Unified theory of adsorption, pore-filling and wetting
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Gases adsorb readily on surfaces and inside porous materials when there exists a
sufficiently strong attraction provided by these materials. In the extreme opposite
situation, little or no adsorption occurs when the attraction is weak. This paper
derives a criterion distinguishing which of these two scenarios occurs at zero tem-
perature. The calculations needed to solve these problems employ a set of simple
models, adapted to a wide range of geometries. These include cylindrical, spherical
and slit pores, corners formed at the intersection of flat surfaces, interstitial regions
within nanotube bundles and flat surfaces. In each case, the distinguishing criterion

is based on a small number of interaction parameters.

PACS numbers: 61.30Hn,68.43.-h,64.90.+b

I. INTRODUCTION

Simple models have played an important role in statistical physics, often leading to ro-
bust qualitative conclusions about fundamental physical phenomena. Such models have been
widely exploited to describe adsorption phenomena. A famous example is the lattice—gas ap-
plication of the nearest—neighbor Ising model. Although this model oversimplifies the inter-
action, it yields exact critical exponents in two—dimensions (2D), confirmed by experiments
for adsorbed gases.” ¥ Similar experimental confirmations of solvable models’ predictions
have been found for the roughening transition (and the related layering transitions), the
3-states Potts model (applied to commensurate phases) and the Kosterlitz-Thouless theory

of superfluid films.” * = = *

Our group has been concerned especially with wetting transitions.” Such transitions



were predicted many years ago,” using simple physical arguments as well as quite re-
liable models, and have been observed experimentally for a wide variety of gas/surface
combinations.” 7777?77 T Y I predicting these transitions, a so-called simple model
has proved quite helpful in identifying candidate systems for such transitions and predicting
the wetting temperature Ty.” This prediction arises in implicit form when the free energy
cost of adsorbing a film is compared with the energy gain associated with the gas-surface
interaction. The model has been found to be semiquantitatively accurate by comparing
predictions with results from experiments and computer simulations.”

With a similar goal of characterizing adsorbed films in simple terms, this paper addresses
the problem of quasi-one-dimensional and quasi-two-dimensional adsorption in various ge-
ometries such as wedges, slits, cylinders andinterstitial channels. For each geometry, we ask
whether a specific type of film occurs at chemical potential below that of the bulk ground
state. The specific geometries considered here include quasi-one-dimensional and monolayer
films, but do not include multilayer films, thus excluding some possible wetting transitions.
If the film’s chemical potential lies above that of the bulk, no such film phase occurs below
saturation. Since the calculations presented here are classical, the term ground state means
literally the state of lowest potential energy F per particle. Our focus on the ground state is
a restriction that allows us to exploit its known properties. An alternative approach might
use the triple point for such a comparison.’

This paper is organized as follows. In Sec. Il we present the very general considerations
that lead us to establish a universal power-law rule for the condensation threshold of a
classical fluid onto a two—or—three dimensional substrate. Specific geometries and results
for particular adatom—substrate combinations are discussed in Sec. III. The discussion and

summary is the subject of Sec. 1V.

II. UNIFIED DESCRIPTION OF THE ENERGETIC BALANCE

Our general goal is to establish an equilibrium condition between a 3D state of bulk
matter and a hypothetical one-dimensional (1D) or 2D system confined by an external
potential. We specify the latter as created by either a smooth and continuous 2D sheet or
by a 3D (bulk solid) source. The equilibrium coexistence condition of the adsorbed phase is

that its energy per particle equals that of the ground state of the bulk material Ky, . The



binding energy (chemical potential) of the adsorbed phase has additive contributions from

adhesive and cohesive interactions, leading to this condition:

EP + B = Fyur (1)

cohesion adheston

where D = 1, 2 is the dimensionality of the adsorbate phase and d = 2, 3 is that of the
substrate. If the left side of this equation exceeds the right side, the bulk phase is favored
and the adsorbed phase is absent at saturation; otherwise the adsorbed phase appears at, or
below, the chemical potential the bulk material. Note that Eq. (1) represents an equilibrium
condition, essentially different from the criterion of self-binding or positive cohesion of the
adsorbate, where the right hand side should be set equal to zero.

One can establish various common characteristics of a large class of systems of interest.
Neglecting many-body interactions, as is customary, the cohesive energy is attributed to a
Lennard—Jones (LJ) pairwise interaction of strength ,, and hard—core diameter o,,, and
its ground—state value can be obtained by minimizing the total L.J potential energy with

respect to the lattice constant. This leads to a dependence on the I.J well depth of the form

Eghesion = Qp &gy (2)

with a coefficient ap that contains specific details of the system dimensionality D. For the
ground state crystalline configuration in 1D and 2D, the optimum cohesive energies are,’

respectively

ED = —1.03¢, (3)

coheston

E2D = —3.382¢,, (4)

cohestion

In a similar way, one may think that the particles comprising the adsorbate interact with
those of the substrate through another L.J potential with corresponding parameters ¢ and o.
In the present study, we seek to optimize the cohesive energy by varying the geometry. The
binding energy to the substrate is computed by minimization with respect to a parameter

characterizing the geometry and is always of the form

E¢ x c¢fa? ford=2

adheston

x eno’> ford=3 (5)



where # and n respectively denote the areal density of a planar sheet or the bulk density of
a continuum solid. In particular, the relation between areal density of a 2D substrate and
the LJ hard—core parameter for atoms in the adsorber, o, is
2/3
0.916

2
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whereas for bulk material under the continuum approximation, one has

0
- 2oy,
0.816
= (7)
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We then see that the adhesive energy due to a substrate of dimension d can be expressed as

d
ag
Ejdhesion = 6015 < ) (8)
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Finally, the energy per particle in the vapor phase is proportional to the gas-gas interaction
strength, i.e.,
Fyapor = Agg (9)

In particular, for a 3D LJ lattice one has Fy; = —6.7¢,.

Collecting Eqs. (??), (??) and (??) into (??), we reach the universal rule

a9 _ P <U)d (10)

€ A—ap \oss

This relation provides a threshold criterion for condensation and divides the parameter
space into wetting (below) and nonwetting (above) regions. In other words, if a given
combination of strength and hard—core parameters lies above the curve (??), the adsorbate
does not condense on the specific substrate. The geometry of the confinement —i.e., cylinder,
flat sheet or semi-infinite solid, wedge, interstitial channel— enters the coefficient §; and can

be worked out for specific examples as shown in the next Section.

III. SPECIFIC EXAMPLES

In this Section, we illustrate the detailed form of the universal power law (??) for a variety

of adatom—substrate combinations. We focus on the cases of (a) 1D matter within cylindrical



pores created by rolling up a flat sheet and by drilling a cavity in a bulk material; (b) 2D
matter on a planar sheet and on a semi-infinite solid. For completeness, we also examine
condensation of 1D adsorbates in wedges and interstitial channels, and of 2D matter inside
slit pores, i.e. monolayer films sandwiched between substrate half-spaces. We first note that
according to Egs. (3), (4) and the bulk value E,, = -6.7 ¢,,, the threshold values of the

adhesive energy are

E;?lhesion = _5‘67599 (11)
Ezjhesion = _3‘318699 (12)

A. One-dimensional matter (D= 1)

1. Two—dimensional substrates (d= 2).

The first example we consider is a hypothetical 1D phase (axial phase) of matter within
a cylindrical tube made of a monolayer sheet of matter, e.g., a carbon nanotube. The

potential energy on the cylinder axis is”

V(0) = 37200 l% <%)10 - <%)4] (13)

The optimal geometry (most strongly bound adsorbate) can be obtained by minimiza-

tion with respect to the cylinder radius R and corresponds to

105\ /¢
Ropt = <6—4> o~ 1.086c (14)

Consequently, the optimal potential energy is

144 2
2d _ o 2
Eadhesion - 5(105)2/3“’90-
= —12.8¢65°
o 2
= —11.72¢ 15
(=) (15)

Condition (??) gives then

99 _ 907 ( i )2 (16)

9 Oss

We comment further about two other possible 1D phases originating from sheet-like

substrates. One involves a wedge formed by two converging sheets. If the opening



angle is small, there can be a strongly bound 1D queue of atoms parallel to the line
of contact of the sheets. The adhesive energy in this small angle case is twice the
value derived below for the case of a single planar sheet. The multiplicative factor
becomes smaller than two as the opening angle of the wedge increases, but we do not
evaluate this dependence here. The other related 1D phase is found at the interstitial
channel in a nanotube bundle. The optimal energy in this case is three times the
minimum energy provided outside of a single tube, since the coordination number is
three. The actual value of this optimum energy depends on the radius of the tubes;
for any specified radius the optimal spacing between tubes (which in general does not

correspond to the actual spacing) can be determined.

2. Three-dimensional substrates (d = 3).

In this geometry one pore of interest is a cylindrical cavity. In this case, the potential

energy on the cylinder axis is

V(0) = meno® [312 (%)9 - (%)3] (17)

and the optimal radius and potential energy are, respectively

21 1/6
Ropt = (3—2> o~ 0.9320 (18)
2 /32
Egccllhesion = _§ i{fnJS
= —259¢eno?
3
— _211c (J ) (19)

Thus, from condition (??) we get

0 _ (.37 ( ? )3 (20)

9 Oss

For the wedge and interstitial channels, the same considerations hold as for the two-

dimensional substrates.

B. Two—dimensional matter (D = 2)

1. Two—dimensional substrates (d = 2).



Here the characteristic adsorbing substrate is a planar sheet, where the adsorbate

experiences a potential energy of the form

V(z) = 2rc0 0 E (5) . (fﬂ (21)

z

with optimal distance and energy

Zopt = O (22)
6
E(fccllhesion = __7-[-690-2
5
= —3.77¢00°
2
= —345¢ (Ua ) (23)

Condition (??) then gives

Y99 _ 04 ( 2 )2 (24)

€ Oss
. Three-dimensional substrates (d = 3).

The confinement is now given by a semi—infinite solid with potential energy

o -2een [2() (2]

2
Zopt = \/;O' (26)
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with optimal distance:

and optimal potential energy:

Condition (??) now gives

S99 (.54 < 7 )3 (28)

9 Oss

It is worth noting that for matter in a planar slit made out of a 2d or a 3d material,

the optimized potential energy is just twice that for a single wall.
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FIG. 1: The universal power—law for 1D matter in several environments. The points represent the
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FIG. 2: Same as Fig. 1 for 2D matter.




TABLE I: Ratios of LJ strengths and hard—core radii entering the universal law (??) for combina-
tions of noble gases and hydrogen on alkali and alkaline earth metal substrates. The interactions

are deduced from the gas—surface interactions of Ref. ? .

He | Ne | Hy | Ar | Kr | Xe

Mg|e,,/€12.11]2.32|0.71|1.45|1.18{0.72
0/0s5]1.28(1.12]0.99(1.01]0.96{0.86

Li|gg44/c16.22| 6.2 | 2.1 [3.18]2.60|2.26
0/0s]1.56(1.33|1.23]|1.15({1.10{1.08

Na ey, /e | 6.7 [5.92]2.29(2.78(2.26|2.09
0/04s5|1.36(1.12(1.07(0.94/0.90(0.90

K |e45/€(16.3(6.24]2.83]2.51|1.91|1.78
0/0451.7010.96|0.95]0.77|0.72(0.72

Rb|e,,/c18.54(6.18]3.03]2.33|1.69|1.57
0/045]1.170.92(0.93]0.72(0.66|0.66

Cs|eg44/€|7.80|5.22(2.72|1.82(1.27|1.24

0/0551.09]0.84|0.86]0.64|0.58(0.59

We now exhibit in Figs. 1 and 2 the universal behavior for 1D and 2D adsorbates in
various environments, respectively. Figure 1 displays the universal rule for a rolled-up cylin-
drical sheet and for a cylindrical cavity drilled within a solid material. For comparison, we
also show the change in slope corresponding to planar and solid wedges and for an intersti-
tial channel between three cylinders. The various points correspond to the L.J parameters
for combinations of noble gases and hydrogen as adatoms, with alkali and alkaline earth
metal substrates. Different symbols characterize various substrates; the specific numerical
values of the parameters characterizing the noble gases and Hj are given in Table 1. Figure
2 displays the universal behavior of 2D matter on a planar surface corresponding to either
a planar sheet or a semiinfinite substrate. For comparison, we also show the curves for

corresponding slits. The points are the same as in Fig. 1.



IV. DISCUSSION AND SUMMARY

This paper presents the results of simple model calculations of the ground state of various
phases of matter in different geometries. The figures permit conclusions to be drawn about
whether a specific pair of gas/surface interaction parameters yields wetting vs. nonwetting,
behavior. The selected systems, with parameters presented in these figures and the table,
are physisorption systems that either exhibit wetting transitions on flat surfaces or are
close to exhibiting such transitions.” . These weakly interacting systems are noble gases or
hydrogen near alkali or alkaline earth metal surfaces. There exist many other gas/surface
combinations whose wetting behavior is not known, or less interesting because the adhesion
is strong enough to ensure wetting in all geometries discussed here. (For example, the
case of graphite would involve points close to the abscissa). Among the various geometries
depicted in the two figures, the highest curve corresponds to the interstitial channel case. The
reason is that the adhesive interaction is quite large, relatively speaking, and the cohesive
interaction of the 1D phase is particularly small. Hence, all but a few of the systems shown
exhibit wetting at T=0. Among the other 1D phase geometries, the extreme opposite is
the cylindrical cavity, which exhibits nonwetting for all the cases shown. One might wonder
why a cylindrical cavity is less adhesive (more nonwetting) than a cylindrical sheet substrate.
This difference is a consequence of our continuum substrate assumption. In a more realistic
(discrete lattice) treatment of a multiwall nanotube, for example, the adhesive interaction
would be greater than that of the single sheet and the opposite comparison would be drawn
than one infers from the figure. Evidently, if one knows the actual interaction for such a
specific case, one can make precisely the same kind of energetic comparison as that presented
here in order to derive this more realistic conclusion. In comparing Figs 1 and 2, one observes
many more points above the curves of figure 2. This means that many more 2D systems are
nonwetting; the reason is the much larger (factor of 3) cohesive energy of the 2D phase. In
such cases, wetting transitions are expected to occur at some finite temperature, except in a
handful of ultraweakly interacting cases.” Computing this temperature is beyond the scope
of the present paper. However, the simple model, described in the introduction, provides
a means of estimating such a transition temperature; based on previous experience,” we
expect this prediction to have an accuracy of perhaps 20 As mentioned above, the present

calculations derive a unified picture of wetting behavior in various geometries. The goal of



universality was achieved by simplifying the interactions (as is commonly done) and focusing
on temperature T=0. Treating the more realistic case of finite T requires a significant
increase in complexity of the calculations, but the qualitative behavior can be guided by the
present results.

In comparing the present results with those of other calculations or experiments, it is
useful to know the accuracy of the calculated energies, which is similar to that of other
studies. As an example of 1D matter, we address the adsorption of Hy in carbon nanotubes,
a much-studied system. Theoretical values of the binding energy per molecule are sensitive
to the assumptions concerning the geometry and adsorption interactions, and, indeed, a
wide variety of assumptions have been explored. A few general remarks about the effect of
geometry can be made. One is that there is a possibility of considerable enhancement of
the adsorption potential due to the high coordination within either a single nanotube or an
interstitial channel within a nanotube bundle. For a cylindrical tube of optimized radius R ~
1.086 o, for example, the well depth of the adsorption potential is a factor 3 7/2 greater than
the well depth on a planar sheet of the same material.” For a specific comparison with such
an adhesive energy, the cohesive energy of the quantum ground state of Hy in mathematical
1D is just 4.8 K;* this value is a small fraction of the energy scale associated with the
adsorption potential in strongly attractive environments. Inside an interstitial channel, for
example, calculations find that the binding energy is increased to 500 — 600 K, depending
on whether or not dilation of the nanotube bundle is taken into account; such dilation,
alone, increases the binding by nearly a factor of two.” © The computed binding energy
is particularly sensitive to the gas-surface interaction parameters in the case of interstitial
adsorption. For example, a 2.5 % decrease in the hard-core distance parameter increases
the computed binding energy by 25 %, to more than 600 K. These computed energy values
are (linearly) sensitive to any uncertainty in the gas-substrate energy prefactor, which is
usually derived from combining rules; these are known to have limited accuracy for gas
phase interactions (see Ref. ? ). In addition, most calculations, like ours, employ an
implicit assumption of additivity of gas-surface interactions, which neglects screening and
solid state effects on the electrons within the nanotubes, as well as the effects of surface
stress.” *

Finally, our calculations make the conventional approximation that the molecule is spher-

ically symmetric. In contrast, some calculations and experimental data find large effects of



asphericity.” Evidently, all of these considerations represent potential deficiencies of calcu-
lated interactions near nanotubes.

These estimates of binding in various geometries may be compared with experimental
results in some cases. For example, Wilson et al’ derived an experimental value of the
isosteric heat ) of nearly 900 K at the lowest coverage and a value near 400 K over a range
of higher coverages. The latter value is consistent with predictions based on comparisons
with adsorption on graphite, for which ¢) and the binding energy are 499 K and 482 K,
respectively.” However, no calculations of endohedral, groove or interstitial adsorption has
yielded values of ) comparable to the highest measured value, suggesting that the present

model potentials are not quantitatively accurate.
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