental property (p) and predicted property (ppred). More
precisely, we want to obtain the global minimum of S(d) where d is
a point in a space of D!/[d!(D � d)!] ones. A full search (FS) of
optimal variables is impractical because it requires D!/[d!(D � d)!]
linear regressions. Hence an alternative method is necessary, we
have used to select the optimum set of descriptors the Enhanced
Replacement Method (ERM) [10] as a search algorithm that
produces linear regression QSPR–QSAR models that are quite close
the FS ones with much less computational work. This technique
approaches the minimum of S by judiciously taking into account
the relative errors of the coefficients of the least-squares model
given by a set of d descriptors d ¼ {X1, X2,., Xd}. The ERM gives
models with better statistical parameters than the Forward Step-
wise Regression procedure [15] and the more elaborated Genetic
Algorithms [16].

The Kubinyi function (FIT) is a statistical parameter that closely
relates to the Fisher ratio (F), but avoids the main disadvantage of
the latter that is too sensitive to changes in small d values, and
poorly sensitive to changes in large d values. The FIT(d) criterion
has a low sensitivity to changes in small d values and a substantially
increasing sensitivity for large d values. The greater the FIT value
the better the linear equation; it is given by

FIT ¼ RðdÞ2ðN � d� 1Þ�
N þ d2

��
1� RðdÞ2

� (2)

where R(d) is the correlation coefficient for a model with
d descriptors.
l.

IC50 Exp. (mg/mL) log IC50 Exp. log IC50 Pred. Residual

9.65 0.984 0.991 �0.007
13.90 1.143 1.189 �0.046
14.48 1.161 1.275 �0.114
21.25 1.328 1.277 0.051

side 24.50 1.389 1.427 �0.038
13.15 1.119 1.199 �0.080
16.77 1.225 1.174 0.050
17.65 1.247 1.250 �0.004
26.29 1.420 1.327 0.093
31.14 1.493 1.462 0.031

9.43 0.975 0.966 0.009
20.84 1.319 1.230 0.089

8.00 0.903 0.884 0.019

furan-3-one 5.59 0.748 0.837 �0.089
17.15 1.234 1.168 0.067

nzo- furan-3-one 6.92 0.840 0.844 �0.004
15.70 1.196 1.184 0.012
30.00 1.477 1.530 �0.053
55.00 1.740 1.770 �0.030
19.10 1.281 1.237 0.044

8.54 0.932 0.926 0.006
20.85 1.319 1.333 �0.014
11.62 1.065 1.203 �0.138
15.46 1.189 1.162 0.028
41.80 1.621 1.840 �0.218

66 nM (6.81 � 10�4 mg/mL) and 1.17 nM (3.89 � 10�4 mg/mL), respectively [28].
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hydroxy-2,3-dihydrobenzofuran-
3-one 

(13) Sulfuretin [2-(Z-3’,4’-
Dihydroxyphenylidene)-6-hydroxy-
2,3-dihydrobenzofuran-3-one]  

(15) 2-(E-Benzylidene)-6-hydroxy-
2,3-dihydrobenzofuran-3-one

(16) 2-(E-4’-Hydroxyphenylidene)-4,6-
dihydroxy-2,3-dihydrobenzo- furan-
3-one   

Fig. 1. Molecular structures of the 25 flavonoid derivatives studied.
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Fig. 1. (continued).
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In this work we have used the FIT function in conjunction with
the rule of thumb that at least 5 data points should be present for
each fitting parameter [17] to set the optimal number of molecular
descriptors (dop) in the linear regression equation.

As a theoretical validation of all the models we choose the well-
known Leave-One-Out (loo) and the Leave-More-Out Cross-Valida-
tion procedures (l-n%-o) [18], where n% accounts for the number of
molecules removed from the training set. We generated 1,000,000
cases of random da removal for l-n%-o, where n% ¼ 25%
(5 molecules).

3. Results and discussion

By means of the ERM we searched the total pool of D ¼ 1186
descriptors and obtained optimal models with d ¼ 1,2,3,4 param-
eters linking the molecular structure of the flavonoids compounds



Table 3
Symbols for molecular descriptors involved in different models.

Molecular
descriptor

Type Description

Mor27u 3D-MoRSE 3D-MoRSE - signal 27/unweighted.
BIC1 Topological Bond information content

(neighborhood symmetry of 1-order).
RCI Aromaticity

Indices
Jug RC index.

IC1 Topological Information content index
(neighborhood symmetry of 1-order).

D/Dr05 Topological Distance/detour ring index of order 5.
G1m WHIM 1st component symmetry directional WHIM

index/weighted by atomic masses.
JGI1 Topological Mean topological charge index of order1.
AMW Constitutional Average molecular weight.
Mor30m 3D-MoRSE 3D-MoRSE - signal 30/weighted by

atomic masses.
G1p WHIM 1st component symmetry directional WHIM

index/weighted by atomic polarizabilities.
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with their inhibitory activity. The statistical parameters arriving
from the models with different number of descriptors showed that
the best option that complied with the above mentioned rule [17]
was dopt ¼ 4. Thus finding that the optimal QSAR model according
to ERM was:

log IC50 ¼ 0:6762ð�0:4Þ�11:9587ð�1ÞJGI1

þ0:6004ð�0:1ÞAMWþ0:7815ð�0:1ÞMor30m

�13:2189ð�2ÞG1p (3)

N ¼ 20;R ¼ 0:9706; S ¼ 0:0654; FIT ¼ 6:7718;p < 10�5

Rloo ¼ 0:9501; Sloo ¼ 0:0854;Rl�25%�o ¼ 0:7795; Sl�25%�o

¼ 0:1918 RMSETS ¼ 0:1163

Here, the absolute errors of the regression coefficients are given in
parentheses, p is the significance of the model, and RMSETS stands
for root mean squared errors of the test set. In our calculations we
used the computer system Matlab 5.0 [19].

A summary of the linear models with 1 to dopt parameters
calculated by ERM is shown in Table 2. The details of the molecular
descriptors of Table 2 are displayed in Table 3.

With the purpose of demonstrating that Eq. (3) does not result
from happenstance, we resort to a widely used approach to
establish the model robustness: the so-called y-randomization
[20]. It consists of scrambling the experimental property p in such
a way that activities do not correspond to the respective
compounds. After analyzing 1,000,000 cases of y-randomization,
the smallest S value obtained in this way S¼ 0.0986 was larger than
the one coming from the true calibration (S ¼ 0.0654). This result
suggests that the model is robust, that the calibration is not
a fortuitous correlation, and that we have derived a reliable struc-
ture–activity relationship. The prediction from any QSAR model
cannot be intrinsically better than the experimental data employed
to develop the model [21], because of the shortage of experimental
measurements, in the future when more experimental information
of these compounds is available another study should be performed
to support the present results.

The plot of predicted vs. experimental log IC50 shown in Fig. 2
suggests that the 20 flavonoid derivatives from the training set and
5 from the test set follow a straight line. The predicted inhibitory
potencies given by Eq. (3) for the training and test sets are shown in
Table 1. The behavior of the residuals in terms of the predictions
illustrated in Fig. 3 shows normal distributions for both sets. The
only molecule that presents a residual slightly larger than 2.5S is
molecule number 25 (Hinokiflavone, residual 3.3S). It is not
possible to determine if such a deviation is either a physical
(meaningful) result or a statistical consequence of present selection
of descriptors in Eq. (3); however it is probable that the deviation
was caused by the low number of biflavonoids available in the
training set which led to a shortage of structural information on
this class of flavonids during the formation of the model.

The correlation matrix shown in Table 4 reveals that the
descriptors of the linear model are not seriously inter-correlated
(Rij < 0:8005), which justifies the appearance of all parameters in
the equation. The predictive power of the linear model is
Table 2
Linear QSAR models for the training set of log IC50 (N ¼ 20). The best relationship
appears in bold.

Model Descriptors used R S FIT RMSETS

M1 Mor27u 0.7507 0.1639 1.1070 0.2083
M2 BIC1, RCI 0.8801 0.1212 2.4350 0.1909
M3 IC1, D/Dr05, G1m 0.9269 0.0988 3.3661 0.2204
M4 AMW, JGI1, Mor30m,

G1p (Eq. (3))
0.9706 0.0654 6.7718 0.1163
satisfactory as revealed by its stability upon the inclusion and/or
exclusion of compounds, measured by the statistical parameters
Rloo ¼ 0:9501 and l� n%� o Rl�25%�o ¼ 0:7795. According to the
literature, Rl�n%�o must be higher than 0.71 in order to have
a validated model [22].

The molecular descriptors appearing in the linear Eq. (3) merge
two- and three-dimensional aspects of the molecular structure, and
can be classified as follows: (i) a Topological descriptor: JGI1, mean
topological charge index of first order; (ii) a Constitutional
descriptor: AMW, average molecular weight; (iii) a 3D-MoRSE
descriptor: Mor30m, signal 30 weighted by atomic masses; and (iv)
a WHIM descriptor: G1p, 1st component symmetry directional
WHIM index weighted by atomic polarizabilities.

Topological charge indices were proposed to evaluate the charge
transfer between pairs of atoms, and therefore the global charge
transfer in the molecule [23,24]. In order to obtain the indices
definitions first we need to define the matrix M as:

M ¼ A$D�2 (4)

where A is the adjacency matrix and DL2 the reciprocal square
distance matrix, the diagonal elements of the distance matrix stay
unchanged. M is the Galvez matrix and is a squared simetric matrix
a�a were a is the number of atoms in the molecule.
Fig. 2. Predicted (Eq. (3)) vs. experimental log IC50 for the training (rhombus) and test
(triangles) sets.



Fig. 3. Dispersion plot of the residuals for the training and test sets according to Eq. (3).
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An unsymmetric charge term matrix CT is derived from the
matrix M:

CTij ¼
�

di si i ¼ j
mij �mji si isj

�
(5)

where mij are the elements of M and di is the degree of the vertex of
the ith atom. The diagonal entries of the CT matrix represent the
topological valence of the atoms; the off-diagonal entries CTij

represent a measure of the net charge transferred from the atom i
to the atom j.

For each path of length L, a topological charge index GGIL is
defined as:

GGIL ¼
Xa

i¼1

Xa

j¼1

����CTij

����$d
�
L; dij

�
(6)

The mean topological charge index of order L (in JGI1, L ¼ 1), is
defined as:

JGIL ¼ GGIL
a� 1

(7)

Constitutional descriptors are the most simple and commonly used
descriptors, reflecting the molecular composition of a compound
independently from molecular connectivity and conformations

The 3D-MoRSE (3D Molecule Representation of Structure based
on Electron diffraction) descriptors provide 3D information from
the three-dimensional structure of a molecule using a molecular
transform derived from an equation used in electron diffraction
studies. Several atomic properties can be taken into account, thus
giving high flexibility to this representation of a molecule. The
simplified form of the transform is:

IðsÞ ¼
XN

i¼2

Xi�1

j¼1

AiAj
sin srij

srij
s ¼ 0;.;31:0 A�1 (8)
Table 4
Correlation matrix for descriptors of Eq. (3) (N ¼ 20).

AMW JGI1 Mor30m G1p

AMW 1 0.5107 0.2385 0.3926
JGI1 1 0.3407 0.2924
Mor30m 1 0.8005
G1p 1
where N is the number of atoms; rijis the distance between atoms i
and j; Ai can be any atomic property of atom i such as atomic
number, mass, partial atomic charge, or atomic polarizability; s is
a reciprocal distance. The value of s was considered only at discrete
positions within a certain range. Normally 32 equidistant values
between 0 and 31 Å�1 were chosen. The choice of the range of s and
the number of values to be considered determined the resolution of
the code for representing the 3D structure [25,26]. For the case of
Mor30u, an atomic mass weighted scheme was used and s was
equal to 29 Å�1.

WHIM (Weighted Holistic Invariant Molecular Descriptors)
descriptors are based on statistical indices calculated on the
projections of atoms along principal axes [27]. The aim is to capture
3D information regarding size, shape, symmetry and atom distri-
butions with respect to invariant reference frames. To calculate
them a weighted covariance matrix is obtained from different
weighting schemes for the atoms: the unweighted case, atomic
mass, van der Waals volume, Sanderson atomic electronegativity,
atomic polarizability and electrotopological state indices. Depend-
ing on the weighting scheme different covariances matrices and
hence different principal axes are obtained. Essentially the WHIM
descriptors provide a variety of principal axes with respect to
a defined atomic property. For each weighting scheme, a set of
statistical indices is calculated on the atoms projected onto the
principal axes (ie principal components). Descriptor G1p is a first
component symmetry directional WHIM descriptors that involves
the atomic polarizabilities as weighting scheme. These types of
descriptors are univariate statistical indices calculated on the scores
of the individual principal components.

The standardization of the regression coefficients of Eq. (3)
allows assigning greater importance to the molecular descriptors
that exhibit the largest absolute standardized coefficients [15]. In
our case we have

JGI1ð0:9444Þ > AMWð0:8664Þ > G1pð0:8102Þ
> Mor30mð0:5811Þ (9)

where the standardized coefficients are shown in parentheses. The
ranking of contributions given by Eq. (9) suggests that topological
charge descriptor JGI1 is the most relevant variable for the present
set of flavonoids, thus indicating a significant dependence of the
inhibitory activity on the charge of the atoms that form the mole-
cule. The second descriptor in Eq. (9) is the average molecular
weight implying that the activity has a significant dependence on
the size of the molecules. This is further supported by the presence
on Eq. (9) of a 3D-MoRSE descriptor (Mor30m) that is also weighted
by atomic masses. The third WHIM descriptor (G1p) suggests
a dependence on the atomic polarizabilities, although the contri-
bution of this descriptor is lower than the first two of Eq. (9) it is
still significant.

Additionally, since G1p and Mor30m encode tri-dimensional
information that depends on the conformation of the molecule, it is
possible to argue that the inhibitory activity of the present set of
flavonoid derivatives has a considerable dependence on confor-
mational changes
4. Conclusion

In this paper we constructed a predictive QSAR model of inhibi-
tory activity against influenza H1N1 virus neuraminidase (NA) for 20
flavonoids of different classes using four molecular descriptors that
take into account 2D- and 3D-aspects of the molecular structure. The
model exhibited good predictive ability established by the theoret-
ical and test set validations. The analysis of the model suggests that
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the activity depends on the electric charges, masses and polariz-
abilities of the atoms present in the molecules as well as the
conformation of the molecule. We expect the proposed model to be
a useful tool in the prediction of the NA inhibitory activity, in a fast
and costless manner, for any future studies that may require an
estimation of this important activity of flavonoids, such as deter-
mination of candidates for synthesis. It is advisable that when more
experimental information is available a second study to support the
present results is performed.
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