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Abstract

In perturbation conditions, above-threshold ionization spectra produced in the interaction of
atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical
approach called CV2 which is based on Coulomb—\olkov-type states. However, when
resonant intermediate states play a significant role in a multiphoton transition, the CV2
transition amplitude does not take their influence into account. In a previous paper, this
influence has been introduced separately as a series of additional sequential processes
interfering with the direct process. To give more credit to this procedure, called modified
CV2~ (MCV27), a perturbation expansion of the standard C\&nsition amplitude is
compared here to the standard time-dependent perturbation series and the strong field
approximation. It is shown that the CV2ransition amplitude consists merely in a
simultaneous absorption of all photons involved in the transition, thus avoiding all
intermediate resonant state influence. The present analysis supports the Mf@¢2dure

that consists in introducing explicitly the other quantum paths, which contribute significantly
to ionization, such as passing through intermediate resonances. Further, this analysis permits
to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin
to MCV2~.

PACS numbers: 42.50.Hz, 32.80.Rm, 32.80.Fb

1. Introduction This drawback of SFA has been invoked to explain the
discrepancy between the low energy spectra predicted by SFA
New experimental and theoretical findings recently focuseghd a numerical solution of the Schrédinger equatidh [
on the strengths and weaknesses of the widely knowgain, SFA failure has been attributed in the later case to the
strong field approximation (SFAJL[ 2] for above-threshold omission of the long-range character of the Coulomb potential
ionization (ATIl) phenomena by long wavelength laser field# the final state.
On the one hand, it has been found that an SFA based |f SFA and the CV approximation have been widely
approach explains very well the multiphoton detachment gfudied in the context of infrared lasers (IR), much less is
electrons from negative ion8][ On the other hand, SFA hasknown in the UV or X range. It is the aim of this paper
provided a theoretical framework to understand qualitatively investigate this aspect. In fact, in previous publications
ATI from neutral atoms4]. Quite recently, it was found that [g, 9], it was established that a simple theoretical approach
SFA predictions for the electron momentum distributions dgylled CVv2-, which is based on Coulomb-Volkov-type(CV)
not show the experimentally observed cusp at zero electrgtes 0], could supply reliable predictions of atomic
momentum, exhibiting instead a smooth behavirifurther, jonization by extreme ultraviolet laser pulses down to the
to agree with the experiments, the authors Bf flad to  gynfemtosecond regime. For any field parameter, it was
introduce a Coulomb—Volkov final wavefunction in SFB{[ shown that CV2 provides accurate energy distributions
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fulfilled: (i) the photon energy is greater than or equajonditions P, 12]. As expected, according to sectiBnCV2-
to the ionization potentialp and (i) the ionization process is electron spectra are extremely accuratenfor= |p [9], while
not saturated. The condition (i) restricts CVapplication to the adapted treatment MCV2is required at smaller laser
VUV laser pulses (e.g. high-enough harmonics of Ti-Sapphifeequencies 12]. An improved CVZ2 spectrum is obtained
lasers), while the condition (ii) limits CV2 application to by means of a fast and accurate time-integration technique
laser intensities compatible with the perturbation regimelready used in 12]. The essential role of the Coulomb
Therefore, further systematic studies have been conductg6tor is illustrated by comparing CV2with calculations
to extend the field of application of CV approaches to lasperformed within SFA. Further, it is shown that, the electron
pulse-induced transitions. spectrum background is quasi identical to the background
On the one hand, keeping condition (i), a renormalizatigiredicted by the first-order of BPS (Born approximation). In
procedure, which takes into account the depletion appendixA, this background is shown to strongly depend on
the initial state in the course of irradiation, has beethe characteristics of the pulse (mainly the Fourier transform
introduced successfully1ll]. This new approach, called of the laser electric field envelop). Some examples of the
RCV2~ (renormalized CV2), permits to get rid of condition background dependence on the pulse duration are given
(i), thus opening the way to application of Coulombin appendixA. The main features of the time-integration
Volkov approaches to ionization by laser pulses wigh> Ip  technique are given in appendsx
whatever the laser intensity. AppendixC is a complement of sectiod.2 The CV2
On the other hand, keeping condition (i), i.e. inamplitude is first transformed into a perturbation series. Then,
perturbation conditions, the application of CVhas been it is compared to the amplitude calculated within the second-
extended to higher laser wavelengthg][ It was achieved by order of the BPS.
introducing a ‘trial initial state’ that encompasses the actual |n section5, one analyzes the laser-induced excitation
initial state itself and all intermediate bound states that C@fobability as a function of the laser frequency. As for
be excited during the pulse. The new approach has been fjgsfization, it is shown that differences between CV2
restricted to laser wavelengths such that, owing to the Specisﬁédictions and TDSE may be elucidated according to the
width of the laser pulse, only a few intermediate boungna|y5i5 made in sectich
states|y) can be excited in single-photon absorptidrf][ Conclusions and perspectives are drawn in se@ion

In this particular case, the time-dependent coefficient of ~ atomic units are used throughout unless otherwise stated.
an intermediate statg/) is simply given by the first-order

perturbation amplitude of transition from the initial state t
ly). In its present state, this procedure, which has been cal
modified CV2" (MCV2™), can address ionization by photonﬁ
whose energy may be as small as half the target ionizati
potential, i.e. by low harmonics that are currently generatf;t
using femtosecond Ti-Sapphire laser pulseg.[

To better understand why standard CVpredictions
of ATI peaks are so accurate in perturbation condition
it appears interesting to compare CV2o the standard
Born perturbation series (BPS). Indeed, thth order of W, 1)

0%dDerivation of the transition amplitude CvV2~

nonrelativistic conditions, the wavefunctiom (7, t)

a hydrogen-like atom interacting with an external

electromagnetic fieldf(F, t), that is assumed to be almost

uniform in a large region around the atom at a given time
(dipole approximation), is given by the time-dependent
chrédinger equation:

BPS, which corresponds to amphoton transition, provides i promuk [Ho+V(®)] w(, 1), (1a)
good predictions of the corresponding ATl peak as long as

perturbation conditions prevail. Hereafter, it is shown that the v 7

original approach CV2 discards quantum paths connected Ho= —— — —, (1b)
to intermediate resonant states. This analysis bears out the 2

procedure leading to the approach MCVR12]. Although .

it is made with hydrogen-like targets, this analysis may be V() =T7-F(), (c)

generalized to any target. Finally, the approximations thahq e gives the position of the electron with respect to the
are studied here are compared to calculations made W'th?lﬁrcleus identified with the centre-of-mag;is the nuclear

approximation. These later calculati.ons, hereafter referredclﬁarge an@(t) is the external field at the atom. The field-free
as TDSE, are based on the resolution of the time-depend itial and final states arg (7, t) andé; (7, t), respectively:

Schrédinger equatiorifl]. The paper is organized as follows.
In sggtion_z, the standard Coulomb—VoIkpv theory CV2 _ ¢ (T, 1) =@ (F) exp(—isit), (2a)
for transitions induced by short laser pulses in the perturbation
regime is briefly reviewed. Its connection with the length-
gauge version of the SFA is addressed. o7 (F, 1) = 97 () exp(—iert), (2b)
In section3, the CV2 transition amplitude is expanded
in a series of increasing perturbation orders. Then, the Cv#vhere ¢ () and ¢ (F) are eigenstates of the field-free
perturbation series is compared to the BPS. HamiltonianHo; i (resper) is the eigenenergy of the initial
As a support of the preceding study, new TDSE resulfgesp. final) unperturbed stationary stat€r), (resp.oy (1)).
are presented in sectidrto verify previous predictions madeln ¢ (f), the subscript -’ indicates that the unperturbed
by CV2- and MCV2 for atom ionization in perturbation final state must be featured by &going regular Coulomb
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wavefunction when the final state lies in the continuum. Ismall. Therefore, it does not play any significant role and it

this later casep; () is explicitly: can be omitted. We have verified that in actual calculations,
the expression ofL~ (f,t) to be introduced in transition
o7 (F) = (21)"¥2 exp(+n—2v) (L +iv) exp(ik - F) amplitudes can be simplified ta%]:
. . . - P —_ t -
x1Fy(=iv; 1 —ikr —ik-T), 3) L‘(F,t):exp{iA (t).r—ik./ dt’ A (t/)}. (10)

wherek is the electron momentum and= 1/k. @7 (F) is , : . .
lized tos (K — K dits ei & — k2/2 If the final state is a bound state, i.e. a non-traveling state, the
normalized taj (k — k') and its eigenenergy i = k=/2. average velocity is zero and thus one muskseto.

As to the electric field of the laser, it is derived from a In the Schrodinger picture, the transition amplitude

vector potential(n; thus one has: from the state before interaction to the final stafeafter
JA() interaction, is:

F(t)= 5 (4) Tri = (W7 (O1W (1)), (11)

wheret may be any timeW; (f,t) and ¥;"(f,t) are the
exact solutions of the equatiot)(subject to the asymptotic

- - t oo conditions:
At) — Ato) = —/to dt'F(t), (5) Vi) — ¢7 (. 1), (12a)

wherety is arbitrary. In what follows, we restrict our study to . "
the interaction of a hydrogen atom with a linearly polarized Yy = i, (120)
laser pulse in the dipole approximation. Thus, in the vicinity e so-calledprior form of Ty,
of the atom, the external laser field may be written as: approach CV2 [8, 9], is:

Therefore, the general form @f(t) may be written as:

which leads to the

F(t)=Fuisint+g) f.(), ©® T = lim_(Wr®) ¥ 1) = lim (¥71) |oi®). (13)

\ivhere Fum is the maximum value of the electric field andAfter a standard easy algebra, usifg)and (L2a andb), and

A is a unitary vector that gives the direction of the ”neaﬁeeping in mind thag (7, t) andg7 (7. t) are orthogonal, the
polarization.f, (t) is the modulation in time of the maXimumexpressionIIB) may be transformed into:

value of the electric field. This time-envelope, which defines
the shape of the pulse, satisfies the following conditions: _ T _
P P J T =—|/ At e OV (O D). (14)
0
0< f (1) <1, )
The standard approach CVZ2consists in substituting the
RO #£0 only whent € [0, 7], Coulomb-\Volkov wavefunctiony; (f,t) for Wy (r,t) in

where t is the total duration of the pulse. As in previou§14)* e

studies, calculations reported in sectibare performed with cva T B
a pulse shape that is featured through a sine-square envelope. T o =—i / dt(x¢ OV DI D). (15)
Thus one has here: 0

Then, according to expressiond), (2b), (9) and (0) one

f,(t) = sir? <”—t> (8) 9ets:
T
T t
and the pulse is made symmetric with respecttot/2 by T - = —i/ dt eXp{i(Sf —eit +ik~/ dt’'A (t/)}
fixing ¢ = (7/2) — w(r/2) (in fact, the phase matters little 0 ‘
when many oscillations are performed during the pulse). X / dr <pf‘*(F)exp{—i,&_ (t) - F} F-F(t) @i (F). (16)

With both, the final states; (7, t) and the laser field,

one builds the final Coulomb-Volkov wavefunctiofy (. 1) again, let us remind thdt = 0 if the final state is a bound one.
that must be angoing Coulomb-Volkov wavefunction When e can relate here the CV2ransition amplitude to the strong
er > 0. According to g, 9], one has: field approximation’s one in the length gauge. The latter is
obtained from the former by just setting the nuclear charge in

Xy =¢; .OLT. 1), the final wavefunction to zero.

L-(F.t) = exp{i,&_(t) F_ik. /t aA (1) o) Then, one introduces the useful functions:
it T ey LR
_l/ dt/,&_z(t’)}, h=(t) =i(es —g) +ik- A (1), (17)
- ‘ N t
whereA (t) is the variation ofA (t) that must be considered f= (@)= exp{/ dt’h(t’)} , (18)

in a time-reversal picture. The last term in the argument of
L~ (,t) is related to the ponderomotive sHiff [11]. Owing o o o T L
to the values of the intensity and wavelength used héges g (= [ dre;(r) exp {_'A O r} i (), (19)
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wheres; = k?/2 if the final state lies in the continuum. UsingUnder perturbation conditions, the ¢ 1)th term should be
a standard procedurd], one gets an analytical expressiorsmaller than the correspondipth one. Thus, one expects the
for g~ (t). With the expression$j and @) of the external field spectrum to be dominated by B1, except in the neighborhood
F (t), the functionsh™(t) and f ~(t) may also be calculated of a N-photon absorption resonance, i.e. when one has:
analytically. If the form ofF (t) is too complicated, it is not &t — & =~ Nw. In this case, the multiple time-integration term
difficult to perform accurate numerical time integrations (s€gecomes large and a characteristic peak structure emerges
appendixB). Integrating by parts and bearing in mind thagver the background that is given by the lowest nonzero
A (1) =0, one obtainsg]: perturbation term. For ionization, this background is actually
. given by B1. However, when one considers an increasing
chivzf — f-(0)g~(0) _/ dth=t) f~ () g~ (t). (20) number of absorbed photons for a finite pulse duration, the
0 corresponding ATl peak will finally disappear below the

It is worth noting that the first term of the rhs iaq) is zero Packground.

for a genuine laser pulse since one has As@0) =0 (no ) ,
direct electric field). Therefore, a simple numerical integrationr 2+ Perturbation series of C¥

i i 2- . . . .
over the pulse duration is necessary to kriiyY> . Here, we 1o investigate what processes are actually contained in a
use now an effective and accurate integration procedure t8gdndard CV2 approach, the amplitud@®) is compared here

is sketched in appendB. with the corresponding order of a suitable perturbation series

Then, whatever approximation used, the transitiogf cv2-, First, let us write the perturbation in the form:
probability is given by|Ts;|2. If the final state lies in the

continuum, the angular and energy distribution of ejected F (t) = a Fo(t) = a Fox sin(wt +¢) f.(t), (25)

electrons is given by the general expression: . I .
g y g P where Fq is now the value of the electric field experienced

by the electron on the first Bohr orbit of the target. Thus,
a = Fy/Fo, i.e.« is the ratio of the laser field amplitude to
he average nuclear Coulomb field in the entrance channel.
hus, perturbation conditions imply « 1. To simplify the
otation, one defines:

2Py
9 Ed 2

whereEy andQ are the energy and the direction correspon
ing to the momentunk of the ejected electron. Integratingn
with respect to2x gives the energy distributio Py; /9 Ex
and a further integration with respect Ex gives the total
probability P;; to ionize an atom with one pulse. Fap > Ip,

=K|T+i %, (21)

t t
Ao(t)=Ao(t)=—/0 Fo(t) dt; A5<t>=—/ Fo(t) dt.

T

it was shown 9] that accurate predictions are made by CV2 . . (26)
as long asPf ¥~ does not exceed 20%. Since one ha#\o(r) =0, for a true laser pulse, it is readily
seen thaﬁ;(t) = ,&o(t) . Then, the transition amplitudé §)
3. Perturbation series reads:
T t
3.1.BPS TSV :—i[o dt exp{i(ef —si)t+ik~/ dt’aA_(t’)}

In the interaction picture, the Born perturbation expansion of o .

the T-matrix transition element is obtained by iteragrtgnes ¥ / dr o3 (7) exp[—iaAO - F} af - Fotei (7). (27)
the integral equation of the evolution operator (see, é.4).[

It can be written as: To expand 27) in a perturbation series of the parameteiit

is written more conveniently:
Ti=y TP (22)
p=1

Tﬁvz- = —if dt exp[i(sf —si)t] / dre;™(r)
As usual, post and prior forms to any order of this expansion 0
. ; . . t
are identical. Theth order of BPS is the well-known formula: o« exp{—ia |:A0(t) ok / dt’ Ao(t’)} } of - Eo(t) ¢i (F).
(28)

Then, expanding the exponential function into a Taylor series
leads to:

T tl tp—l
Tf(ip)z(_i)PZZ...Z/O dt1/0 dtz.../o dtp
- -

i1 2
x (07 ] V(W) [¢5,0) (95,0 V(1) [61,(0) .
cvV2- _ ; s e %z
g, )| V() ¢ (tp). @3 i = '/0 dt exp{i(es e.)t}/drsof M)

. . . _ . o0 i p p o . t e p
This pth order is the amplitude to absorb p-photons during the {1 +Z (=DPa [F Aotk / o' Ag (t’)} ]
p=1 t

irradiation. The first Born approximation, hereafter referred X p!
to as B1, which corresponds = 1, can also be obtained by

substitutingp; (7, t) for W (f, t) in (14), thus leading to: x af - Ifo(t)goi ). (29)
TBL _ _j /'t t (6= (DI (D)l (D). 24 The first-order term (linear iw) is nothing but B1 24). To
fi I 0 dtgr (HIV 16 O) (24) better analyze subsequent orders, let us study the second-order
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termine?(p=1). ltis: We show in appendi that the equatiorn3?) can be written:
TEVZ =(_ia)2/ dt exp{i(es —si)t}/dﬂpf‘*(F) TV @ =(—i(x)2/ dt Fo(t) Z Dy () Tji 1), (34)

0 0 :

j

t
x {F' Ay (1) — k'/; at’ A (t/)} F-Fo()ei (). (30)  where Dy;(t) is the dipole matrix element between stajes

andf (see expressiorQ(5) in appendixC) andl;; () is:
Let us first concentrate on the second term of the ( P o9 PP ) it )

right-hand side of 30). It is connected to the electron . v ) ,
displacement during the interaction. This term is a second- L) = /0 dt’s (' —t) Ao(t) Dji(t)
order contribution to the first-order term (one-photon t
transition). In fact, summing all subsequent contributions to = —Dj (t)/ dt’ Fo(t"). (35)
the first order that appear ig9), it is easy to see that the one- 0
photon transition amplitude reads: While the second order of BPS reads:
T t T
TSV <1>=_i/0 dt exp{i (e —ei)t+iak-/ dt/Ao(t’)} Tf(iz):(—ia)Z/ dtFo(t) Y Dij(t) Tji (1), (36)
T 0 "
J
X /dr e M) ar - Fo(t) ¢ (7). (32) with: t
When the final state is a bound one, i.e. a non-traveling state, L= / dt’ Fo(t') Dji (t) . (37)
0

one must sek to 0, thus avoiding any electron displacement ) o
contribution. If the final state is in the continuum, the electroh"® expression34) has a form similar to36), except that
displacement term in the argument of the exponential Inii (1), as defined ing3), does not '”CIUdEf the h|st/ory of the
(31) generally does not vanish. However, this term may BEANSition to any intermediate stgiérom t' =0 tot’ =t all
neglected since it is a first-order correction compared f0Ng the interaction with the laser field. Itis as if any passage
i(ef — £)t. Therefore, fohw > I in the perturbation regime, by an |r_1termed|ate stal]elastedlgn |nf|n|te§|mal tlm(_e, thus
one expects the single-photon ionization peak of the electrBFEVeNting any resonant transition to an intermediate state
spectrum predicted by CV2to be almost identical to the from _takmg place. Such a resonant transmon_ is pre_zusely
peak predicted by the first order of perturbation. Further, §€SCribed by the 2nd term in the rhs of expressiorig, in
has also been shown i8][that the influence of the electron@PPENdiXC. _ _ _
displacement on higher-order peaks cannot be neglected. A Noyv, it is clear that passing through resonant intermediate
detailed study of this influence is outside the scope of tif52(es is excluded from any CV2approach. Therefore,
present paper that aims at identifying in CV2he flaws such a q“a’_““m path _h_as_to be mtroduced _expl_lcnly n
that prevent this theory from providing reliable predictions o(f:V2 calculapons when it |§.I|kely 0 contnbutg S|gn|f|cantl_y
multiphoton ionization wheha < Ip. to a laser-induced transition. It was precisely the aim
Indeed, one sees that electron spectra predicted by C the M(?V.Z apprlogch ,12] where !t has been shown
are accurate only whems > Ip [8, 9, 17]. This observation that combining the ‘direct’ CV2 amplitude (6) with the
leads us to conclude that somé r’esonant processes Wr%nrplitudes of transient intermediate state excitation lead to
must show up whehw < lp, are not taken into account inaccu#a];e prriill(;t:gnfihked with the lack of intermediate
a standard approach CV2Indeed, within the spectral width prob X . . i
of the laser pulse, a band of bound states may be excited in trhe$0n51n0e is illustrated in the following sections in the case
case, thus introducing new quantum paths that interfere WRL aser-induced atomic ionization and excitation.
the ‘direct’ multiphoton ionization process. Although these 5 ] )
intermediate bound states appear explicitly in the standtdCV2™ approach to laser-induced multiphoton
perturbation expansior2®), it is not the case for the C\v2 ionization of atoms
expansion?9). To investigate the difference, let us come back ) B
to the two-photon amplitude3() deprived of the electron 4-1- Analysis of C2" electron spectra

displacement term: The ionization transition amplitude is given by the expressions
oz @ [T o (16)—(20). To avoid difficulties in the time integration over
Ts = (—la) / dt /dr¢f*(rat)r < Ag (D) the pulse duration, one uses a simple adapted numerical
L= 0 . technique, details of which are briefly sketched in appeBdix
r- FoOgi(r,1). (32) This technique was used for the first time it2] in place

d_of a previous integration procedure that showed significant
imperfections at rather high laser intensities when the pulse
length increases (see figuré¢e) and (f) of paper 9)).
@ o T v s o 2 Since the new time integration procedure is now used in
T =) / dt/ dt /dr¢f F, 0T - Fo() all CvV2- calculations, it is worth showing how reliable it
0 0 . .
. is. Therefore, a CV2 electron spectrum corresponding to
X quj(F,t)/dF’qb}‘(F/,t’) - Fot)gi(r',t). (33) figure 3(f) in [9] is obtained with the new technique. It
j is reported on figurel(b) up to an ejected electron energy

Substitutingr - Ifo(t) for V(1) in the corresponding secon
order term of BPSZ3), one gets:
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Figure 1(c) displays the spectrum predicted HBA.
As expected, the one-photon ionization peak is very well
described, whereas multi-photon peaks are not reproduced
by this theory. Further, in agreement with the analysis made
in section3.1, B1 provides fairly accurate predictions of the
spectrum background.

Now, electron distributions are obtained 9] [for
a photon energy significantly higher than the ionization
threshold. Thus, despite the laser spectral width, no resonance
with bound intermediate state is expected to occur. Therefore,
in view of the analysis made in sectid) the very good
agreement between TDSE and CV2s not a surprise.
However, it has been shown8,[ 9] that the standard
CV2~ cannot provide reliable predictions when< Ip, i.e.
when transitions through intermediate bound states may
interference significantly with direct transitions. Again, it is
no wonder in view of the analysis of sectiBrthat shows that

10
10°
107

10™

107"

101‘)

1073

15

Density of probability
=

10' direct transitions only are taken into account by the standard
10° CV2~ approach.
10"
10" 4.2. Justification of the modified CV approach
107"
The MCV2~ approach consists in introducing explicitly am-

el IE—— | LA i plitudes of transitions through intermediate bound states that
0 1 2 3 4 5 6 7 g interfere with the standard CV2amplitude [L2]. Such a pro-
cedure, which showed to be very effective, is fully justified by
the analysis made in secti@ Actually, amplitudes of tran-
Figure 1. lonization ofH (1s): electron distribution as a function of Sitions to the continuum through intermediate bound states
the energy of the ejected electron up to a maximum energy 8au. T,.G"?" are obtained as follows: always in perturbation condi-
Laser parameters are: photon eneigy: 0.855, laser field tions, one integrates, over the pulse duratigrthe product

amplitudeF = 0.05 and pulse length = 500. All quantities are . () .
given in atomic units. (a) Full line: TDSE; dotted line: SFA (length of the amplitudeT;,"(t) to reach a given bound stafe

gauge). (b) Full line: Present CVpectrum; dotted line: SFA at a timet during the interaction, by the CvV2amplitude

(length gauge) (c) First Born approximation spectrum. Inserts in Té?vzf)(t) to reach the continuum from the stabeaftert.

figures () and (b) are close-up of 3rd and 4th peaks. Then one adds all, ;" amplitudes to the standard CV2

one. Indeed, accurate phases are required for all amplitudes
under consideration. Finally the MCVaamplitude reads:

Ejected electron energy (a.u.)

8au. It is worth noting that, at variance with the figu@)
of paper P], this new CV2 spectrum is quasi-identical to
TDSE spectrum reported on figura) up to 8au, thus TMCv2) _ v,
showing the efficiency of the new time-integration procedure. if = it Z
Further, the present CV2spectrum not only provides an b
accurate background in between multiphoton peaks, but it alwbere one has:
permits to see the energy beyond which no more peak can
show up. In figured(a) and (b), we also show the spectrumTif)f
calculated within SFA. The length version of SFA has been .. 2 Lot

O () exp{i ( >t+ ik-/ dt’ A‘(t/)}

Ti o (38)

V27)

evaluated by replacing the Coulomb continuum wavefunctios= atT,
in (32 by a plane wave. Although, we have verified that “©

the ponderomotive potentidl,, has.no influence in f[he case ,&_(t) . /dF 0 () exp[—i A () - F] [i E+§] 074 (F).
analyzed here, all present calculations account for it. From the
figure, we can see that SFA overestimate the background of . ) m (39)

the spectrum by a factor of 10. Multiphoton peaks predictdl IS Worth noting that amplituded;,(0,t) may also be

by SFA are also above TDSE ones, but by a smaller factgPProximated by a CV2approach adapted to the excitation
Though it is not visible on the figure, we have verified thatfocess (see the next section). As a first test, only single-
very close to threshold, TDSE exceeds SFA. This is ascribBRoton transitions to intermediate |levehave been addressed

to the absence of the Coulomb normalization factor givin§ [12]. Therefore, a first-order perturbation calculation has
rise to the cusp behavior for zero momentut]] It is clear been enough to get an accurate valueTgf (0, ). Indeed,
that, by omitting the Coulomb interaction in the final channeby doing so, one does not expect to get reliable results for
SFA leads to a significant loss of accuracy in the low energipoton energies much lower than the energy required to reach
part of the ATI spectrum. Since this conclusion is similar tthe first excited state. However, for photon energies roughly
experimental§] and theoreticalT] findings in the IR domain, higher than half the ionization potentidp, very accurate

the conclusion holds from IR to UV wavelengths. and comprehensive electron spectra have been obtal@kd |
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L R R WL G (LI S Therefore, MCVZ2 provides by far more information than the

107 - simple B2.
1076 _- . . .
o ] 5. CV2~ approach to laser-induced excitation
o r m/\w 1 ofatoms
eI K =}
10°F WW/\WWWWWVE 5.1. Multiphoton excitation C¥~ amplitude
10" |

N T T According to expressionlg) and the remark made after
(b) ] expression 1), the transition amplitude CV2that must be
 MCVY used for excitation reads:

TEV? = —i/ dt exp{i(es —8i)t}/dr¢f_*(r)
0

x exp[—i,&‘(t).r} F.E(t)gi (). (40)

Density of probability
=

L T ] Here, we setk =0 because the final state is a bound

107 F (€) . state. To exhibit the consequences of ignoring intermediate
C B2 ] resonances in standard CV2 approaches, we compare
B1| multiphoton excitation probabilities given by CV2o the

ones predicted by TDSE1{l]l. Hereafter, one considers

i ] excitation probabilities oH(1s) atoms to P and 3 states

R . o as functions of the photon energy. As in previous papers,
i calculations are performed for laser pulses as defined in

i 14 e 3§ 5 4 s § § 5 5 4 section2 by expressionsé}—(8). As usual, one expects that

05 1,0 1,5 20  transition probabilities will exhibit sharp peaks, hereafter
Ejected electron energy (a.u.) referred to as principal peaks, when one has:
Figure 2. lonization ofH (1s): electron distribution as a function of Nw = &7 — €15, (41)

the energy of the ejected electron up to a maximum energy 2 au. .
Laser parameters are: photon enesgy 0.3, laser field amplitude  Wheren is an odd (resp. even) number of photons when the
F =0.02 and pulse length = 837.758 (40 cycles). All quantities  final state is P (resp. 2). Let us introduce:
are given in atomic units. (a) TDSE spectrum (b) Full line:
MCV2~spectra; dotted line: CV2 (c) First (dotted line) and 8§ =¢e9q —e15=0.375au (42)
second (full line) Born approximation spectra.
Thus, according to4l) and @2), a principal peak appears for
) ) the excitation of 2 or 2p states whenever the ratbgw is an
Here, some new spectra are analyzed in the light of the studya, or odd integer, respectively.
of section3. However, a spectral width of the laser pulse is the
counterpart of the finite pulse duration. Therefore, photons
4.3. Comparison between 2nd Born approximation and ~ whose energy is located on the wings of the laser spectrum
MCV2~ approach may also contribute to excitation. Thus, peaks not satisfying
) . equation 41) could also show up. In fact, these peaks would
Infigure2(a), we show TDSE calculations for a photon energy,resnond to quasi-resonant transitions to intermediate states
smaller than the ionization thresholdx(= 0.3au for afield ¢, 1oed by transitions to the final state, that are induced
amplitudeF = 0.02 au. One observes clearly thg appearangg photons whose energy may be far from. Such resonant
of a secondary peak structure. As analyzed 1@],[these p ocesses are not taken into account by standard CV2

secondary peaks stem from multiphoton ionization througlaiments. In what follows, we consider 30-cycle laser pulses.
intermediate bound states due to the pulse bandwidth. The fitficed a fixed number of oscillations permits to keep the

ATl peak corresponds to a direct two_—ph.oton absorption fropa|ative spectral width\w/w constant, whateves.
the ground state. As may be seen in fig@tb), the CVZ
theory is unable to reproduce the secondary peaks. On g1
contrary a MCVZ2 approach, that includes intermediate states
up to 4o, brings significant improvement: it fully reproducesExcitation probabilities to the 2 state are reported for
the details of the spectrum. Also shown in figi(€) is the three values of the laser-field amplitude 10~*au in
second Born approximation (B2) calculated with the inclusidigure 3(a), 103 au in figure3(b) and 102 au in figure3(c)

of bound states up to the principal quantum number20. corresponding to maximum intensitiesf 3.51 x 10°, 3.51 x

As expected, the first series of secondary peaks is wel'® and 351 x 10'2, respectively. As expected, the only
explained by B2, whereas no further peaks, neither magdeaks predicted by CV2are principal peaks corresponding to
peaks, nor secondary peaks, can be reproduced by this thettry.direct absorption of an odd number of photons (as long as

E. Multiphoton excitation of H(1s) to the 2p state
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Figure 3. Probability to excite arH (1s) atom to the statefby a

30 cycle-laser pulse as a function of the ratio whigthe I-2p Figure 4. Same as figure3(a)—(c), but for the excitation of the
energygap ana is the photon energy. The maximum amplitude of state 3. Dotted line: second Born approximation.

the electric field is: (afF =107 (b) F = 1072 (c) F = 1072. Full

line: CV2; dashed line: TDSE. complicated for the 4th peak since other couplings, which are

more difficult to identify, might be involved in this case.
these peaks emerge above the background). Since transitions
occur in a perturbation regime, the height of such peaksgs3. Multiphoton excitation of H(1s) to the 2s state
oc | " i.e.oc F2" wherenis the peak’s order as defined . o ) ) )
It is exactly what can be checked for the 1st and 2nd peaksEXcitation of the level & is quite different from the @

In all the figures, one sees that generally TDSE arfi'e: Laser intensities under consideration are the same as
CV2- calculations agree quite well. Single- and man)j—r‘ the previous_section, but prob_abil_ities predicted by CV2
photon absorption peaks look very similar. On fig8fa), the and f;r DSEl'l Wh::h are _rep?rtedh n f|g|;uré$i)k—(c), prezr b
intensity is so weak that the first principal peak only showguc smaller. As previously, the only peaks predicted by

up. On figure3(c), a clear difference between TDSE an V2~ are principal peaks (as long as these peaks emerge

CV2~ appears for the 3rd and 4th peaks that correspond to?pve the background). However, they correspond to the

and 7-photon absorption, respectively. The energy of phOtOFreCt absorption of an even number of photons in this case.
for the 3rd peak is 0.075au. Therefore, the absorption erefore, in a perturbation regime, the height ofttepeak

- L ol N i.e.oc F2. It is exactly what one sees for all CV2
an additional photon leads to the excitation of the state iz,eaks on figured(a)—(c)
Thus, the peak splitting, which appears in TDSE spectrum, | - figure 4(a), TDSE results are accurate only in the

might be an ac-Stark splitting (the so-called Autler—ToWn&geinity of the first principal peak, which results from a direct
splitting [19]) due to the strong dipolar coupling betweeny,,_shoton absorption. Due to the very weak probabilities,
2p and 3 states. The efficiency of this one-photon depletingpgg hardly reproduces the ‘background’ that is mainly
process iscc+/I. A similar spliting has been predictedmade of the wings of this first peak. Indeed, this large
recently in laser-induced positronium ionizati@@[. Further, proadening of the peak stems from the spectral laser width.
the absorption of a 7th photon leads to the continuum. Thesgg|ow 8/w=4.2au, CVZ provide good predictions for the
two later processes are fully taken into account in TDShyincipal peaks only. However, CV2 height and TDSE height
treatments whereas they are not in CVZhey are likely to of the first principal peak differ roughly by a factor of 2.
lead to a significant depletion of thg Zevel when both, the This discrepancy, which also appears in figutés) and (c),
laser intensity and thep2population are high enough. As aindicates that again some indirect processes, which contribute
result, TDSE calculations let appear a sharp valley precisetypopulate the states2are missing in CV2.

at the expected maximum of the 3rd peak, as well as a In all the figures4(a)-(c), numerical round-off errors
broadening of this peak in figur#c). The situation is more in time integration do not allow CV2 to well reproduce
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the genuine background. Now, in figurega) and (b), 1E6 T T T T
many substructures appear in TDSE results. Beyond the fir
principal peak, these substructures originate from complicate
multiphoton processes that imply transient intermediate stat:
excited by photons located in the wings of the laser spectr:
distribution.

More interestingly at§/w =~ 0.845, TDSE calculations
report a secondary peak that is present in the three figur f VA ;
Its height varies a$ 2 that is the signature of a two-photon [ M [ T’ﬂ. /A B I I Y
process. Since the peak is clearly visible, one expects tt 2t [, | (M' P Mﬂ,ﬂ v ' P
energy of one of the two photons to be close to the centt WW] R T A 1-;_""“'.‘"‘@‘."1“;.%“*
of the laser-pulse spectrum. In this case, this energy+s 1624 ——1 - P
0.4438 au. This value is very close to 0.4444 au that is th Sl
energy required to excite the levep.3Therefore, one may
identify the peak at/w ~0.845 as a resonant one-photorfigure 5. Probability to excite arH (1s) atom to the statesby a
excitation to the intermediate levelp3and a subsequent Fuggg;aag‘éig;yaﬁ cstligﬁ-z(f]?ﬁéigt%nde?fzgrizgnblaigsE
emission of a 0.0694 au photon, stimulated by the Iow-enerﬁ}j” line: s?ne_squared; dashed line: GaFl)Jssian. y
wing of the laser spectrum, that leads to the final lev&l 2
This scenario is supported by second-order Born calculations ) ) ) ) )
that well reproduce TDSE predictions for this peak in af$ no intermediate resonant state interferes with a direct
figures4(a)—(c). Although such a two-photon process is népultiphoton transition. When intermediate resonant state are
included in a standard CV2treatment, it may be describedinvolved, the modified CV2theory may be usedp]. Indeed,
using an approach similar to MCV2[12] In addition, we it has been stated thatMCVZompares well with B2 for two-
have performed similar calculations of 2s excitation usingRQ0ton transitions through intermediate bound-states where
Gaussian shape whose full width of half maximum (FWHMgimilar secondary peak structures appear. However, compared
is equal to the sine-square pulse one @f &nd @)), with 1o the B2, MCVZ2 is a significant improvement. Indeed,
identical maximum intensities. In that case, the Gaussid®SE numerical calculations show that MCV@ell predicts
pulse used in calculations has a longer duration and it resufte whole structure of principal multi-photon peaks, as well
in a much smaller spectral laser width than the sine-squa@all series of secondary peaks. We have also shown that, like
one. The figuré shows that, 2 excitation with the Gaussian in recent theoretical7] and experimentalq] findings in the
pulse, the above-mentioned transitions through thestate IR domain, SFA leads to a considerable loss of accuracy in
do not appear anymore. This reveals the crucial role of ttfee low energy part of the ATl spectrum, thus enforcing the
spectral laser width. need to take into account the Coulomb interaction in the final

Trying to identify all processes that contribute to othestates.
secondary peaks appears almost hopeless. For example, thewith respect to atomic multiphoton excitation, the
peak that shows up at/w~3.492au, i.e.w=0.1074au theory CV2 also exhibits a multiphoton structure similar
seems to stem also from a two-photon process if Ofg the structure predicted by TDSE calculations. However,
compares its heights reported in figurg) and (b). Such as expected from the analysis of sectidi, CV2~ cannot
an interpretation is supported by the second-order Bopfedict secondary structures stemming from excitation of
calculations that well reproduce TDSE predictions for thigansient intermediate states that may occur due to the laser
peak, but only in these two figures. In fact, a two-photogpectral width. In this later case, an extension of the CV2
transition to 2 is likely to be a ‘direct’ (non-resonant) gpproach similar to MCV2 may be envisaged. Various
transition. Indeed, a scenario similar to the previous cag§/ approaches are particularly attractive because they are
(peak ats/w >~ 0.845) |mpl|es a 0.4444 au phOtOﬂ, I.8. &asy to implement with any atomic (many electrons) or
photon located very far in the high-energy wing of the lasgfojecular systems. Indeed, CV calculations require only a
spectrum, followed by a stimulated emission of a 0.0694 %ﬂ)od description of a few wavefunctions (the initial and final
photon. The energy of the first photon explains the smallaes and, eventually, a few intermediate states). Moreover,

height of this peak. However, comparing the heights predictgth e anproaches give a better understanding of the underlying
_by' T[.)SE for this peak in flgurgs(b) and (c) indicates that hysics since most significant processes may be identified
it is influenced by other multiphoton processes when t &

. o . 7 licitly.
laser intensity increases. Indeed, the height ratio is no Iongerp 4
proportional tol 2. Moreover, second-order Born calculations
no longer agree with TDSE predictions in figu{g). Acknowledgments
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Appendix A. Background of the ionization spectrum It may be transformed into:
given by the first Born approximation

Fij ~ —Foe_i(p Xpii (A :
Within the time interval [07], the external field is: 1720 (Ae —w) © pl (A& —w) 5}
. T . T
ﬁ(t):FoXSIn(a)t+(p) f(t) X[exp{l (AE—U)) E}—exp{—l (AS—U)) E}:I
_ FOX ) . N Foe_i*‘J ) T ) T
= == (expli@t+g)] —expl—i @t+e)]} fO. (AD) ~ exp{| (A — ) E} Sln{(Ae—a)) E]'

o A.11
It is zero elsewherer is the polarization and (t) describes ( )

the envelope of the pulse. Thus, the first Born transitiorhis leads to the well-known result:
amplitude reads: P
sinf 1 (Ae —w) S
e |72~ R { . 2l (A.12)
T8 = —|/ dt/dre‘ff -F)e ity () (Ae —w)

Therefore, at a given position of the electron spectrum outside
=i FO/ dt expli (1 — &)t} sint+e) f() o peak, i.e. for a given value ofs — w # 0, | ;| oscillates
with  between 0 and a maximum val&g(Ae — w)?, which

/dr PO X (). (A.2) does not depend on. However, the height of the peak (at
the resonance, i.e. foke — w = 0) behaves as=2 t2/4. As
Let us introduce: a result, the ratio of the height of a principal peak to the
z maximum height of the background at any energy, outside the
Fij = —i Fof dt exp{i (er — &)t} sin(wt+g) (1), peak itself, increases as.
urther, the zeros just before and just beyond the peak are
0 (A.3) Further, th just bef djustb dth k
given by:
AT =/ngo**(F)?- x i (7). (A.4) 2
! f I (Ae_1— ) T -7 = Aeg_1 = _cr +w, (A.13a)
o 2 T
Thus, one may write:
ﬂfBZ}-if(T)XX-Fif. (A.5)

2
(As1— o) %: t1 = Asi= ot (A13D)
T

The time dependence is entirely containedZn(r). One

assumes; > & . Then, one defines: The distance between the two zerossg 4, thus showing that

the peak width behaves as®. Let us define:
Ae=¢; —g > 0. (A.6) .
X=(As—w) =. (A.14)
According to @A.1) one has now: 2
Then, at half maximum, one has fro.(2) and @A.14):

Fo [T . .
Fij :70/0 dt expli Act} {exp[-i(wt+¢)] F22 p2izgr
5 t°  Fprlsinx

—expliwt +o)]} f ), 8§ = 4 x (A.19)
= %/ dt {expli(Ae — w)t —ig] The solution of A.15) is:
0
—expli(Ae +w)t +ig]} f (1). (A7) IX| ~ 1.3915574= |Ae — w| = E x 1.3915574 (A.16)

Since bothw andAe are>0, the less oscillating term if\(7)

; . ) s Therefore, the FWHM is twice the above value|afs — w],
is the first one. Hence, one will deal now with: i
o 5.5662296

FWHM~ ——— (A.17)

Foe™ / "ot expli (Ae—o) t) F(1).  (AB) .
0

Fij ~

Then, we may address a few cases representative of a pulppendix A.2. Sine-square envelope
that contains many oscillations 1 5
f(t) = sir? (5 t) == [1— cos(—”t)] . (A19)
T 2 T

Again, neglecting the rapidly oscillating term iA.{7), one

Appendix A.1. Rectangular envelope
f()y=1 (A.9)

has:
In this case, one gets straightforward: ,
Foe'? [T . 2wt
Foe ¢ [exp[i(Ae—a))r}—l] Fij ~ 7 /0 dt exp{i (Ae —w) t} | 1—cos — I
ij ~ . A.10
. 2 i (Ag —w) (A.10) (A.19)
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For the sake of simplicity, let us introduce: wherea=0,b=r1,a =i(ef —¢) and f (t) is the rest of the
integrant. One divides the interval b by means ofn — 1)

B = 2_” S=Ac —w. (A.20) intermediate pivots wherej =2, ..., n.The extreme pivots

T aret; = a andt,.; = b. Then, one approachef(t) in each

Thus, one has: interval [tj_1, tj+1] by means of a parabola, i.e., one defines
_ ) _ (n—1) polynomials as follows:
Foel¢ [T st dht 4 g ipt . .

Fij ¥ —4 /(; dt e [1—7}- (A.21) gj(t) =ajt?+bjt+c; with j=2,...,n, (B.3)

whose coefficients are determined by imposing:

) ) . ) it ) ="ftj_1); it ="~f); i(ti+) = f(tj+2).

P {e"“—l 1[e(a+ﬂ>r_1+el<6ﬁ>r_1“ U-o="T0s gt =10) 6 w) (({3_131)
! 4 P8 20 i+ i6—p) " Thus, it is obvious that, except fof =2, gj(t) shares
(A.22) the interval fj_1, t;j] with the previous polynomial

gj—1(t). Similarly, except for j =2, gj(t) shares the
interval [tj_1, tj+1] with g;j+1(t). Hence, to a very good

After an easy integration, one gets:

Then, from (A.20), one ha8 t = 2, which leads to:

- Foe i o 1 1 1 . 1 approximation, one may write in the interval [y, t;]:
[T (€27~ 1) 5 2lG+p) (5-B) f)~i[gi-1®+gj®] with 2<j<n.  (B.5)
N Foe™'¢ (ei‘” _ ) —p? (A.23) Therefore, the integral irB(2) takes the form:
T A4 (82— pB?) '

cv2 t t A
Whent becomes very large for a fixed valuef becomes Ti® = Qi ; dt & ga(t) +Z - Cde 9; (O
negligible compared té and one may write: a

the1
2 —Fd (v g2 . <8_r) + dte“”gn(t)}. (B.6)
5 )

- i Fo g lv

i~ (€7 -1) %5 = "

83 2 83
(A.24) The two integrals in the intervalsty[ t] and [tn, tos1]
must be introduced because the sum gveontains only
one integration in these intervals whereas two integrations
4 ST AT4F2 1 ST are performed withg; (t) and gj+1(t) in all other intervals
| Fij |23 2 ﬁ & ﬂ sir (7) = m;s e (7) : [tj, tj+12]. The integrjals in B.G)Jare carried out analytically.
(A.25) A fast computing code has been written for equidistant pivots.
' The accuracy of the outcome may be checked easily by
Indeed, as it may be readily verified from.@4), in the increasing the number of pivots. For example, the spectrum
vicinity of the peak wheres <« 8, one recovers the well- in figure 1(b), which is made up of 2000 points, is obtained
known expression obtained with a rectangular pulse, excéptless than 1 min on a 1 GHz PC with= 100 for the time
a factor 3 due to the shape of the sine square envelopgtegration.

Thus, the amplitude of; |2 is o« § 2 close to the peak and _ '
o 8 ~87 =4 far from it. Therefore, it does not depend orin Appendlx_ C. Comparison between BPS and CV2
the neighborhood of the peak. perturbation expansion

Finally, whens > 8, one has:

Let us come back to the two-photon amplitu®®)(without

Appendix B. Time-integration of the transition the electron displacement term and using (2(a) and (b)):

amplitude over the pulse duration

According to expressions 16)—(20) of the transition T2 @ =(- IOl)Z/ dt/dr¢f (7, OF - A (OF-Fo®)i (7, ).
amplitude CV2, one has for a genuine laser pulse:

(C.1)
TSV = / dt exp{i(er — & )t}exp{lk / dt’A (t )} Substitutingf - Fo(t) for V(t) in the corresponding second-
order term of the BPS2@), one gets:
x {(ef —ei)t+iR./ dt/,&‘(t/)} ¢ gt .
Tf<i2>=(—ia)2/ dt/ dt’ /qus;*(F,t)F-Fo(t)
0

/dl’(p (r)exp{—|A t) -l (). (B.1)
x Y ¢;(F, t)/dr PrF )T Fot) i (7', 1). (C.2)
j

In (B1), the most rapidly oscillating factor is efipes — &i)t}.
Cv2- .
Hence, let us writd* as: In the integrant, let us look at the factor:

t
TEV? = / dt expa (1) (1), (B.2) r,-i(t)=/ dt’/dr ‘$1(F V)T Fot) ¢ (7, 1), (C.3)
a 0
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One defines:

Fo(t) = A Fo(t), (C.4)

D,-i(t’>:fdr*¢7<ﬂt/>?-i¢i ) =(p;)| T A |¢i(t)).

(C.5)
Thus, one has:

t
Cji(H) = /0 dt’ Fo(t) Dji . (C.6)

Let us introduce:

t
Ao(t) = _/o dt’ Fo(t). (C.7)

An integration by parts of®.3) leads to :

t d
Fji () = [~ Ao(t) Dy )]+ fo ' Ao(t) Dy 1),
. . (C.8)
SinceAq(0) =0, one has:

(C.9)

t
d
I () = — Ao(®) Dji () +/O ' Aot) D (1),

Let us examine the 2nd term in the rhs 6£9):

d d A A
DI O=(58;O[T- 2 16O +(e;O] T 4|61V

(C.10)

Sla

where:

d 1/.d 1 &,
a‘bi )= T (la> i (1) = T Ho |1 (1)) = T l$i (1) .
(C.11a)
From (C.11a) the time derivative of the bra is:

d .
IR Gl (C.11)

Thus, one has:

d i — & S i =&
2D =" (O] P+ & 191(©) = = Dji ).
(C.12)
Let us integrate equatioi©(12. One gets:
Dji (t) = D;i (0) exp[i (8]' — Ei) t] , (C.13)

whereDj; (0) is the standard dipolar matrix element:

D,—i(O):/dF(p}"(F)F- A i (). (C.14)
Thereforel i (t) now reads:
[ji (1) = — Ao(t) Dji (t) +i(ej — &) Dji (0)
t
x / dt’ Ao(t') expli (s — &) t']. (C.15)
0

whole integrant does not oscillate (or is a slowly varying
function oft’, i.e. when one has:

(C.16)

The equation €.16 corresponds to a resonance. The
contribution of such a resonance is never taken into account
in CV2~ transition amplitudes as it will be shown hereatter.
The definition C.6) permits to write the expressio€(2) as:

w:}ei —8i|.

Tf(iz)=(—ia)2/rdt Fo(t)E Dfj(t) i (t).  (C.17)
0 -
J

Therefore, introducing@.15 in (C.17), the 2nd order of the
BPSis:

T? = — (-iw? /0 dt Fo®) 3" Dij 1) Ao(t) D (1)
i

+(—i o) ?i(ej —ei)/o dt Fo(t) Y Dyj(t) Dji (0)
j

t
x / o’ Ao(t)) expli (& — &) t') (C.18)
0

while the second order of the CV2erturbation series is:

TV @ = (_ia)z/:dt /dF¢f‘*(F,t)F - Ay (1)

x / &> i) o )T - Fot) i (7. 1)
j
=(—ia)2/0 dt Ay () Y Dy (1) Fo®) Dji 1), (C.1%R)
i

:(—ioz)z/o dt Fo(t) Y Dj () Ag(t) Dji(t).  (C.1%)
j

The definition C.5) has been used to get expressiGnl@a).
Since A, (t) = A,(t), the expressiond.1%) is identical to

the first term in the rhs ofG.18), apart from a facto(—1).
Indeed, this factor does not change predictions related to two-
photon transitions. To shed more light on what is missing in
standard CV2 approaches, let us wrie%) as:

TOZ @ _ (g2 /0 dt Fot) Y Dy (1)
i

t
x/ dt’s (' —t) Ay (t) Dji (t). (C.20)
0
Then, let us introduce:
t t
fji(t)Z/() dt/S(t/—t)Ao(t,)Dji(t,):—Dji(t)/(; dt’ Fo(t).

3 (C.21)
I"ji (t) resembled’;; (1), except thaDj; (t) is outside the time

The first term in the rhs of@.15 corresponds to the secondntegral (see expressiof(6)). Thus, one has:

order of the CV2 perturbation series. In the 2nd terdy(t')

is oscillating mainly with the pulsatiow. As a result, the
contribution of this 2nd term is significant only when the
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