
Relaxation mechanism for electron spin in the impurity band of n-doped semiconductors

Pablo I. Tamborenea,1,2 Dietmar Weinmann,2 and Rodolfo A. Jalabert2
1Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I,

C1428EHA Ciudad de Buenos Aires, Argentina
2Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 (CNRS-ULP), 23 Rue du Loess, BP 43,

67034 Strasbourg Cedex 2, France
�Received 15 January 2007; revised manuscript received 30 March 2007; published 27 August 2007�

We propose a mechanism to describe spin relaxation in n-doped III-V semiconductors close to the Mott
metal-insulator transition. Taking into account the spin-orbit interaction induced spin admixture in the hydro-
genic donor states, we build a tight-binding model for the spin-dependent impurity band. Since the hopping
amplitudes with spin flip are considerably smaller than the spin-conserving counterparts, the resulting spin
lifetime is very large. We estimate the spin lifetime from the diffusive accumulation of spin rotations associated
with the electron hopping. Our result is larger but of the same order of magnitude than the experimental value.
Therefore, the proposed mechanism has to be included when describing spin relaxation in the impurity band.
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I. INTRODUCTION

The renewed interest in spin relaxation in semi-
conductors1 stems from the possible applications and funda-
mental science associated with the emerging field of
spintronics.2,3 The large measured values of the electron spin
lifetime constitute a promise for the use of spin as a unit of
quantum information and pose a considerable challenge for
the identification of the appropriate mechanisms of spin re-
laxation. Interestingly, low-temperature experiments in vari-
ous n-doped semiconductor bulk systems have found that the
longest spin lifetimes occur close to the Mott metal-insulator
transition �MIT� density.4–8 Many aspects of the Mott transi-
tion have been thoroughly studied, making it a paradigm of
condensed matter physics.9 However, the connection be-
tween the spin and transport problems is only beginning to
be explored.10

The comprehensive experimental and theoretical work of
Dzhioev et al.7 considered both sides of the MIT, which for
GaAs occurs at nc�2�1016 cm−3. In the deeply localized
regime, with donor densities n�5�1015 cm−3, the hyperfine
interaction was shown to account for the measured spin
lifetimes.11 For higher densities, but still lower than nc, the
anisotropic exchange of localized spins was proposed as the
dominant mechanism for spin relaxation.12 Later calculations
based on the same mechanism13 initiated an ongoing contro-
versy concerning the quantitative agreement between experi-
ment and theory. The coupling between localized states in
the impurity band and delocalized states in the conduction
band, initially considered by Paget14 for highly pure GaAs,
has been recently applied15 to densities slightly smaller than
nc, and the fitting parameter describing the strength of the
exchange interaction is a factor of 3 larger than the theoret-
ical estimation.

For densities above the transition, the well-known
D’yakonov-Perel �DP� mechanism for conduction electrons
was invoked.7,16 This mechanism arises from the splitting of
the conduction band due to spin-orbit interaction and yields a
spin lifetime inversely proportional to the momentum relax-
ation time. This description applies to doping densities high

enough so that mainly the conduction band is populated. �For
GaAs, the hybridization of impurity and conduction bands
occurs at a doping density nh�8�1016 cm−3 �Refs. 4, 17,
and 18�.� If one is interested in understanding the large life-
times measured near the MIT, the DP mechanism is not ap-
plicable since, clearly, any mechanism invoking momentum
relaxation via impurity scattering becomes meaningless in
the impurity band. This difficulty lies at the origin of the lack
of suitable theories of spin relaxation at low temperature near
the MIT.19

In this work, we provide a theoretical frame and propose
a spin-relaxation mechanism for the metallic-conduction re-
gime of the impurity band. Our approach is to extend, by
incorporating the spin-orbit interaction, the well-known
model of Matsubara and Toyozawa �MT� of electron conduc-
tion at zero temperature.17 The effect of the spin-orbit inter-
action is to introduce a spin admixture in the impurity states.
We will refer to this as the impurity spin admixture �ISA�.
The ISA allows for spin-flip processes in electron-hopping
events even in the absence of spin-dependent potentials. A
tight-binding model built on the ISA states provides a theo-
retical framework to study spin dynamics and spin-
dependent transport in the impurity band. Since we are inter-
ested in spin lifetimes, a first test of our model is to estimate
the order of magnitude that the ISA mechanism predicts. We
proceed by calculating the accumulated spin rotation angle
along the diffusive evolution of the electron in the potential
of the impurities. The time that it takes the spin to depart an
angle of unity from its initial orientation is then taken as a
qualitative measure of the spin lifetime.

The spin-relaxation mechanism based on the ISA that we
study here is related to the Elliot-Yafet �EY� mechanism of
spin relaxation of electrons in the conduction band.20–22 The
common characteristic between them is that both are allowed
by the spin admixture of the relevant electronic states, which
enables spin-flip transitions mediated by spin-independent
interactions. On the other hand, they differ in the sense that
while the EY spin-flip mechanism involves scattering of de-
localized Bloch states, with well-defined lattice momentum
k, the ISA mechanism studied here is based on the fact that
spin-flip transitions occur in hopping processes between lo-
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calized impurity states. The EY relaxation rate is given by
the momentum relaxation rate, but as we explained above,
the latter does not have a meaning in our case.

The paper is organized as follows. In Sec. II, we briefly
review the MT model of shallow impurities, while in Sec.
III, we generalize it by introducing our tight-binding model
with the impurity spin admixture and by calculating the ma-
trix elements with spin flip. We calculate the spin-relaxation
rate from the accumulated spin rotations in Sec. IV and pro-
vide concluding remarks in Sec. V. We present as appendixes
the calculation of the spin rotation angle for arbitrary initial
states and the alternative derivation of the spin-relaxation
rate for initially delocalized states.

II. TIGHT-BINDING MODEL FOR SHALLOW
IMPURITIES

The MT model consists of a tight-binding approximation
built from the ground state of the doping impurities. For
shallow donors, it is a standard approximation to restrict the
expansion of the impurity ground state to conduction-band
states,23 and for an impurity located at the origin, we write it
as

��0,���r� = �
k

��k�eik·r�uk,���r� � ��r��u�
�0���r� . �1�

The envelope function ��r�= �1/�a3�1/2 exp�−r /a�, where a
is the effective Bohr radius �a�100 Å for GaAs�, is hydro-
genlike. We denote its Fourier transform as ��k�, while
�uk,���r� represents the periodic part of the Bloch functions
of the conduction-band states. Its dependence on k, being
much smoother than that of ��k�, leads to the last relation in
Eq. �1�, where �u�

�0��= �uk=0,��. The spinors ��0,�� and �uk,��
are trivial since they are eigenstates of the operator Sz with
eigenvalues �= ±1. However, this will no longer be the case
once we include the spin-orbit interaction. The Hamiltonian
of the MT model can be simply written as

H0 = �
m�m�,�

tmm�
�� cm��

† cm�, �2�

where cm��
† �cm�� represents the creation �annihilation� of an

impurity eigenstate at the impurity site m� �m�. The ground-
state energy of an isolated impurity is taken as the origin of
energies. The energy integral for the electronic transfer from
site m to m� is given by

tmm�
�� = �

p�m

��m��	Vp	�m�
 . �3�

The Coulomb-like potential produced by the impurity placed
at rp is Vp�r�=−e2 /�	r−rp	. We denote the static dielectric
constant �12.9 for GaAs� by � and the electron charge by e.
Due to the exponential decay of the wave functions, the
dominant term in Eq. �3� is the two-center integral corre-
sponding to p=m�,

��m��	Vm�	�m�
 = − V0�1 +
rmm�

a
�exp�−

rmm�

a
� , �4�

with V0=e2 /�a and rmm� the distance between the two
impurities.24 For convenience, in Eq. �3�, we switched from a
spinor to a ket notation. The Hamiltonian �Eq. �2�� has been
thoroughly studied using a variety of analytical and numeri-
cal techniques,17,25–27 allowing a useful description of the
impurity band and its electronic transport.

III. TIGHT-BINDING MODEL WITH IMPURITY SPIN
ADMIXTURE

In order to extend the MT model to the spin case, we first
generalize the shallow-donor wave functions to include the
spin-orbit interaction. The spin-orbit effects coming from the
orbital motion do not modify in an appreciable way the en-
velope functions ��r�. Therefore, the spin-orbit interaction
affects mainly the spinor �uk�. As is well known, in zinc-
blende semiconductors such as GaAs, the spin-orbit coupling
leads to spin-mixed conduction-band states at finite wave
vectors. Group theoretical arguments dictate the way in
which the conduction and valence states are mixed by the
spin-orbit interaction. Within the k ·p approximation of
Kane28 �and using the notation of Ref. 29�, the periodic part
of the spin-mixed conduction-band states is given by

	ũk�
 = 	u�
�0�
 + k · 	u�

�1�
 , �5�

where

	u�
�1�
 = 	1�	R�
 + 	2S � 	R�
� . �6�

The state 	u�
�0�
 is s-like since it describes the unperturbed

wave function at the 
 point. The vector 	R
= �	X
 , 	Y
 , 	Z
�
represents the three p-like valence states. S is the angular
momentum operator. The state 	ũk�
 is clearly not an eigen-
state of Sz. However, we still characterize it with the label �
since the mixing is small, and �ũk�	Sz	ũk�
 is much closer to
�� /2 than to −�� /2. The weak spin mixing is governed by
the small constants 	1= i��3EG+2�� / �6m*EG�EG+����1/2

and 	2=2� / i��2�+3EG�. We denote the spin-orbit splitting
of the valence bands by �, the conduction-band effective
mass by m*, and the band gap by EG.

The mixing of Eq. �5� tells us that in the presence of a
spin-orbit interaction, Eq. �1� takes the form

��̃0���r� = �
k

��k�eik·r�u�
�0���r� + k · �u�

�1���r�� . �7�

Using the hydrogenic character of ��r�, the ISA state cen-
tered at rm reads

��̃m���r� = ��r − rm���u�
�0���r� +

i

a

�r − rm�
	r − rm	

· �u�
�1���r�� .

�8�

Electron hopping between ISA states in different impurity
sites provides a mechanism for spin flip by connecting the �
and �̄=−� states. The Hamiltonian of the system now
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contains a term without spin flip �described by the Hamil-
tonian H0 of Eq. �2�� and a spin-flip term

H1 = �
m�m�,�

tmm�
��̄ cm��̄

† cm�. �9�

Similar to the spin-conserving case �Eq. �3��, we have

tmm�
��̄ = �

p�m

��̃m��̄	Vp	�̃m�
 , �10�

with the matrix elements

��̃m��̄	Vp	�̃m�
 = C� d3r

�
�r − rm�−�z − zm�� − �z − zm��r − rm��−

	r − rm		r − rp		r − rm�	

�exp�− �	r − rm	 + 	r − rm�	�/a� . �11�

We have defined C=V0		1	2	3 /�a4, r±=x± iy, and 	3
=3���+2EG� / �2�+3EG�2. In order to calculate the integral
�Eq. �11��, we perform a rotation of coordinates from the
crystallographic system �x ,y ,z� to a new one having the z
axis along the line joining m and m�. Taking the origin at the
middle point between these impurities, scaling all lengths
with the distance rmm� /2, and using dimensionless cylindrical
coordinates �Z , ,��, we have

��̃m��̄	Vp	�̃m�
 =
Cei�mm�rmm�

2

2
�

−�

+�

dZ�
0

�

d�
0

2�

d�
2�cos � + i cos �mm� sin ��

�2 + p
2 + �Z − Zp�2 − 2p cos�� − �p��1/2

�
exp− rmm���2 + �Z − 1�2 + �2 + �Z + 1�2�/2a�

�2 + �Z − 1�2�2 + �Z + 1�2
. �12�

�mm� and �mm� are the polar angles of the vector rmm� in the original coordinate system. �Zp ,p ,�p� are the cylindrical
coordinates of rp in the new coordinate system.

As in the spin-conserving model, we start with the case where p=m�. The corresponding two-center integral �analogous to

�Eq. �4�� is obtained by putting Zp=1, p=0 in Eq. �12�. However, ��̃m��̄	Vm�	�̃m�
=0 due to the symmetry of the angular
integral. This important fact is ultimately responsible for the large values of the spin lifetime in the regime of impurity-band
conduction. The leading order effect will then be given by the three-center integrals corresponding to p�m ,m�, which are, in
general, very difficult to calculate in a closed form.30 The angular integral can be performed in terms of elliptic functions, but
since only the small arguments of the latter are relevant for the remaining integrals,31 we can write

��̃m��̄	Vp	�̃m�
 =
Cei�mm��rmm�

2

4
p�cos �p + i cos �mm� sin �p�

��
−�

+�

dZ�
0

�

d� 2

2 + p
2 + �Z − Zp�2�3/2exp− rmm���2 + �Z − 1�2 + �2 + �Z + 1�2�/2a�

�2 + �Z − 1�2�2 + �Z + 1�2
. �13�

In the limit rmm� /a�1,32 we can perform the integrals using
the saddle-point approximation and obtain

��̃m��̄	Vp	�̃m�
 = 4.2Cei�mm��cos �p + i cos �mm� sin �p�

�
rmm�

3/2 a1/2p exp�− rmm�/a�

�1 + �p
2 + Zp

2�rmm�/a�3/2 . �14�

For a given impurity configuration, the matrix elements
�Eq. �14�� determine the hopping integral �Eq. �10�� �with the
terms p=m ,m� excluded� of the Hamiltonian H1.33 The sys-
tem Hamiltonian H0+H1 can be addressed numerically or by
perturbation theory. In order to test the physical relevance of

the proposed spin-flip mechanism, we will estimate the spin-
relaxation time within some simplifying hypotheses that we
discuss in what follows.

IV. SPIN-RELAXATION TIME: DIFFUSIVE APPROACH

Viewing the electron transport as a hop between impurity
sites, we see that, since 	tmm�

�� 	 � 	tmm�
��̄ 	, there is a very small

probability of spin-flip per hop, which may be translated into
a mean spin-rotation angle �mm�. Assuming that these rela-
tive rotations are accumulated in a diffusive way, we can
estimate the spin-relaxation time by
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1

�s
=

2

3

��2

�c

, �15�

where ��2
 is the ensemble average of �mm�
2 and �c is the

mean hopping time. In Appendix A, we show that in the
electron hop between impurities m and m�, the spin typically
rotates by an angle

�mm� =�15

2

	tmm�
��̄ 	

	tmm�
�� 	

. �16�

Given the form of Eq. �10� of the energy integrals, the
typical rotation angle �mm�

2 involves a double sum over im-
purities p and p� ��m ,m��, which can be approximated by
its impurity average. Only the diagonal term �p= p�� survives
the averaging, and we can write

�mm�
2 � 27.7� C

V0
�2

rmm�
3/2 a11/2ni�1 + cos2 �mm�� , �17�

where ni is the impurity density. The typical rotation angle
between impurities m and m� increases with their distance
rmm� as a power law. This dependence renders the impurity
distribution crucial for the determination of the mean square
rotation angle per hop. The distribution of doping impurities
is known to be completely random and to lack hard-core
repulsive effects on the scale of a 34. Since the probability of
jumping from a given impurity m to a second one m� is
	tmm�

�� 	2 /�m�	tmm�
�� 	2, we obtain the impurity average of the

typical rotation angle per hop as

��2
 � 1.5 � 102� C

V0
�2

a4�nia
3� . �18�

The hopping time can be estimated from the perturbation
theory by determining the characteristic time for the decay of
the initial population by one-half, yielding

1

�c
=

1

��2�
m�

	tmm�
�� 	2, �19�

where an average over the initial position m is implicit. This
estimation assumes orthogonality of the electronic orbitals at
different impurity sites, which is actually not satisfied by the
hydrogenic states. However, since the overlaps are very
small, the nonorthogonality effects arising in the MT model
are known to be small.25,35

From Eqs. �15�, �18�, and �19�, we obtain

1

�s
� 6.8 � 102C2a4

V0�
�nia

3�3/2. �20�

For GaAs, at the density of the MIT, Eq. �20� yields a spin-
relaxation time of �s�1400 ns.

This value is larger but within an order of magnitude of
the experimentally reported result of 200 ns �Refs. 6 and 7�
at the MIT. We stress that our result does not depend on any
adjustable parameter, but it relies on a few approximations.
For example, a step of the calculation that could admit an
alternative treatment is the impurity average of �mm�

2 . If we
assume that the hopping takes place only between nearest

neighbors �separated by a typical distance ni
−1/3�, we obtain a

value of 840 ns for �s at the MIT. In general, the order of
magnitude agreement with the experimental value is not af-
fected by the approximations. Therefore, the ISA mechanism
needs to be included in the description of spin relaxation in
the impurity band.

In materials with stronger spin-orbit interactions such as
InSb and InAs, one obtains considerably smaller values of
the spin lifetime. For the impurity density of 5�1014 cm−3

in InSb, our estimate yields a spin lifetime of 100 ns. This
value is within an order of magnitude of the experimental
result and close to the theoretical estimation of Ref. 29. The
theoretical approach of this reference is justified only in the
high-concentration limit since it describes single scattering
of plane waves and treats electron-electron interactions
through a corrective factor.

The approach presented in this section assumes a rela-
tively narrow wave packet as the orbital part of the initial
state. However, this is not an important restriction. In Appen-
dix B, we show that under some simplifying hypotheses,
assuming an initially delocalized state in the impurity band
results in an equivalent expression for �s, up to a prefactor
which is of order 1.

V. CONCLUSION

In this work, we have proposed a mechanism for spin
relaxation in the regime where electron conduction occurs in
the impurity band of doped semiconductors. The mechanism
is based on the impurity spin admixture of the electronic
ground state of the donors caused by the spin-orbit interac-
tion. The impurity spin admixture states do not have a well-
defined spin projection about a fixed spatial direction. There-
fore, hopping between two of these states may connect
different projections of the angular momentum.

Unlike the spin-conserving case, the matrix elements of
the spin-flip hops are not dominated by a two-center integral,
where the impurity potential corresponds to one of the ex-
treme sites. We therefore have to consider three-center inte-
grals, where the impurity potential is not centered around
any of the two sites of the hop. Since the latter matrix ele-
ments are considerably reduced with respect to the former,
the resulting spin lifetimes are very large.

Our calculation of spin-flip matrix elements yields a suit-
able model for studying electron and spin transfer in the
regime of impurity concentrations just above that of the
metal-insulator transition. Various treatments can be applied
to our model Hamiltonian, including a calculation of the dif-
fusive accumulation of spin rotation during the hopping pro-
cess.

Our estimation of the spin lifetime results in values that
are larger than the ones experimentally measured, but within
the right order of magnitude. Therefore, the impurity spin
admixture mechanism has to be taken into account in de-
scriptions of the spin relaxation in the impurity band. Our
model admits generalizations including other physical ef-
fects, such as doping compensation, electron-electron inter-
action, and a second electronic band, which may improve the
agreement between theory and experiment.
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APPENDIX A: SPIN ROTATION ANGLE FROM SPIN-
DEPENDENT HOPPING INTEGRALS

In this appendix we derive expression �16� for the typical
spin rotation angle �mm� used in Sec. IV and characterize the
hopping process of an electron from site m to site m� of the
effective tight-binding model. The spin rotation arises due to
the presence of the spin-flip term H1 of Eq. �9� in the Hamil-
tonian. Let us consider as initial state 	m�
, describing an
electron with spin up ��= +1� on site m. If we apply the
hopping matrix elements and perform a partial projection of
final state on site m� without specifying the spin part of the
final state, we get the spin part of the final state on site m� as

	sm�
 = �m�	�H0 + H1�	m�
 = tmm�
�� 	�
 + tmm�

��̄ 	�̄
 , �A1�

where �̄=−1. The corresponding spin orientation is given by
the expectation value of the angular momentum

�Sm�
 =
�sm�	S	sm�


�sm�	sm�

. �A2�

This leads to

�Sm�
 =
�/2

	tmm�
�� 	2 + 	tmm�

��̄ 	2�2 Re�tmm�
�� tmm�

��̄ �

2 Im�tmm�
�� tmm�

��̄ �

	tmm�
�� 	2 − 	tmm�

��̄ 	2
� , �A3�

such that the angle with respect to the initial orientation
�0,0,1� is given by

�mm�
�+1� = arccos� 	tmm�

�� 	2 − 	tmm�
��̄ 	2

	tmm�
�� 	2 + 	tmm�

��̄ 	2
� . �A4�

For our case of spin-flip hopping matrix elements, which are
much smaller than the elements which conserve the spin, we
can expand the above exact result for small rotation angles
�	tmm�

��̄ 	2� 	tmm�
�� 	2�, yielding

�mm�
�+1� =

2	tmm�
��̄ 	

	tmm�
�� 	

. �A5�

It is straightforward to calculate the spin rotation angle for a
general spin state 	sm
=cos �	�
+ei� sin �	�̄
 on the initial
site m. The rotation angle �

mm�
��,�� is now given by

cos��mm�
��,���

= 1 −
2	tmm�

��̄ 	2�1 + sin2�2��cos2����

	tmm�
�� 	2 + 	tmm�

��̄ 	2 + 2 sin�2��cos���Re��tmm�
�� �*tmm�

��̄ �
.

�A6�

As in the special case above, in the limit of small rotation
angle, the above expression simplifies, and we have

�mm�
��,�� = 2�1 + sin2�2��cos2���

	tmm�
��̄ 	

	tmm�
�� 	

. �A7�

If we perform a root mean square average over the initial
conditions �parametrized by the angles � and ��, we get

���mm�
2 
 =

�5	tmm�
��̄ 	

	tmm�
�� 	

, �A8�

which has an additional prefactor of �5/2 with respect to Eq.
�A5�. Since the calculated angle �mm� with respect to the
initial spin orientation contains the two components of �mm�
that are relevant for spin relaxation, one has

��mm�
2 
 =

3

2
��mm�

2 
 , �A9�

and we finally obtain the expression given in Eq. �16� of Sec.
IV.

APPENDIX B: SPIN-RELAXATION TIME: GOLDEN RULE
APPROACH FOR EXTENDED INITIAL STATES

In this appendix we use the Fermi golden rule to calculate
the spin decay rate of a spin-polarized extended initial state
	i�
. Such a state will be a superposition of the eigenstates of
H0 polarized with spin �, which we denote as 		�
. The
presence of the spin-flip term H1 of Eq. �9� leads to a mixing
of the spin states. Fermi’s golden rule gives the spin decay
rate,

1

�s
=

2�

�
�̄	M	2, �B1�

of 	i�
 into the spin-reversed states 		�̄
 with �̄=−�, where
�̄ is the density of states with spin �̄ and 	M	2 is the typical
value for the absolute square of the matrix elements M	

= �	�̄	H1	i�
 of the spin-flip term H1 between the initial state
with spin � and spin-reversed states 		�̄
 having the same
energy. With the projections im= �m� 	 i�
 and 	m

= �m�̄ 		�̄
 onto on-site basis states 	m�
 and 	m�̄
, respec-
tively, we can write

	M		2 = �
m,m�,m�,m�

tmm�
��̄ �tm�m�

��̄ �*im	m�
* im�

* 	m�. �B2�

For generic wave functions of a disordered system on the
metallic side of the metal-insulator transition, one can expect
the phases to be fluctuating with the site index m. The four-
fold sum will therefore be dominated by the diagonal terms
with m=m� and m�=m�, and one gets
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	M		2 � �
m,m�

	tmm�
��̄ 	2	im	2		m�	

2. �B3�

In the metallic regime, the wave functions are delocalized
over all impurity sites. We assume an approximately homo-
geneous density 		m	2= 	im	2=1/Ni, where Ni is the number
of impurity sites. Neglecting the spin-flip matrix elements
between distant sites m and m� as compared to the matrix
elements tn.n.

��̄ between m and its Z nearest neighbors, we
obtain

	M	2 �
Z

Ni
	tn.n.

��̄ 	2. �B4�

With the estimate for the density of states �̄�Ni /W, where
W�Z 	 tn.n.

�� 	 is the width of the impurity band, we finally get
from Eq. �B1� the spin decay rate,

1

�s
�

2�

�

	tn.n.
��̄ 	2

	tn.n.
�� 	

. �B5�

From the diffusive approach presented in Sec. IV, one can
determine the spin lifetime using Eqs. �15�, �16�, and �19�.
Assuming that the hopping processes between nearest neigh-
bors dominate as compared to hopping elements between
more distant sites, one obtains the estimate
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, �B6�

which agrees with the result of the Fermi golden rule ap-
proach Eq. �B5� up to a numerical factor of order 1.
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