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Abstract
In perturbation conditions, above-threshold ionization spectra produced in the interaction of
atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical
approach called CV2−, which is based on Coulomb–Volkov-type states. However, when
resonant intermediate states play a significant role in a multiphoton transition, the CV2−

transition amplitude does not take their influence into account. In a previous paper, this
influence has been introduced separately as a series of additional sequential processes
interfering with the direct process. To give more credit to this procedure, called modified
CV2− (MCV2−), a perturbation expansion of the standard CV2− transition amplitude is
compared here to the standard time-dependent perturbation series and the strong field
approximation. It is shown that the CV2− transition amplitude consists merely in a
simultaneous absorption of all photons involved in the transition, thus avoiding all
intermediate resonant state influence. The present analysis supports the MCV2− procedure
that consists in introducing explicitly the other quantum paths, which contribute significantly
to ionization, such as passing through intermediate resonances. Further, this analysis permits
to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin
to MCV2−.

PACS numbers: 42.50.Hz, 32.80.Rm, 32.80.Fb

1. Introduction

New experimental and theoretical findings recently focused
on the strengths and weaknesses of the widely known
strong field approximation (SFA) [1, 2] for above-threshold
ionization (ATI) phenomena by long wavelength laser fields.
On the one hand, it has been found that an SFA based
approach explains very well the multiphoton detachment of
electrons from negative ions [3]. On the other hand, SFA has
provided a theoretical framework to understand qualitatively
ATI from neutral atoms [4]. Quite recently, it was found that
SFA predictions for the electron momentum distributions do
not show the experimentally observed cusp at zero electron
momentum, exhibiting instead a smooth behavior [5]. Further,
to agree with the experiments, the authors of [5] had to
introduce a Coulomb–Volkov final wavefunction in SFA [6].

1 Permanent address: Departamento de Física, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

This drawback of SFA has been invoked to explain the
discrepancy between the low energy spectra predicted by SFA
and a numerical solution of the Schrödinger equation [7].
Again, SFA failure has been attributed in the later case to the
omission of the long-range character of the Coulomb potential
in the final state.

If SFA and the CV approximation have been widely
studied in the context of infrared lasers (IR), much less is
known in the UV or X range. It is the aim of this paper
to investigate this aspect. In fact, in previous publications
[8, 9], it was established that a simple theoretical approach
called CV2−, which is based on Coulomb-Volkov-type(CV)
states [10], could supply reliable predictions of atomic
ionization by extreme ultraviolet laser pulses down to the
subfemtosecond regime. For any field parameter, it was
shown that CV2− provides accurate energy distributions
of ejected electrons, including many ATI peaks, as long
as the two following conditions are simultaneously
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fulfilled: (i) the photon energy is greater than or equal
to the ionization potentialIP and (ii) the ionization process is
not saturated. The condition (i) restricts CV2− application to
VUV laser pulses (e.g. high-enough harmonics of Ti-Sapphire
lasers), while the condition (ii) limits CV2− application to
laser intensities compatible with the perturbation regime.
Therefore, further systematic studies have been conducted
to extend the field of application of CV approaches to laser
pulse-induced transitions.

On the one hand, keeping condition (i), a renormalization
procedure, which takes into account the depletion of
the initial state in the course of irradiation, has been
introduced successfully [11]. This new approach, called
RCV2− (renormalized CV2−), permits to get rid of condition
(ii), thus opening the way to application of Coulomb-
Volkov approaches to ionization by laser pulses with ¯hω > IP

whatever the laser intensity.
On the other hand, keeping condition (ii), i.e. in

perturbation conditions, the application of CV2− has been
extended to higher laser wavelengths [12]. It was achieved by
introducing a ‘trial initial state’ that encompasses the actual
initial state itself and all intermediate bound states that can
be excited during the pulse. The new approach has been first
restricted to laser wavelengths such that, owing to the spectral
width of the laser pulse, only a few intermediate bound
states|γ 〉 can be excited in single-photon absorption [12].
In this particular case, the time-dependent coefficient of
an intermediate state|γ 〉 is simply given by the first-order
perturbation amplitude of transition from the initial state to
|γ 〉. In its present state, this procedure, which has been called
modified CV2− (MCV2−), can address ionization by photons
whose energy may be as small as half the target ionization
potential, i.e. by low harmonics that are currently generated
using femtosecond Ti-Sapphire laser pulses [13].

To better understand why standard CV2− predictions
of ATI peaks are so accurate in perturbation conditions,
it appears interesting to compare CV2− to the standard
Born perturbation series (BPS). Indeed, thenth order of
BPS, which corresponds to ann-photon transition, provides
good predictions of the corresponding ATI peak as long as
perturbation conditions prevail. Hereafter, it is shown that the
original approach CV2− discards quantum paths connected
to intermediate resonant states. This analysis bears out the
procedure leading to the approach MCV2− [12]. Although
it is made with hydrogen-like targets, this analysis may be
generalized to any target. Finally, the approximations that
are studied here are compared to calculations made without
approximation. These later calculations, hereafter referred to
as TDSE, are based on the resolution of the time-dependent
Schrödinger equation [14]. The paper is organized as follows.

In section2, the standard Coulomb-Volkov theory CV2−

for transitions induced by short laser pulses in the perturbation
regime is briefly reviewed. Its connection with the length-
gauge version of the SFA is addressed.

In section3, the CV2− transition amplitude is expanded
in a series of increasing perturbation orders. Then, the CV2−

perturbation series is compared to the BPS.
As a support of the preceding study, new TDSE results

are presented in section4 to verify previous predictions made
by CV2− and MCV2− for atom ionization in perturbation

conditions [9, 12]. As expected, according to section3, CV2−

electron spectra are extremely accurate for ¯hω > IP [9], while
the adapted treatment MCV2− is required at smaller laser
frequencies [12]. An improved CV2− spectrum is obtained
by means of a fast and accurate time-integration technique
already used in [12]. The essential role of the Coulomb
factor is illustrated by comparing CV2− with calculations
performed within SFA. Further, it is shown that, the electron
spectrum background is quasi identical to the background
predicted by the first-order of BPS (Born approximation). In
appendixA, this background is shown to strongly depend on
the characteristics of the pulse (mainly the Fourier transform
of the laser electric field envelop). Some examples of the
background dependence on the pulse duration are given
in appendixA. The main features of the time-integration
technique are given in appendixB.

AppendixC is a complement of section3.2. The CV2−

amplitude is first transformed into a perturbation series. Then,
it is compared to the amplitude calculated within the second-
order of the BPS.

In section5, one analyzes the laser-induced excitation
probability as a function of the laser frequency. As for
ionization, it is shown that differences between CV2−

predictions and TDSE may be elucidated according to the
analysis made in section3.

Conclusions and perspectives are drawn in section6.
Atomic units are used throughout unless otherwise stated.

2. Derivation of the transition amplitude CV2−

In nonrelativistic conditions, the wavefunction9(Er , t)
of a hydrogen-like atom interacting with an external
electromagnetic fieldEF(Er , t), that is assumed to be almost
uniform in a large region around the atom at a given time
t (dipole approximation), is given by the time-dependent
Schrödinger equation:

i
∂9(Er , t)

∂t
= [H0 + V(t)] 9(Er , t), (1a)

H0 = −
∇

2

2
−

Z

r
, (1b)

V (t) = Er · EF(t), (1c)

whereEr gives the position of the electron with respect to the
nucleus identified with the centre-of-mass;Z is the nuclear
charge andEF(t) is the external field at the atom. The field-free
initial and final states areφi (Er , t) andφ−

f (Er , t), respectively:

φi (Er , t) = ϕi (Er ) exp(−iεi t) , (2a)

φ−

f (Er , t) = ϕ−

f (Er ) exp
(
−iεf t

)
, (2b)

where ϕi (Er ) and ϕ−

f (Er ) are eigenstates of the field-free
HamiltonianH0; εi (resp. εf ) is the eigenenergy of the initial
(resp. final) unperturbed stationary stateϕi (Er ), (resp.ϕ−

f (Er )).
In ϕ−

f (Er ), the subscript ‘−’ indicates that the unperturbed
final state must be featured by aningoing regular Coulomb
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wavefunction when the final state lies in the continuum. In
this later case,ϕ−

f (Er ) is explicitly:

ϕ−

f (Er ) = (2π)−3/2 exp
(
+

πν

2

)
0(1 + iν) exp(iEk · Er )

×1F1(−iν; 1; −ikr − iEk · Er ), (3)

where Ek is the electron momentum andν = 1/k. ϕ−

f (Er ) is

normalized toδ(Ek − Ek′) and its eigenenergy isεf = k2/2.
As to the electric field of the laser, it is derived from a

vector potentialEA(t); thus one has:

EF (t) = −
∂ EA(t)

∂ t
. (4)

Therefore, the general form ofEA (t) may be written as:

EA(t) − EA(t0) = −

∫ t

t0

dt ′ EF(t ′), (5)

wheret0 is arbitrary. In what follows, we restrict our study to
the interaction of a hydrogen atom with a linearly polarized
laser pulse in the dipole approximation. Thus, in the vicinity
of the atom, the external laser field may be written as:

EF (t) = FM Eλ sin(ω t +ϕ) fτ (t), (6)

where FM is the maximum value of the electric field and
Eλ is a unitary vector that gives the direction of the linear
polarization. fτ (t) is the modulation in time of the maximum
value of the electric field. This time-envelope, which defines
the shape of the pulse, satisfies the following conditions:{

06 fτ (t) 6 1,

fτ (t) 6= 0 only whent ∈ [0 , τ ] ,
(7)

where τ is the total duration of the pulse. As in previous
studies, calculations reported in section4 are performed with
a pulse shape that is featured through a sine-square envelope.
Thus one has here:

fτ (t) = sin2

(
π t

τ

)
, (8)

and the pulse is made symmetric with respect tot = τ/2 by
fixing ϕ = (π/2) − ω(τ/2) (in fact, the phaseϕ matters little
when many oscillations are performed during the pulse).

With both, the final stateφ−

f (Er , t) and the laser field,
one builds the final Coulomb-Volkov wavefunctionχ−

f (Er , t)
that must be aningoingCoulomb-Volkov wavefunction when
εf > 0. According to [8, 9], one has:

χ−

f = φ−

f (Er , t)L−(Er , t),

L−(Er , t) = exp
{
i EA

−

(t) · Er − iEk ·

∫ t

τ

dt ′ EA
−

(t ′)

−
i

2

∫ t

τ

dt ′ EA
−2

(t ′)
}
,

(9)

where EA
−

(t) is the variation ofEA (t) that must be considered
in a time-reversal picture. The last term in the argument of
L− (Er , t) is related to the ponderomotive shiftUp [11]. Owing
to the values of the intensity and wavelength used here,Up is

small. Therefore, it does not play any significant role and it
can be omitted. We have verified that in actual calculations,
the expression ofL− (Er , t) to be introduced in transition
amplitudes can be simplified to [12]:

L−(Er , t) = exp

{
i EA

−

(t) · Er − iEk ·

∫ t

τ

dt ′ EA
−

(t ′)

}
. (10)

If the final state is a bound state, i.e. a non-traveling state, the
average velocity is zero and thus one must setEk = E0.

In the Schrödinger picture, the transition amplitude
from the statei before interaction to the final statef after
interaction, is:

T f i = 〈9−

f (t)|9+
i (t)〉, (11)

where t may be any time;9−

f (Er , t ) and 9+
i (Er , t ) are the

exact solutions of the equation (1) subject to the asymptotic
conditions:

9−

f (Er , t) −→
t→+∞

φ−

f (Er , t), (12a)

9+
i (Er , t) −→

t→−∞
φi (Er , t). (12b)

The so-calledprior form of T f i , which leads to the
approach CV2− [8, 9], is:

T−

f i = lim
t →− ∞

〈9−

f (t) |9+
i (t)〉 = lim

t →− ∞
〈9−

f (t) |φi (t)〉. (13)

After a standard easy algebra, using (1a) and (12a andb), and
keeping in mind thatφi (Er , t) andφ−

f (Er , t) are orthogonal, the
expression (13) may be transformed into:

T−

f i = −i
∫ τ

0
dt〈9−

f (t)|V(t)|φi (t)〉. (14)

The standard approach CV2− consists in substituting the
Coulomb–Volkov wavefunctionχ−

f (Er , t) for 9−

f (Er , t ) in
(14), i.e.:

TCV2−

f i = −i
∫ τ

0
dt〈χ−

f (t)|V(t)|φi (t)〉. (15)

Then, according to expressions (2a), (2b), (9) and (10) one
gets:

TCV2−

f i = −i
∫ τ

0
dt exp

{
i(εf − εi )t + iEk ·

∫ t

τ

dt ′ EA
−

(t ′)

}
×

∫
dEr ϕ−∗

f (Er )exp
{
−i EA

−

(t) · Er
}

Er · EF(t) ϕi (Er ). (16)

Again, let us remind thatEk = E0 if the final state is a bound one.
We can relate here the CV2− transition amplitude to the strong
field approximation’s one in the length gauge. The latter is
obtained from the former by just setting the nuclear charge in
the final wavefunction to zero.

Then, one introduces the useful functions:

h−(t) = i(εf − εi ) + iEk · EA
−

(t), (17)

f −(t) = exp

{∫ t

τ

dt ′h−(t ′)

}
, (18)

g−(t) =

∫
dEr ϕ−∗

f (Er ) exp
{
−i EA

−

(t) · Er
}

ϕi (Er ), (19)
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whereεf = k2/2 if the final state lies in the continuum. Using
a standard procedure [15], one gets an analytical expression
for g−(t). With the expressions (6) and (8) of the external field
EF (t), the functionsh−(t) and f −(t) may also be calculated
analytically. If the form of EF (t) is too complicated, it is not
difficult to perform accurate numerical time integrations (see
appendixB). Integrating by parts and bearing in mind that
EA

−

(τ ) = E0, one obtains [9]:

TCV2−

f i = f −(0) g−(0) −

∫ τ

0
dt h−(t) f −(t) g−(t). (20)

It is worth noting that the first term of the rhs in (20) is zero
for a genuine laser pulse since one has alsoEA

−

(0) = E0 (no
direct electric field). Therefore, a simple numerical integration
over the pulse duration is necessary to knowTCV2−

f i . Here, we
use now an effective and accurate integration procedure that
is sketched in appendixB.

Then, whatever approximation used, the transition
probability is given by|T f i |

2. If the final state lies in the
continuum, the angular and energy distribution of ejected
electrons is given by the general expression:

∂2Pf i

∂Ek∂�k
= k|T f i |

2, (21)

whereEk and�k are the energy and the direction correspond-
ing to the momentumEk of the ejected electron. Integrating
with respect to�k gives the energy distribution∂ Pf i /∂Ek

and a further integration with respect toEk gives the total
probabilityPf i to ionize an atom with one pulse. For ¯hω > IP,
it was shown [9] that accurate predictions are made by CV2−

as long asPCV2−

f i does not exceed 20%.

3. Perturbation series

3.1. BPS

In the interaction picture, the Born perturbation expansion of
the T-matrix transition element is obtained by iteratingp times
the integral equation of the evolution operator (see, e.g. [17]).
It can be written as:

T f i =

∑
p=1

T (p)

f i . (22)

As usual, post and prior forms to any order of this expansion
are identical. Thepth order of BPS is the well-known formula:

T (p)

f i = (−i)p
∑

j1

∑
j2

· · ·

∑
j p

∫ τ

0
dt1

∫ t1

0
dt2 · · ·

∫ tp−1

0
dtp

×

〈
φ−

f (t1)
∣∣∣ V(t1)

∣∣φ j1(t1)
〉 〈

φ j1(t2)
∣∣ V(t2)

∣∣φ j2(t2)
〉

· · ·
〈
φ j p−1(tp)

∣∣ V(tp)
∣∣φi (tp)

〉
. (23)

Thispth order is the amplitude to absorb p-photons during the
irradiation. The first Born approximation, hereafter referred
to as B1, which corresponds top = 1, can also be obtained by
substitutingφ−

f (Er , t) for 9−

f (Er , t) in (14), thus leading to:

TB1
f i = −i

∫ τ

0
dt〈φ−

f (t)|V(t)|φi (t)〉. (24)

Under perturbation conditions, the (p + 1)th term should be
smaller than the correspondingpth one. Thus, one expects the
spectrum to be dominated by B1, except in the neighborhood
of a N-photon absorption resonance, i.e. when one has:
εf − εi ' Nω. In this case, the multiple time-integration term
becomes large and a characteristic peak structure emerges
over the background that is given by the lowest nonzero
perturbation term. For ionization, this background is actually
given by B1. However, when one considers an increasing
number of absorbed photons for a finite pulse duration, the
corresponding ATI peak will finally disappear below the
background.

3.2. Perturbation series of CV2−

To investigate what processes are actually contained in a
standard CV2− approach, the amplitude (23) is compared here
with the corresponding order of a suitable perturbation series
of CV2−. First, let us write the perturbation in the form:

EF (t) = α EF0(t) = α F0 Eλ sin(ω t +ϕ) fτ (t), (25)

where F0 is now the value of the electric field experienced
by the electron on the first Bohr orbit of the target. Thus,
α = FM/F0, i.e. α is the ratio of the laser field amplitude to
the average nuclear Coulomb field in the entrance channel.
Thus, perturbation conditions implyα � 1. To simplify the
notation, one defines:

EA0(t) = EA
+
0(t) = −

∫ t

0

EF0(t) dt; EA
−

0 (t) = −

∫ t

τ

EF0(t) dt.

(26)
Since one hasEA0(τ ) = E0, for a true laser pulse, it is readily
seen thatEA

−

0 (t) = EA0(t) . Then, the transition amplitude (16)
reads:

TCV2−

f i = −i
∫ τ

0
dt exp

{
i(εf − εi )t + iEk ·

∫ t

τ

dt ′α EA
−

(t ′)

}
×

∫
dEr ϕ−∗

f (Er ) exp
{
−iα EA

−

0 (t) · Er
}

αEr · EF0(t)ϕi (Er ). (27)

To expand (27) in a perturbation series of the parameterα, it
is written more conveniently:

TCV2−

f i = −i
∫ τ

0
dt exp

[
i(εf − εi )t

] ∫
dEr ϕ−∗

f (Er )

× exp

{
−iα

[
EA

−

0 (t) · Er − Ek ·

∫ t

τ

dt ′ EA
−

0 (t ′)

]}
αEr · EF0(t) ϕi (Er ).

(28)

Then, expanding the exponential function into a Taylor series
leads to:

TCV2−

f i = −i
∫ τ

0
dt exp

{
i(εf − εi )t

} ∫
dEr ϕ−∗

f (Er )

×

1 +
∞∑

p=1

(−i)pα p

p!

[
Er · EA

−

0 (t) − Ek ·

∫ t

τ

dt ′ EA
−

0 (t ′)

]p


× αEr · EF0(t)ϕi (Er ). (29)

The first-order term (linear inα) is nothing but B1 (24). To
better analyze subsequent orders, let us study the second-order
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term inα2(p = 1). It is:

TCV2−

f i = (−iα)2
∫ τ

0
dt exp

{
i(εf − εi )t

} ∫
dEr ϕ−∗

f (Er )

×

{
Er · EA

−

0 (t) − Ek ·

∫ t

τ

dt ′ EA
−

0 (t ′)

}
Er · EF0(t)ϕi (Er ). (30)

Let us first concentrate on the second term of the
right-hand side of (30). It is connected to the electron
displacement during the interaction. This term is a second-
order contribution to the first-order term (one-photon
transition). In fact, summing all subsequent contributions to
the first order that appear in (29), it is easy to see that the one-
photon transition amplitude reads:

TCV2− (1)
f i = − i

∫ τ

0
dt exp

{
i
(
ε f − εi

)
t + i αEk ·

∫ t

τ

dt ′ EA
−

0 (t ′)
}

×

∫
dEr ϕ−∗

f (Er ) α Er · EF0(t) ϕi (Er ). (31)

When the final state is a bound one, i.e. a non-traveling state,
one must setEk to E0, thus avoiding any electron displacement
contribution. If the final state is in the continuum, the electron
displacement term in the argument of the exponential in
(31) generally does not vanish. However, this term may be
neglected since it is a first-order correction compared to
i(εf − εi )t . Therefore, for ¯hω > IP in the perturbation regime,
one expects the single-photon ionization peak of the electron
spectrum predicted by CV2− to be almost identical to the
peak predicted by the first order of perturbation. Further, it
has also been shown in [8] that the influence of the electron
displacement on higher-order peaks cannot be neglected. A
detailed study of this influence is outside the scope of the
present paper that aims at identifying in CV2− the flaws
that prevent this theory from providing reliable predictions of
multiphoton ionization when ¯hω < IP.

Indeed, one sees that electron spectra predicted by CV2−

are accurate only when ¯hω > IP [8, 9, 12]. This observation
leads us to conclude that some resonant processes, which
must show up when ¯hω < IP, are not taken into account in
a standard approach CV2−. Indeed, within the spectral width
of the laser pulse, a band of bound states may be excited in this
case, thus introducing new quantum paths that interfere with
the ‘direct’ multiphoton ionization process. Although these
intermediate bound states appear explicitly in the standard
perturbation expansion (23), it is not the case for the CV2−

expansion (29). To investigate the difference, let us come back
to the two-photon amplitude (30) deprived of the electron
displacement term:

TCV2− (2)
f i = (− i α)2

∫ τ

0
dt

∫
dEr φ−∗

f (Er , t)Er · EA
−

0 (t)

Er · EF0(t)φi (Er , t). (32)

SubstitutingEr · EF0(t) for V(t) in the corresponding second-
order term of BPS (23), one gets:

T (2)
f i = (−i α)2

∫ τ

0
dt

∫ t

0
dt ′

∫
dEr φ−∗

f (Er , t) Er · EF0(t)

×

∑
j

φ j (Er , t)
∫

dEr ′φ∗

j (Er
′, t ′) Er ′

· EF0(t
′) φi (Er

′ , t ′). (33)

We show in appendixC that the equation (32) can be written:

TCV2− (2)
f i = (−i α)2

∫ τ

0
dt F0(t)

∑
j

D f j (t) 0̃ j i (t), (34)

where D f j (t) is the dipole matrix element between statesj
andf (see expression (C.5) in appendixC) and0̃ j i (t) is:

0̃ j i (t) =

∫ t

0
dt ′δ

(
t ′

− t
)

A0(t
′) D j i (t

′)

= − D j i (t)
∫ t

0
dt ′ F0(t

′). (35)

While the second order of BPS reads:

T (2)
f i = (−i α)2

∫ τ

0
dt F0(t)

∑
j

D f j (t) 0 j i (t), (36)

with:

0 j i (t) =

∫ t

0
dt ′ F0(t

′) D j i (t
′) . (37)

The expression (34) has a form similar to (36), except that
0̃ j i (t), as defined in (35), does not include the history of the
transition to any intermediate statej from t ′

= 0 to t ′
= t all

along the interaction with the laser field. It is as if any passage
by an intermediate statej lasted an infinitesimal time, thus
preventing any resonant transition to an intermediate state
from taking place. Such a resonant transition is precisely
described by the 2nd term in the rhs of expression (C.18), in
appendixC.

Now, it is clear that passing through resonant intermediate
states is excluded from any CV2− approach. Therefore,
such a quantum path has to be introduced explicitly in
CV2 calculations when it is likely to contribute significantly
to a laser-induced transition. It was precisely the aim
of the MCV2− approach [12] where it has been shown
that combining the ‘direct’ CV2− amplitude (16) with the
amplitudes of transient intermediate state excitation lead to
accurate predictions.

The problem linked with the lack of intermediate
resonance is illustrated in the following sections in the case
of laser-induced atomic ionization and excitation.

4. CV2− approach to laser-induced multiphoton
ionization of atoms

4.1. Analysis of CV2− electron spectra

The ionization transition amplitude is given by the expressions
(16)–(20). To avoid difficulties in the time integration over
the pulse duration, one uses a simple adapted numerical
technique, details of which are briefly sketched in appendixB.
This technique was used for the first time in [12] in place
of a previous integration procedure that showed significant
imperfections at rather high laser intensities when the pulse
length increases (see figures3(e) and (f) of paper [9]).
Since the new time integration procedure is now used in
all CV2− calculations, it is worth showing how reliable it
is. Therefore, a CV2− electron spectrum corresponding to
figure 3(f) in [9] is obtained with the new technique. It
is reported on figure1(b) up to an ejected electron energy
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Figure 1. Ionization ofH(1s): electron distribution as a function of
the energy of the ejected electron up to a maximum energy 8 au.
Laser parameters are: photon energyω = 0.855, laser field
amplitudeF = 0.05 and pulse lengthτ = 500. All quantities are
given in atomic units. (a) Full line: TDSE; dotted line: SFA (length
gauge). (b) Full line: Present CV2− spectrum; dotted line: SFA
(length gauge) (c) First Born approximation spectrum. Inserts in
figures (a) and (b) are close-up of 3rd and 4th peaks.

8 au. It is worth noting that, at variance with the figure3(f)
of paper [9], this new CV2− spectrum is quasi-identical to
TDSE spectrum reported on figure1(a) up to 8 au, thus
showing the efficiency of the new time-integration procedure.
Further, the present CV2− spectrum not only provides an
accurate background in between multiphoton peaks, but it also
permits to see the energy beyond which no more peak can
show up. In figures1(a) and (b), we also show the spectrum
calculated within SFA. The length version of SFA has been
evaluated by replacing the Coulomb continuum wavefunction
in (32) by a plane wave. Although, we have verified that
the ponderomotive potentialUp has no influence in the case
analyzed here, all present calculations account for it. From the
figure, we can see that SFA overestimate the background of
the spectrum by a factor of 10. Multiphoton peaks predicted
by SFA are also above TDSE ones, but by a smaller factor.
Though it is not visible on the figure, we have verified that
very close to threshold, TDSE exceeds SFA. This is ascribed
to the absence of the Coulomb normalization factor giving
rise to the cusp behavior for zero momentum [18]. It is clear
that, by omitting the Coulomb interaction in the final channel,
SFA leads to a significant loss of accuracy in the low energy
part of the ATI spectrum. Since this conclusion is similar to
experimental [5] and theoretical [7] findings in the IR domain,
the conclusion holds from IR to UV wavelengths.

Figure 1(c) displays the spectrum predicted byB1.
As expected, the one-photon ionization peak is very well
described, whereas multi-photon peaks are not reproduced
by this theory. Further, in agreement with the analysis made
in section3.1, B1 provides fairly accurate predictions of the
spectrum background.

Now, electron distributions are obtained in [9] for
a photon energy significantly higher than the ionization
threshold. Thus, despite the laser spectral width, no resonance
with bound intermediate state is expected to occur. Therefore,
in view of the analysis made in section3, the very good
agreement between TDSE and CV2− is not a surprise.
However, it has been shown [8, 9] that the standard
CV2− cannot provide reliable predictions whenω < IP, i.e.
when transitions through intermediate bound states may
interference significantly with direct transitions. Again, it is
no wonder in view of the analysis of section3 that shows that
direct transitions only are taken into account by the standard
CV2− approach.

4.2. Justification of the modified CV2− approach

The MCV2− approach consists in introducing explicitly am-
plitudes of transitions through intermediate bound states that
interfere with the standard CV2− amplitude [12]. Such a pro-
cedure, which showed to be very effective, is fully justified by
the analysis made in section3. Actually, amplitudes of tran-
sitions to the continuum through intermediate bound states
T (CV2−)

ib f are obtained as follows: always in perturbation condi-
tions, one integrates, over the pulse durationτ , the product
of the amplitudeT (I )

ib (t) to reach a given bound stateb
at a time t during the interaction, by the CV2− amplitude
T (CV2−)

bf (t) to reach the continuum from the stateb after t.

Then one adds allT (CV2−)
ib f amplitudes to the standard CV2−

one. Indeed, accurate phases are required for all amplitudes
under consideration. Finally the MCV2− amplitude reads:

T (MCV2−)
i f = T (CV2−)

i f +
∑

b

T (CV2−)
ib f , (38)

where one has:

T (CV2−)
ib f

=

∫ τ

0
dtT (I )

ib (t) exp

{
i

(
k2

2
− εj

)
t + i Ek ·

∫ t

τ

dt ′ EA−(t ′)

}
EA

−

(t) ·

∫
dEr ϕ j (Er ) exp

[
− i EA

−

(t) · Er
] [

i Ek + E∇

]
ϕ−∗

f (Er ).

(39)
It is worth noting that amplitudesT (I )

ib (0, t) may also be
approximated by a CV2− approach adapted to the excitation
process (see the next section). As a first test, only single-
photon transitions to intermediate levelb have been addressed
in [12]. Therefore, a first-order perturbation calculation has
been enough to get an accurate value ofT (I )

ib (0, t). Indeed,
by doing so, one does not expect to get reliable results for
photon energies much lower than the energy required to reach
the first excited state. However, for photon energies roughly
higher than half the ionization potentialIP, very accurate
and comprehensive electron spectra have been obtained [12].

402



In-depth analysis of Coulomb–Volkov approaches

Figure 2. Ionization ofH(1s): electron distribution as a function of
the energy of the ejected electron up to a maximum energy 2 au.
Laser parameters are: photon energyω = 0.3, laser field amplitude
F = 0.02 and pulse lengthτ = 837.758 (40 cycles). All quantities
are given in atomic units. (a) TDSE spectrum (b) Full line:
MCV2−spectra; dotted line: CV2−. (c) First (dotted line) and
second (full line) Born approximation spectra.

Here, some new spectra are analyzed in the light of the study
of section3.

4.3. Comparison between 2nd Born approximation and
MCV2− approach

In figure2(a), we show TDSE calculations for a photon energy
smaller than the ionization threshold ((ω = 0.3 au) for a field
amplitudeF = 0.02 au. One observes clearly the appearance
of a secondary peak structure. As analyzed in [12], these
secondary peaks stem from multiphoton ionization through
intermediate bound states due to the pulse bandwidth. The first
ATI peak corresponds to a direct two-photon absorption from
the ground state. As may be seen in figure2(b), the CV2−

theory is unable to reproduce the secondary peaks. On the
contrary a MCV2− approach, that includes intermediate states
up to 4p, brings significant improvement: it fully reproduces
the details of the spectrum. Also shown in figure2(c) is the
second Born approximation (B2) calculated with the inclusion
of bound states up to the principal quantum numbern = 20.
As expected, the first series of secondary peaks is well
explained by B2, whereas no further peaks, neither main
peaks, nor secondary peaks, can be reproduced by this theory.

Therefore, MCV2− provides by far more information than the
simple B2.

5. CV2− approach to laser-induced excitation
of atoms

5.1. Multiphoton excitation CV2− amplitude

According to expression (16) and the remark made after
expression (31), the transition amplitude CV2− that must be
used for excitation reads:

TCV2−

f i = − i
∫ τ

0
dt exp

{
i(εf − εi )t

} ∫
dEr ϕ−∗

f (Er )

× exp
{
−i EA

−

(t) · Er
}

Er · EF(t)ϕi (Er ). (40)

Here, we setEk = E0 because the final state is a bound
state. To exhibit the consequences of ignoring intermediate
resonances in standard CV2 approaches, we compare
multiphoton excitation probabilities given by CV2− to the
ones predicted by TDSE [14]. Hereafter, one considers
excitation probabilities ofH(1s) atoms to 2p and 2s states
as functions of the photon energy. As in previous papers,
calculations are performed for laser pulses as defined in
section2 by expressions (6)–(8). As usual, one expects that
transition probabilities will exhibit sharp peaks, hereafter
referred to as principal peaks, when one has:

n ω = ε2l − ε1s, (41)

wheren is an odd (resp. even) number of photons when the
final state is 2p (resp. 2s). Let us introduce:

δ = ε2l − ε1s = 0.375 au. (42)

Thus, according to (41) and (42), a principal peak appears for
the excitation of 2s or 2p states whenever the ratioδ/ω is an
even or odd integer, respectively.

However, a spectral width of the laser pulse is the
counterpart of the finite pulse duration. Therefore, photons
whose energy is located on the wings of the laser spectrum
may also contribute to excitation. Thus, peaks not satisfying
equation (41) could also show up. In fact, these peaks would
correspond to quasi-resonant transitions to intermediate states
followed by transitions to the final state, that are induced
by photons whose energy may be far from. Such resonant
processes are not taken into account by standard CV2
treatments. In what follows, we consider 30-cycle laser pulses.
Indeed, a fixed number of oscillations permits to keep the
relative spectral width1ω/ω constant, whateverω.

5.2. Multiphoton excitation of H(1s) to the 2p state

Excitation probabilities to the 2p state are reported for
three values of the laser-field amplitudeF: 10−4 au in
figure 3(a), 10−3 au in figure3(b) and 10−2 au in figure3(c)
corresponding to maximum intensitiesI of 3.51× 108, 3.51×

1010 and 3.51× 1012, respectively. As expected, the only
peaks predicted by CV2− are principal peaks corresponding to
the direct absorption of an odd number of photons (as long as
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Figure 3. Probability to excite anH(1s) atom to the state 2p by a
30 cycle-laser pulse as a function of the ratio whereδ is the 1s–2p
energygap andω is the photon energy. The maximum amplitude of
the electric field is: (a)F = 10−4 (b) F = 10−3 (c) F = 10−2. Full
line: CV2; dashed line: TDSE.

these peaks emerge above the background). Since transitions
occur in a perturbation regime, the height of such peaks is
∝ I n, i.e.∝ F2n wheren is the peak’s order as defined in (41).
It is exactly what can be checked for the 1st and 2nd peaks.

In all the figures, one sees that generally TDSE and
CV2− calculations agree quite well. Single- and many-
photon absorption peaks look very similar. On figure3(a), the
intensity is so weak that the first principal peak only shows
up. On figure3(c), a clear difference between TDSE and
CV2− appears for the 3rd and 4th peaks that correspond to 5-
and 7-photon absorption, respectively. The energy of photons
for the 3rd peak is 0.075 au. Therefore, the absorption of
an additional photon leads to the excitation of the state 3s.
Thus, the peak splitting, which appears in TDSE spectrum,
might be an ac-Stark splitting (the so-called Autler–Townes
splitting [19]) due to the strong dipolar coupling between
2p and 3s states. The efficiency of this one-photon depleting
process is∝

√
I . A similar splitting has been predicted

recently in laser-induced positronium ionization [20]. Further,
the absorption of a 7th photon leads to the continuum. These
two later processes are fully taken into account in TDSE
treatments whereas they are not in CV2−. They are likely to
lead to a significant depletion of the 2p level when both, the
laser intensity and the 2p population are high enough. As a
result, TDSE calculations let appear a sharp valley precisely
at the expected maximum of the 3rd peak, as well as a
broadening of this peak in figure3(c). The situation is more

Figure 4. Same as figures3(a)–(c), but for the excitation of the
state 2s. Dotted line: second Born approximation.

complicated for the 4th peak since other couplings, which are
more difficult to identify, might be involved in this case.

5.3. Multiphoton excitation of H(1s) to the 2s state

Excitation of the level 2s is quite different from the 2p
one. Laser intensities under consideration are the same as
in the previous section, but probabilities predicted by CV2
and TDSE, which are reported in figures4(a)–(c), appear
much smaller. As previously, the only peaks predicted by
CV2− are principal peaks (as long as these peaks emerge
above the background). However, they correspond to the
direct absorption of an even number of photons in this case.
Therefore, in a perturbation regime, the height of thenth peak
is ∝ I n, i.e. ∝ F2n. It is exactly what one sees for all CV2
peaks on figures4(a)–(c).

In figure 4(a), TDSE results are accurate only in the
vicinity of the first principal peak, which results from a direct
two-photon absorption. Due to the very weak probabilities,
TDSE hardly reproduces the ‘background’ that is mainly
made of the wings of this first peak. Indeed, this large
broadening of the peak stems from the spectral laser width.
Below δ/ω = 4.2 au, CV2− provide good predictions for the
principal peaks only. However, CV2 height and TDSE height
of the first principal peak differ roughly by a factor of 2.
This discrepancy, which also appears in figures4(b) and (c),
indicates that again some indirect processes, which contribute
to populate the state 2s, are missing in CV2.

In all the figures4(a)–(c), numerical round-off errors
in time integration do not allow CV2 to well reproduce
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the genuine background. Now, in figures4(a) and (b),
many substructures appear in TDSE results. Beyond the first
principal peak, these substructures originate from complicated
multiphoton processes that imply transient intermediate states
excited by photons located in the wings of the laser spectral
distribution.

More interestingly atδ/ω ' 0.845, TDSE calculations
report a secondary peak that is present in the three figures.
Its height varies asI 2 that is the signature of a two-photon
process. Since the peak is clearly visible, one expects the
energy of one of the two photons to be close to the centre
of the laser-pulse spectrum. In this case, this energy isω =

0.4438 au. This value is very close to 0.4444 au that is the
energy required to excite the level 3p. Therefore, one may
identify the peak atδ/ω ' 0.845 as a resonant one-photon
excitation to the intermediate level 3p and a subsequent
emission of a 0.0694 au photon, stimulated by the low-energy
wing of the laser spectrum, that leads to the final level 2s.
This scenario is supported by second-order Born calculations
that well reproduce TDSE predictions for this peak in all
figures4(a)–(c). Although such a two-photon process is not
included in a standard CV2− treatment, it may be described
using an approach similar to MCV2− [12]. In addition, we
have performed similar calculations of 2s excitation using a
Gaussian shape whose full width of half maximum (FWHM)
is equal to the sine-square pulse one (cf (6) and (8)), with
identical maximum intensities. In that case, the Gaussian
pulse used in calculations has a longer duration and it results
in a much smaller spectral laser width than the sine-square
one. The figure5 shows that, 2s excitation with the Gaussian
pulse, the above-mentioned transitions through the 3p state
do not appear anymore. This reveals the crucial role of the
spectral laser width.

Trying to identify all processes that contribute to other
secondary peaks appears almost hopeless. For example, the
peak that shows up atδ/ω ' 3.492 au, i.e.ω = 0.1074 au
seems to stem also from a two-photon process if one
compares its heights reported in figures4(a) and (b). Such
an interpretation is supported by the second-order Born
calculations that well reproduce TDSE predictions for this
peak, but only in these two figures. In fact, a two-photon
transition to 2s is likely to be a ‘direct’ (non-resonant)
transition. Indeed, a scenario similar to the previous case
(peak at δ/ω ' 0.845) implies a 0.4444 au photon, i.e. a
photon located very far in the high-energy wing of the laser
spectrum, followed by a stimulated emission of a 0.0694 au
photon. The energy of the first photon explains the small
height of this peak. However, comparing the heights predicted
by TDSE for this peak in figures4(b) and (c) indicates that
it is influenced by other multiphoton processes when the
laser intensity increases. Indeed, the height ratio is no longer
proportional toI 2. Moreover, second-order Born calculations
no longer agree with TDSE predictions in figure4(c).

6. Conclusions and perspectives

We have shown that, given a laser-induced electronic
transition, a perturbation approach based on CV and called
CV2 is able to give accurate excitation and ionization
rates of atoms or molecules by short laser pulses as long

Figure 5. Probability to excite anH(1s) atom to the state 2s by a
F = 10−3 and 30 cycle sine-squared and Gaussian laser
pulse-shaped as a function of the ratio performed by TDSE.
Full line: sine-squared; dashed line: Gaussian.

as no intermediate resonant state interferes with a direct
multiphoton transition. When intermediate resonant state are
involved, the modified CV2− theory may be used [12]. Indeed,
it has been stated that MCV2− compares well with B2 for two-
photon transitions through intermediate bound-states where
similar secondary peak structures appear. However, compared
to the B2, MCV2− is a significant improvement. Indeed,
TDSE numerical calculations show that MCV2− well predicts
the whole structure of principal multi-photon peaks, as well
as all series of secondary peaks. We have also shown that, like
in recent theoretical [7] and experimental [5] findings in the
IR domain, SFA leads to a considerable loss of accuracy in
the low energy part of the ATI spectrum, thus enforcing the
need to take into account the Coulomb interaction in the final
states.

With respect to atomic multiphoton excitation, the
theory CV2− also exhibits a multiphoton structure similar
to the structure predicted by TDSE calculations. However,
as expected from the analysis of section3.1, CV2− cannot
predict secondary structures stemming from excitation of
transient intermediate states that may occur due to the laser
spectral width. In this later case, an extension of the CV2
approach similar to MCV2− may be envisaged. Various
CV approaches are particularly attractive because they are
easy to implement with any atomic (many electrons) or
molecular systems. Indeed, CV calculations require only a
good description of a few wavefunctions (the initial and final
states, and, eventually, a few intermediate states). Moreover,
these approaches give a better understanding of the underlying
physics since most significant processes may be identified
explicitly.
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Appendix A. Background of the ionization spectrum
given by the first Born approximation

Within the time interval [0, τ ], the external field is:

EF(t) = F0 Eλ sin(ω t +ϕ) f (t)

=
F0 Eλ

2i
{exp[i (ω t +ϕ)] − exp[−i (ω t +ϕ)]} f (t). (A.1)

It is zero elsewhere.Eλ is the polarization andf (t) describes
the envelope of the pulse. Thus, the first Born transition
amplitude reads:

TB1
i f = − i

∫ +∞

−∞

dt
∫

dEr ei ε f t ϕ−∗

f (Er ) Er · EF(t) e−i εi tϕi (Er )

= − i F0

∫ τ

0
dt exp

{
i
(
ε f − εi

)
t
}

sin(ω t +ϕ) f (t)

×

∫
dEr ϕ−∗

f (Er ) Er · Eλ ϕi (Er ). (A.2)

Let us introduce:

Fi j = −i F0

∫ τ

0
dt exp

{
i
(
ε f − εi

)
t
}

sin(ω t +ϕ) f (t),

(A.3)

Eλ · Er i j =

∫
dEr ϕ−∗

f (Er ) Er · Eλ ϕi (Er ). (A.4)

Thus, one may write:

T B
i f = Fi f (τ ) × Eλ · Er i f . (A.5)

The time dependence is entirely contained inFi j (τ ). One
assumesεf > εi . Then, one defines:

1ε = εf − εi > 0. (A.6)

According to (A.1) one has now:

Fi j =
F0

2

∫ τ

0
dt exp{i 1ε t} {exp[−i(ω t +ϕ)]

− exp[i(ω t +ϕ)]} f (t),

=
F0

2

∫ τ

0
dt {exp[i(1ε − ω)t − iϕ]

− exp[i(1ε +ω)t + iϕ]} f (t). (A.7)

Since bothω and1ε are>0, the less oscillating term in (A.7)
is the first one. Hence, one will deal now with:

Fi j ≈
F0e−iϕ

2

∫ τ

0
dt exp{i (1ε − ω) t} f (t). (A.8)

Then, we may address a few cases representative of a pulse
that contains many oscillations.

Appendix A.1. Rectangular envelope

f (t) = 1. (A.9)

In this case, one gets straightforward:

Fi j ≈
F0e−iϕ

2

[
exp{i(1ε − ω)τ } − 1

]
i (1ε − ω)

. (A.10)

It may be transformed into:

Fi j ≈
F0e−iϕ

2 i (1ε − ω)
exp

{
i (1ε − ω)

τ

2

}
×

[
exp

{
i (1ε − ω)

τ

2

}
− exp

{
−i (1ε − ω)

τ

2

}]
≈

F0e−iϕ

1ε − ω
exp

{
i (1ε − ω)

τ

2

}
sin

{
(1ε − ω)

τ

2

}
.

(A.11)

This leads to the well-known result:

∣∣Fi j

∣∣2 ≈ F2
0

sin2
{
(1ε − ω) τ

2

}
(1ε − ω)2 . (A.12)

Therefore, at a given position of the electron spectrum outside
the peak, i.e. for a given value of1ε − ω 6= 0,

∣∣Fi j

∣∣2 oscillates
with τ between 0 and a maximum valueF2

0 (1ε − ω)2, which
does not depend onτ . However, the height of the peak (at
the resonance, i.e. for1ε − ω = 0) behaves asF2

0 τ 2/4. As
a result, the ratio of the height of a principal peak to the
maximum height of the background at any energy, outside the
peak itself, increases asτ 2.

Further, the zeros just before and just beyond the peak are
given by:

(1ε−1 − ω)
τ

2
= −π ⇒ 1ε−1 = −

2π

τ
+ω, (A.13a)

(1ε1 − ω)
τ

2
= +π ⇒ 1ε1 =

2π

τ
+ω. (A.13b)

The distance between the two zeros is 4π/τ , thus showing that
the peak width behaves asτ−1. Let us define:

x = (1ε − ω)
τ

2
. (A.14)

Then, at half maximum, one has from (A.12) and (A.14):

F2
0 τ 2

8
=

F2
0 τ 2

4

sin2 x

x2
. (A.15)

The solution of (A.15) is:

|x| ' 1.3915574⇒ |1ε − ω| =
2

τ
× 1.3915574. (A.16)

Therefore, the FWHM is twice the above value of|1ε − ω|,
i.e.

FWHM '
5.5662296

τ
. (A.17)

Appendix A.2. Sine-square envelope

f (t) = sin2
(π

τ
t
)

=
1

2

[
1− cos

(
2π

τ
t

)]
. (A 18)

Again, neglecting the rapidly oscillating term in (A.7), one
has:

Fi j ≈
F0e−iϕ

4

∫ τ

0
dt exp{i (1ε − ω) t}

[
1− cos

(
2π t

τ

)]
.

(A.19)
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For the sake of simplicity, let us introduce:

β =
2π

τ
, δ = 1ε − ω. (A.20)

Thus, one has:

Fi j ≈
F0e−iϕ

4

∫ τ

0
dt eiδt

[
1−

ei β t + e−i β t

2

]
. (A.21)

After an easy integration, one gets:

Fi j ≈
F0e−iϕ

4

{
ei δ τ

− 1

i δ
−

1

2

[
ei (δ+β) τ

− 1

i(δ +β)
+

ei (δ−β) τ
− 1

i(δ − β)

]}
.

(A.22)

Then, from (A.20), one hasβ τ = 2π , which leads to:

Fi j ≈
F0e−iϕ

4 i

(
ei δ τ

− 1
) {

1

δ
−

1

2

[
1

(δ +β)
+

1

(δ − β)

]}
'

F0e−iϕ

4 i

(
ei δ τ

− 1
) {

−β2

δ
(
δ2 − β2

)}
. (A.23)

Whenτ becomes very large for a fixed value ofδ, β becomes
negligible compared toδ and one may write:

Fi j ≈
i F0 e−iϕ

4

(
ei δ τ

− 1
) β2

δ3
=

− F0 ei ( δ τ
2 −ϕ)

2

β2

δ3
sin

(
δ τ

2

)
.

(A.24)

Finally, whenδ � β, one has:

|Fi j |
2−−−→
δ > β

F2
0

4

β4

δ6
sin2

(
δτ

2

)
=

4π4F2
0

(1ε − ω)6

1

τ 4
sin2

(
δτ

2

)
.

(A.25)

Indeed, as it may be readily verified from (A.24), in the
vicinity of the peak whereδ � β, one recovers the well-
known expression obtained with a rectangular pulse, except
a factor 1

4 due to the shape of the sine square envelope.

Thus, the amplitude of
∣∣Fi j

∣∣2 is ∝ δ −2 close to the peak and
∝ δ −6τ −4 far from it. Therefore, it does not depend onτ in
the neighborhood of the peak.

Appendix B. Time-integration of the transition
amplitude over the pulse duration

According to expressions (16)–(20) of the transition
amplitude CV2, one has for a genuine laser pulse:

TCV2−

f i = − i
∫ τ

0
dt exp

{
i(εf − εi )t

}
exp

{
iEk ·

∫ t

τ

dt ′ EA
−

(t ′)

}
×

{
(εf − εi )t + iEk ·

∫ t

τ

dt ′ EA
−

(t ′)

}
×

∫
dEr ϕ−∗

f (Er ) exp{−i EA
−

(t) · Er }ϕi (Er ). (B.1)

In (B1), the most rapidly oscillating factor is exp{i(εf − εi )t}.
Hence, let us writeTCV2−

fi as:

TCV2−

f i =

∫ b

a
dt expα (t) f (t), (B.2)

wherea = 0, b = τ , α = i(εf − εi ) and f (t) is the rest of the
integrant. One divides the intervala, b by means of(n − 1)

intermediate pivotst j where j = 2, . . ., n.The extreme pivots
are t1 = a and tn+1 = b. Then, one approachesf (t) in each
interval [t j −1, t j +1] by means of a parabola, i.e., one defines
(n − 1) polynomials as follows:

g j (t) = a j t
2 + b j t + c j with j = 2, . . . , n, (B.3)

whose coefficients are determined by imposing:

g j (t j −1) = f (t j −1) ; g j (t j ) = f (t j ) ; g j (t j +1) = f (t j +1).

(B.4)
Thus, it is obvious that, except forj = 2, g j (t) shares
the interval [t j −1, t j ] with the previous polynomial
g j −1(t). Similarly, except for j = 2, g j (t) shares the
interval [t j −1, t j +1] with g j +1(t). Hence, to a very good
approximation, one may write in the interval [t j −1, t j ]:

f (t) '
1
2

[
g j −1(t) + g j (t)

]
with 26 j 6 n. (B.5)

Therefore, the integral in (B.2) takes the form:

TCV2−

f i '
1

2

{ ∫ t2

t1

dt eα t g2(t) +
n∑

j =2

∫ t j +1

t j −1

dt eα t g j (t)

+
∫ tn+1

tn

dt eα t gn(t)

}
. (B.6)

The two integrals in the intervals [t1, t2] and [tn, tn+1]
must be introduced because the sum overj contains only
one integration in these intervals whereas two integrations
are performed withg j (t) and g j +1(t) in all other intervals
[t j , t j +12]. The integrals in (B.6) are carried out analytically.
A fast computing code has been written for equidistant pivots.
The accuracy of the outcome may be checked easily by
increasing the number of pivots. For example, the spectrum
in figure 1(b), which is made up of 2000 points, is obtained
in less than 1 min on a 1 GHz PC withn = 100 for the time
integration.

Appendix C. Comparison between BPS and CV2−

perturbation expansion

Let us come back to the two-photon amplitude (30) without
the electron displacement term and using (2(a) and (b)):

TCV2−(2)
f i =(−i α)2

∫ τ

0
dt

∫
dEr φ−∗

f (Er , t)Er · EA
−

0 (t)Er · EF0(t)φi (Er , t).

(C.1)

SubstitutingEr · EF0(t) for V(t) in the corresponding second-
order term of the BPS (23), one gets:

T (2)
f i = (−i α)2

∫ τ

0
dt

∫ t

0
dt ′

∫
dEr φ−∗

f (Er , t) Er · EF0(t)

×

∑
j

φ j (Er , t)
∫

dEr ′φ∗

j (Er
′, t ′) Er ′

· EF0(t
′) φi (Er

′, t ′). (C.2)

In the integrant, let us look at the factor:

0 j i (t) =

∫ t

0
dt ′

∫
dEr ′φ∗

j (Er
′, t ′) Er ′

· EF0(t
′) φi (Er

′ , t ′). (C.3)
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One defines:
EF0(t

′) = λ̂ F0(t
′), (C.4)

D j i (t
′) =

∫
dEr φ∗

j (Er , t ′) Er · λ̂ φi (Er , t ′) =
〈
φ j (t

′)
∣∣ Er · λ̂

∣∣φi (t
′)
〉
.

(C.5)
Thus, one has:

0 j i (t) =

∫ t

0
dt ′ F0(t

′) D j i (t
′). (C.6)

Let us introduce:

EA0(t) = −

∫ t

0
dt ′ F0(t

′). (C.7)

An integration by parts of (C.3) leads to :

0 j i (t) =
[
− A0(t

′) D j i (t
′)
]t

0 +
∫ t

0
dt ′ A0(t

′)
d

dt ′
D j i (t

′).

(C.8)
Since EA0(0) = E0, one has:

0 j i (t) = − A0(t) D j i (t) +
∫ t

0
dt ′ A0(t

′)
d

dt ′
D j i (t

′) . (C.9)

Let us examine the 2nd term in the rhs of (C.9):

d

dt
D j i (t) =

〈 d

dt
φ j (t)

∣∣ Er · λ̂ |φi (t)〉 +
〈
φ j (t)

∣∣ Er · λ̂
∣∣ d

dt
φi (t)

〉
.

(C.10)
where:∣∣ d

dt
φi (t)

〉
=

1

i

(
i

d

dt

)
|φi (t)〉 =

1

i
H0 |φi (t)〉 =

εi

i
|φi (t)〉 .

(C.11a)
From (C.11a) the time derivative of the bra is:〈 d

dt
φ j (t)

∣∣ = −
εj

i

〈
φ j (t)

∣∣ . (C.11b)

Thus, one has:

d

dt
D j i (t) =

εi − εj

i

〈
φ j (t)

∣∣ Er · λ̂ |φi (t)〉 =
εi − εj

i
D j i (t).

(C.12)
Let us integrate equation (C.12). One gets:

D j i (t) = D j i (0) exp
[
i
(
εj − εi

)
t
]
, (C.13)

whereD j i (0) is the standard dipolar matrix element:

D j i (0) =

∫
dEr ϕ∗

j (Er ) Er · λ̂ ϕi (Er ). (C.14)

Therefore0 j i (t) now reads:

0 j i (t) = − A0(t) D j i (t) + i(εj − εi )D j i (0)

×

∫ t

0
dt ′ A0(t

′) exp
[
i
(
εj − εi

)
t ′
]
. (C.15)

The first term in the rhs of (C.15) corresponds to the second
order of the CV2− perturbation series. In the 2nd term,A0(t ′)

is oscillating mainly with the pulsationω. As a result, the
contribution of this 2nd term is significant only when the

whole integrant does not oscillate (or is a slowly varying
function oft ′, i.e. when one has:

ω '
∣∣εj − εi

∣∣ . (C.16)

The equation (C.16) corresponds to a resonance. The
contribution of such a resonance is never taken into account
in CV2− transition amplitudes as it will be shown hereafter.
The definition (C.6) permits to write the expression (C.2) as:

T (2)
f i = (−i α)2

∫ τ

0
dt F0(t)

∑
j

D f j (t) 0 j i (t). (C.17)

Therefore, introducing (C.15) in (C.17), the 2nd order of the
BPS is:

T (2)
f i = − (−i α)2

∫ τ

0
dt F0(t)

∑
j

D f j (t) A0(t) D j i (t)

+ (−i α)2 i(εj − εi )

∫ τ

0
dt F0(t)

∑
j

D f j (t) D j i (0)

×

∫ t

0
dt ′ A0(t

′) exp
{
i
(
εj − εi

)
t ′
}
, (C.18)

while the second order of the CV2− perturbation series is:

TCV2− (2)
f i = (− i α)2

∫ τ

0
dt

∫
dEr φ−∗

f (Er , t)Er · EA
−

0 (t)

×

∫
dEr ′

∑
j

ϕ j (Er ) ϕ∗

j (Er
′) Er ′

· EF0(t) φi (Er
′, t)

= (−i α)2
∫ τ

0
dt A−

0 (t)
∑

j

D f j (t) F0(t) D j i (t), (C.19a)

= (−i α)2
∫ τ

0
dt F0(t)

∑
j

D f j (t) A−

0 (t) D j i (t). (C.19b)

The definition (C.5) has been used to get expression (C.19a).
Since A−

0(t) = A0(t), the expression (C.19b) is identical to
the first term in the rhs of (C.18), apart from a factor(−1).
Indeed, this factor does not change predictions related to two-
photon transitions. To shed more light on what is missing in
standard CV2 approaches, let us write (C.19b) as:

TCV2− (2)
f i = (−i α)2

∫ τ

0
dt F0(t)

∑
j

D f j (t)

×

∫ t

0
dt ′ δ

(
t ′

− t
)

A−

0 (t ′) D j i (t
′). (C.20)

Then, let us introduce:

0̃ j i (t) =

∫ t

0
dt ′δ(t ′

− t)A0(t
′)D j i (t

′) = −D j i (t)
∫ t

0
dt ′ F0(t

′).

(C.21)
0̃ j i (t) resembles0 j i (t), except thatD j i (t) is outside the time
integral (see expression (C.6)). Thus, one has:

TCV2− (2)
f i = (−iα)2

∫ τ

0
dt F0(t)

∑
j

D f j (t) 0̃ j i (t). (C.22)
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