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Abstract

We discuss the stochastic dynamics of biological (and other) populations presenting a limit behaviour for
large environments (called deterministic limit) and its relation with the dynamics in the limit. The discussion
is circumscribed to linearly stable fixed points of the deterministic dynamics, and it is shown that the cases
of extinction and non-extinction equilibriums present different features. Mainly, non-extinction equilibria
have associated a region of stochastic instability surrounded by a region of stochastic stability. The insta-
bility region does not exist in the case of extinction fixed points, and a linear Lyapunov function can be
associated with them. Stochastically sustained oscillations of two subpopulations are also discussed in
the case of complex eigenvalues of the stability matrix of the deterministic system.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of biological populations, such as those considered in ecology and epidemiology,
are naturally described in terms of ‘number of individuals’, this is listing how many individuals of
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the population belong to the different categories considered when modeling the process. The basic
assumption behind this description is that the population under study is a collection of ‘similar’
individuals living in a common environment.1 The population is then studied by considering the
variation in time of the number of individuals in each species or subpopulation belonging to the
system. These changes in time are the consequence of the occurrence of specific events such as
birth, death, migration and contagion that are considered relevant for the problem. The occur-
rence of these events is assumed to depend on the configuration of the system at a given moment.
When no better description is at hand, we assume that these events occur at random. The math-
ematical formulation of such dynamical description is that of a stochastic process (this describes
the random occurrence of events that change the state of the system), where the states of the sys-
tem are described by an array of non-negative integers (the number of individuals in each prede-
fined subpopulation), i.e., an integer lattice. Under these assumptions, the description of
population dynamics is conceived in terms of stochastic processes over integer lattices, or with
greater precision, density dependent Poisson processes [1].

When population densities are considered in place of populations and the frequency of the
interactions of each class for an individual depends only on the densities of the subpopulations
(and perhaps directly on time), it is plausible to consider the limit case of large environments with
finite subpopulation densities, describing the evolution of subpopulation densities in terms of con-
tinuous variables and associated ordinary differential equations (ODE). The mathematical situa-
tion is well described in terms of the limit theorems by Kurtz [2]. The original aim in Kurtz was to
find approximations to solutions of ODE’s using Markov jump processes (i.e., the ‘inverse’ prob-
lem in some sense).

Since real systems never attain the mathematical limit, it is reasonable to assume that finite (but
large) density dependent Poisson processes actually behave as the deterministic limit plus some
‘small’ random fluctuation around this limit. The larger the system, the smaller the fluctuation.
The mathematical analysis of such a situation is called perturbation theory, frequently used in
physics. The lowest order correction in these terms to the deterministic limit was also studied
by Kurtz [3].

The situation in other scientific areas is similar. For example, chemical reaction kinetics deals
with subpopulations consisting in different species (chemical molecules) that interact at specific
rates that depend on subpopulation densities. Not surprisingly, the same kind of approximations
than those described above have been considered in chemistry [4].

The use of ODEs in the description of population dynamics opens the large toolbox that has
been developed for ODEs, in particular: singularity (fixed point) analysis, bifurcation theory
and lately chaotic dynamics. It also opens the possibility of abuse of these tools. For example,
chaos is a time-asymptotic property of the dynamics, i.e., its characterization requires infinitely
long (in time) solutions, a requisite that contrasts not only with observational possibilities (we
cannot access anything else than finite times) but also with the hypotheses in Kurtz’ limit theo-
rems. More precisely, the large-system limit is achieved for fixed (and finite) time and the error
bounds depend on the deviations of infinitesimally close trajectories, which in the case of chaos
is diverging exponentially with time. In principle, the limits t!1 and V!1 (where V

1 We will use the words population and subpopulation interchangeably, since under the stated definition there is no
mathematical difference between both terms.
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corresponds to a representative ‘problem-size’, see below) cannot be exchanged (for a precise dis-
cussion of chaos in epidemiological systems see [5]).

Although for short times and large systems the ‘ODE + fluctuation’ scheme may be successful,
especially far away from extinction problems (so that all involved subpopulations are sufficiently
large), this is nevertheless an approximation of the original problem. The original problem still
has non-negative integers as descriptive units.

As an example of biological problems where the discrete-stochastic nature of the dynamics can-
not be avoided we may cite biological experiments performed with the flour beetle Tribolium [6].
These experiments support the fact that the discrete nature of subpopulations, as well as stochas-
ticity, play a relevant role in the dynamics. Epidemic statistics [7,8] as well as numerical compu-
tations of simple epidemic models also indicate a measurable role of the discrete-stochastic nature
in the problem [9]. As a further example, populations of Aedes aegypti at the margins of their
world-wide distribution experience recurrent extinctions of some its forms (larvae, pupae and
adult) [10,11] and their modeling requires counting their numbers using non-negative integers [12].

If discreteness and stochasticity play a role in the description of population dynamics, what is
the information provided by an ODE description in finite environments? How to use the insight
obtained from solving the limit ODEs associated to a density dependent Markov process to
understand the population dynamics problem is then one of the current goals of research in
the area. This goal is manifested as a conjecture regarding the notion of deterministic skeletons
somehow hidden under the stochastic dynamics of a density dependent Markov process [13–16].

Let us give more precision to the problem setup. Assume a system of interacting subpopula-
tions, Na 2 Z+ [ {0} developing in a large but finite environment. Let V hence be a large number
representative of the size of the environment.2 In terms of the resulting ODE’s under the mass-
action-law, see below, V appears as a scale factor that represents the scaling of populations with
environment size.

Further assume that the transition rates associated to the different events driving the Markov
process, Wj(Na, t;V), are represented by differentiable, non-negative functions satisfying the mass-
action law

W jðN a; t; V Þ ¼ VwjðN a=V ; tÞ: ð1Þ
The above expression of the mass-action law states that the transition rates scale with the size of
the system (represented by V), i.e., that when the size of the system changes from V to V 0 while
population densities are kept constant, the transition rates change by a factor V 0/V. Notice also
that wj(Na/V, t) is a non-negative real function of real arguments.

Let daj be the change produced on the a = 1, . . . ,P subpopulation by the jth event (j = 1, . . . ,E),
and let

F aðN a=V ; tÞ ¼
X

j¼1;...;E

wjðN a=V ; tÞdaj ð2Þ

2 The precise meaning of V changes from problem to problem, in epidemiological models formulated under a constant
total population hypothesis V is usually the population size [5], in the Aedes aegypti model [12] it is the number of
breeding sites available to the mosquito in an homogeneous patch, in chemistry as well as physics, it represented the
total volume of the reactor/system, in Tribolium experiments it can be expressed in grams of flour [17].

M.A. Natiello, H.G. Solari / Mathematical Biosciences 209 (2007) 319–335 321



Author's personal copy

be the components of the vector field F, with the additional requirements that
P

jjdajjwjðN a=V ; tÞ <
1 and jF(x, t) � F(y, t)j 6Mjx � yj.

What can, then, be inferred from the deterministic system

dxa=dt ¼ F aðx; tÞ ð3Þ
that is relevant for the understanding of the Markov jump process (Na,daj,Wj,V)? The skeleton
conjecture is that there are meaningful answers to this question.

The study of stochastic systems with a deterministic limit is not new. Stochastic Differential
Equations (SDE) have been often considered and some solid understanding has been constructed
for them [18,19]. The relation of SDE to population dynamics, however, has remained mostly as a
conjecture for several years. Actually, the diffusion approximation as is usually named, can be ob-
tained as a formal/heuristic expansion in the form systematized by van Kampen [20] and it was
precisely van Kampen who noticed that the approximation could not be carried beyond the
first-order perturbative step [21]. While van Kampen’s argument used formal mathematics as well
as epistemological considerations, Ethier and Kurtz reached the same conclusion in terms of con-
vergence of Markov processes [22].

The foundations for the stability analysis of SDE and related concepts were introduced by
Kushner [23,24] with a larger scope than SDE. We will be building upon this foundation.

At this point it is relevant to consider if it is possible to formulate dynamical questions solely in
the original discrete subpopulation description of the problem instead of first replacing the dis-
crete problem by a continuous approximation and then recasting the continuous results again
in discrete terms (it is worth noting that the SDE approach has no internal rules for addressing
the final discrete-recast step). Retaining the discrete, population-wise, description we might be
able to describe our original problem also in the proximities of extinctions and in other regions
that lie outside of the validity range of the intermediate continuous-limit approximation. In other
words, we pose and attempt to answer our questions in the original problem rather than taking a
detour via the substitute problem.

Beginning with such a program we will focus our attention in the simplest equilibria, i.e., fixed
points. In what follows we will show that stable fixed points of the deterministic system (3) are
blown-up presenting in general a large stable region whose centre is unstable, except in the case
of extinction solutions where the unstable centre is not present. This result represents the general
case of the situation described in [25] and leads to sustained oscillations when the stable fixed
point of the deterministic system is a focus (two complex eigenvalues with negative real part) in
the plane.

2. Results

2.1. Assumptions

Let us review the setup of the previous section. We consider the dynamics of populations with
individual-based species Na, with a = 1, . . . ,P, each taking values in the non-negative integers. The
dynamics is governed by a set of events numbered j = 1, . . .,E occurring stochastically with tran-
sition probabilities Wj(Na, t;V) that are density dependent and satisfy the mass-action law as in
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Eq. (1). Each event alters the populations by the integer amount daj (we can collect all the alter-
ations in an array dj for each event). The deterministic limit equation for the population densities
is then given by Eq. (3). To lighten the notation we will use the variable n = (N1/V, . . . ,NP/V).

Our fundamental assumption will be that the system given by Eq. (3) has a stable hyperbolic
equilibrium point i.e., all eigenvalues in the linearization matrix around the equilibrium point
x = n0 have negative real part.

We will in the sequel consider two main situations that can to a great extent be treated together.
In the general case, the fact that n0, corresponding to some positive values na;0 ¼ N 0

a=V , is an equi-
librium point forces that for all a,

P
j¼1;...;Ewjðna;0; tÞdaj ¼ 0, but no additional requirements are

necessary on the w’s. In the case of extinction processes, we have additionally that wj(xa,t)! 0
as xa! xa,0 = 0.

An immediate consequence of the assumptions is that the deterministic equation Eq. (3) admits
a Lyapunov function H : U7!R defined in a suitable compact neighbourhood U � RP of the equi-
librium point (a Lyapunov function is a differentiable function taking the value zero at the equi-
librium and positive otherwise, while having zero time-derivative at the equilibrium point and
strictly negative derivative otherwise). The volume of U is approximated by a Riemman sum that
counts the number of boxes of size (1/V)P in U (or the minimal number of them that contain U).
For finite V, the number of states of the discrete population associated with U is also finite, a fact
that we will use later.

As a further assumptions, we will assume that the Lyapunov function is smooth enough (i.e., at
least of class C2) so that whenever we take derivatives of H the expression is meaningful. Also,
without loss of generality, we will assume the Lyapunov function has non-vanishing second deriv-
atives at the equilibrium point. Part of our goals can be translated as understanding how this
Lyapunov function behaves when considered within the stochastic process.

2.2. The embedded process

The Markov jump process can be described in the following way:

• Events occur individually and successively at exponentially distributed random time-intervals
sn with (density dependent) rate R, where R ¼

PE
j¼1W jðN a; t; V Þ. We will write R as R(n) when

we want to explicitely indicate the point n on which it is computed.
• Which event occurs each time, is randomly chosen according to the relative probability weight

of each event. In other words, when an event occurs, the probability of it being the event having
index j is P(j) = Wj(Na, t;V)/R. Because of the mass-action law this probability can be recasted
in terms of the w’s as well. We rewrite it then, more explicitly, showing the dependence on the
variables na = Na/V. We have hence, Pðn; jÞ ¼ wjðn; tÞ=

P
kwkðn; tÞ.

The Markov jump process corresponds to changes (events) occurring at random time intervals
sl. The event occurring at T m ¼

Pm
l¼1sl is the randomly chosen event j, producing a change dj in

the populations. The state of the population is then N aðtÞ ¼ N m
a � N aðT mÞ for Tm 6 t < Tm+1.

The sequence of populations fN k
ag; k ¼ 1; . . . ; m; . . . is called the embedded process. Given a

sample path of a Markov jump process the embedded process is obtained as the sequence of pop-
ulation values after successive jumps. Conversely, given a sample path of an embedded Markov
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process, sample paths of the Markov jump process can be constructed by producing the times cor-
responding to the occurrence of each successive event with exponentially distributed random
variables.

2.3. Main results

Definition 1 (Stochastic variation). We call stochastic variation DH to the average change in the
Lyapunov function H after the occurrence of one event:

if RðnÞ 6¼ 0; DHðnÞ ¼
PE

j¼1wjðn; tÞHðnþ dj=V ÞPE
j¼1wjðn; tÞ

� HðnÞ;

¼
XE

j¼1
P ðn; jÞðHðnþ dj=V Þ � HðnÞÞ; ð4Þ

if RðnÞ ¼ 0; DHðnÞ ¼ 0: ð5Þ

We extended the definition of the stochastic variation to the extinction point {0} with R(0) = 0,
where no event can happen.

Let us further explore DH. Recalling we assumed H(n) to be sufficiently smooth, we can expand
DH(n) in terms of 1/V. It is of course assumed that this 1/V-expansion is convergent in a suffi-
ciently large V- and n-region suitable for the present discussion.

Because of the mass-action law assumption, there is no explicit V-dependence on P(n, j).
Hence,

DHðnÞ ¼
X

a

oH
oxa
ðnÞ
XE

j¼1

P ðn; jÞ daj

V
þ
X
a;b

o2H
oxaoxb

ðnÞ
XE

j¼1

Pðn; jÞ dajdbj

V 2
þOð1=V 3Þ: ð6Þ

The contribution of order O(1/V) in (6) is proportional to the deterministic time-derivative of the
Lyapunov function

X
a

oH
oxa
ðnÞF aðna; tÞ

V
R

ð7Þ

(since VF aðna; tÞ=R ¼
PE

j¼1Pðn; jÞdaj, they differ only in the positive factor V/R), and hence, it is
negative definite except at n = n0, where it vanishes.

Since by assumption the Hessian matrix of the Lyapunov function at n0 is positive definite
(and by the assumed continuity it is positive definite in some neighbourhood of n0), the
contribution of order O(1/V2) will be positive definite in some neighbourhood of n0; indeed this
contribution O(1/V2) can be recasted as a sum (over index j) of positive terms, by inverting the
order of summation in Eq. (6).

Lemma 1 (Stochastic instability region). Under the given assumptions, for the general case of
non-extinction equilibrium, the expression U 0 = {x 2 U, DH(x) P 0} defines, for V sufficiently large,
a closed and bounded region in U � RP . If, additionally, DH(x) = 0 is smooth, then the region U 0 is
homotopic to a sphere of RP containing n0 as an interior point.
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Proof. To facilitate the analysis we may consider the expression VDH(x), since it has the same
sign and zero-locus as DH(x). This expression has a negative definite term independent of V, a
positive definite term proportional to 1/V and higher-order terms. The term independent of V
can be written as:P

a
oH
oxa

F aðx; tÞPE
j¼1wjðx; tÞ

; ð8Þ

simply by combining Eqs. (2) and (6), as mentioned above in the discussion around Eq. (7).
Moreover, the numerator in this expression can be recasted as dH(x)/dt via Eq. (3), being
hence negative definite outside the equilibrium point n0, while the denominator is positive,
since R > 0 for non-extinction points. Because of the assumptions, for any fixed V, we have
that DH(n0) > 0 and hence by continuity there exists a ball around n0 where DH(x) > 0. Let-
ting V increase, the negative-definite term will eventually dominate. Hence, also by continu-
ity, for V sufficiently large the whole set U 0 is contained in U and its outer border is given
by the implicit expression DH (x) = 0. Provided $(D(H)(x)) exists and is continuous, U 0 is
homotopic to a sphere of RP . The set DH(x) = 0 corresponds to the surface of this
sphere. h

We will now proceed to define some subsets of U in terms of the states of the dynamics (the
population lattice). Although the definition of these sets was inspired in the results of Lemma
1, they will serve beyond the limit of validity of the Lemma. Consider first the auxiliary set (de-
fined on real space) S0 = {x 2 U 0: DH(x) = 0}, i.e., the border of U 0 in RP . Note that the solutions
of DH(x) = 0 for a given value of V are real numbers that need not belong to the population lat-
tice n. Thus, it may happen that the intersection of S0 with the population lattice is empty. How-
ever, an interesting fact about S0 is that a continuous path going from the inside of U 0 towards the
outside (or vice-versa) must visit S0.

Definition 2 (Dynamical regions S1, S, S2 and L).

S ¼ [j¼1;...;E;wjðnÞ>0ðfn 2 U 0 and DHðnþ dj=V Þ 6 0gÞ [ fn 2 U 0;DHðnÞ ¼ 0g: ð9Þ

The points of the population lattice that belong to U 0 but not to S are in

S1 ¼ \E
j¼1fn 2 U0 : DHðnÞ > 0 and DHðnþ dj=V Þ > 0g: ð10Þ

While the remaining points of interest in U belong to

S2 ¼ fn 2 U : DHðnÞ < 0g: ð11Þ
We further define for convenience the finite set of population states (points)

L ¼ ðS1 [ S [ S2Þ � U :

Definition 3 (Maximal Lyapunov region M ). Since H(x) is a Lyapunov function for the determin-
istic system, its domain of definition is the non-empty neighbourhood U of n0. For h > 0 suffi-
ciently small, consider the region defined in the population lattice by the expression
Mh = {n:H(n) 6 h}. Since H(n0) = 0, n0 2Mh. Let hmax be the maximal h such that Mh � L and
let the Maximal Lyapunov region M be defined as M ¼ Mhmax .
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The interesting stochastic dynamics we will be able to establish occurs as long as the system
remains within M.

Theorem 1 (Sub- and super-martingales). Assume H is a Lyapunov function of the deterministic
system resulting from Lyapunov’s second criteria, i.e., H ¼

PP
a¼1Qaðva � ðx� n0ÞÞ2 þ Oðjx� n0j3Þ,

with va the left eigenvector of the linearized vector field at n0 and Qa > 0. Under the conditions of the
previous Lemma, if R(n0) 5 0 and given the above definitions for S1,S,S2 and M, we have that:

1. For large enough V, S1 is not empty.
2. For large enough V, S2 is not empty.
3. H(n(t)) restricted to n(t) 2 S1 is a sub-martingale relative to n(t).
4. H(n(t)) restricted to n(t) 2 S2 is a super-martingale relative to n(t).
5. If n(0) 2 S2 and l P infn2S2

HðnÞ then

P sup
1>tP0

HðnðtÞÞP l

� �
6

Hðnð0ÞÞ
l

: ð12Þ

6. If n(t 0) 2 S1 for t 0 2 [0,t], then t is finite with probability 1.
7. If n(t 0) 2 S2 for t 0 2 [0,t], then t is finite with probability 1.

Proof.

1. We show that n0 2 S1. First, we notice that DH(n0) > 0. We have to determine the sign of
DH(n0 + dj/V). We then notice that since the vector field is smooth and R(n0) > 0, the first term
in (6), for n0 + dj/V! n0 (i.e., for large enough V) goes to zero as j$Hj/V2, while the second
term in (6) goes to zero as 1/V2. Hence, for any quadratic (or higher order) Lyapunov function
the negative term can be made smaller than the positive term for all possible events
(Wj(n0) > 0,j = 1, . . . ,E), since j$Hj also goes to zero. Hence, n0 2 S1.

2. Consider now the point n 2 U and n 5 n0. Keeping n fixed, and incrementing V, the first term
of (6) decreases in absolute value as 1/V while the second term (and higher order terms)
decrease as 1/V2, hence for V sufficiently large DH(n) is dominated by the first (negative) term.
Hence, n 2 S2 and S2 is not empty for sufficiently large V.

3. DH(n) > 0 for n 2 S1 is the sub-martingale condition for the embedded process. In the case of
the continuous-time Markov process defined in (2.2), we have that it is a Feller process [22] and
as such satisfies the relation

EnðHðntÞÞ ¼ Hðnð0ÞÞ þ En

Z t

0

DHðnðsÞÞRðnðsÞÞds
� �

ð13Þ

(see [23]) where En() is the expectation value conditioned to the path having initial condition
n(0) = n. The expression (13) can be put in terms of the embedded process since the arguments
within the integral are constant between jumps. Hence

EnðHðnðtÞÞÞ ¼ Hðnð0ÞÞ þ En

Xnt

n¼0

DHðnnÞ
 !

ð14Þ
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Notice that the number of steps nt is also a stochastic variable.
4. DH(n) < 0 for n 2 S2 is the super-martingale condition for the embedded process. The relation

(14) applies as in the previous item, proving that in the region S2 H(n(t)) is a super-martingale.
5. The statement results from the application of Theorem 1 in [23], which in turn corresponds

to observing that by (14) En(H(nt)) < H(n) and that 1/l P P(H(nt) > lEn(H(nt)) >
P(H(nt) > lH(n)) by Markov inequality. In particular, if l = hmax we have

P sup
1>tP0

HðnðtÞÞP hmax

� �
6

Hðnð0ÞÞ
hmax

ð15Þ

represents a bound for the probability of leaving the Lyapunov Region M.
6. No matter how large V is, the system is discrete, and hence there is a large but finite number of

points in S1. If n0 is not an extinction point, then there is a non-zero minimum, Dm > 0, for
DH(nn) with nn 2 S1. Then, using (13) we have

sup
n2S1

HðnÞ > EnðHðntÞÞ > HðnÞ þ DmEnðtÞ ð16Þ

and since Dm > 0, En(t) must be finite implying that the probability for t being infinite is zero.
7. No matter how large V is, the system is discrete, and hence there is a large but finite number of

points in M. Considering that in addition there are no extinction points {n:R(n) = 0} in U
(extinction points would have Fa(x) = 0 and then x 62 U since for x 5 n0, x 2 UP

aoHðxÞ=oxaF a < 0) then there is a non-zero maximum, DM < 0, for DH(nn) with nn 2 S2.
Then, using (13) again, we have

0 < EnðHðntÞÞ < HðnÞ þ DM EnðtÞ ð17Þ
and since DM < 0, En(t) must be finite implying that the probability for t being infinite is zero. h

Corollary 1 (Recurrence). In the conditions of the previous Theorem, a stochastic trajectory not
escaping the domain H(n) < l (n 2M) will recurrently visit the region S. Hence, nt leaves S2 towards
S [ S1 with probability larger than 1 � H(n(0))/l.

Proof. By the application of item 5 in Theorem 1 there is a probability larger than
1 � H(n(0))/l that a trajectory with initial condition in {n:H(n) < l 6 hmax} will always remain
in this set. By items 6 and 7 in the same Theorem, the fate of such a trajectory will be to alter-
nate finite time-intervals in S1 with finite time-intervals in S2 and (not necessarily finite) time-
intervals in S. h

Theorem 2 (Sustained oscillations). In the conditions of the Lemma, for the case where x 2 R2 and
the equilibrium point is of focus type (i.e., the linearization of the deterministic equation has complex
conjugated eigenvalues) then the stochastic evolution of the angle variable / = arctan(y/x) is
monotonic in the proximities of the equilibrium point.

Proof. Consider the average increment of / = arctan(y/x)

D/ ¼
XE

j¼1

arctan
yþ dyj=V
xþ dxj=V

� �
� arctan

y
x

� �� �
Pðn; jÞ ð18Þ
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following similar ideas as in Definition 1. Expanding again in powers of 1/V, we have

D/ ¼
XE

j¼1

Pðn; jÞ 1

V
dyjx� dxjy

x2 þ y2

� �
1� 1

V
dxjxþ dyjy

x2 þ y2

� �� �
þ Oð1=V 3Þ ð19Þ

Hence, the first term in (19) corresponds to the time-derivative of / according to the deterministic
flow, re-scaled in the form: 1

R
d/
dt , which is non-zero by the ‘focus’ hypothesis (complex eigenvalues of

the linearization). The remaining terms can be made as small as needed for V sufficiently large. h

2.4. Extinction equilibrium

For a closed extincted population, the rate of occurrence of any event is zero. Zero population
is an equilibrium point and in that point we have R(0) = 0. Under this circumstance, the condi-
tions of the previous Theorems break down and a special approach is required. The study of this
case has been a favourite in the literature, because of its relevance as well as its closer relation to
the deterministic case, see [18] and references therein.

Since extinction is a natural limit for the population problem we want to distinguish arrays of
numbers that are possible populations from those who are not.

Definition 4 (Positive vector). An array with non-negative entries u = (u1,u2, . . . ,uP) is called a
positive vector.

It results natural to consider the total population as a Lyapunov function, we can then formulate
the following result.

Theorem 3 (Extinction). Consider the extinction state, where all subpopulations are zero, wj(x)! 0
as x! 0 (and hence R(0) = 0) and the associated deterministic flow has a linearly stable equilibrium
at x = 0. Then, retaining the rest of the assumptions of the previous Theorems (mass-action law and
smoothness of the involved functions),

1. The linearization matrix A for the deterministic equation around n = 0 has non-negative
off-diagonal elements.

2. exp(At) maps positive vectors on positive vectors.
3. The eigenvalue of A with largest real part (i.e., negative and smallest in absolute value) is real and

it has at least one associated eigenvector u that is a positive vector. The same holds for AT.
4. There exists a left positive vector v such that the function H(x) = v Æ x is a Lyapunov function for

the deterministic system, for V sufficiently large.
5. The stochastic process reaches n = 0 with probability

1� P sup
1>tP0

HðnðtÞÞP hmax

� �
P 1� Hðnð0ÞÞ

hmax

: ð20Þ

Proof.

1. Because of the extinction assumptions and the mass-action law, for all events it holds that
wj(x) = pjaxa + O(x2), where the pja are non-negative. For all pja that are strictly positive, we
have that dbj P 0 for b 5 a, otherwise initial populations with xa = 1 and xb = 0 would be dri-
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ven to non-positive vectors (impossible populations) by the stochastic process. Recalling Eqs.
(2) and (3), the off-diagonal elements can be computed as Aba ¼

P
jdbjpja and they are hence

non-negative.
2. Suppose this is not the case, then the phase-space trajectory of an initial positive vector would cross

the hypersurface xa = 0 transversally, requiring thus that the vector field at that point has a neg-
ative component along a. But for any positive vector �x with �xa ¼ 0, the vector field defined by A�x
has a non-negative component along a, since ðA�xÞa ¼

P
b6¼aAab�xb has only non-negative factors.

3. Recall that all eigenvalues of A have negative real parts because of the linear stability assump-
tion. Both statements are immediate consequences of the previous item, since a flow with com-
plex eigenvalues would cross transversally some hypersurface xa = 0 in the ‘wrong’ direction
and the same would hold for an initial condition having its dominant component (after suffi-
ciently long time) on a non-positive vector. Since we only use that the off-diagonal elements
of A are non-negative, the same result holds for AT.

4. If the left vector v has all entries strictly positive and vA all entries strictly negative, it is imme-
diate that H(x) = v Æ x is zero at the origin, non-negative for any other positive vector x, infi-
nitely smooth and dH(x)/dt = v Æ Ax + O(jxj2) is negative definite in a ball around the origin,
jxj < � or jXj < �V.
Let us show that such a v always exists. Let v1 be the left eigenvector associated to k in the pre-
vious item that is a positive vector. If all its entries are positive, then the statement is immediate.
Otherwise, let us assume without loss of generality that the first p components of v1 are positive
and the remaining q = P � p are zero. If this is the case, the matrix A is constrained to have a
special structure, namely:

ð21Þ

where Ab is identically zero and Ac has non-negative elements according to the second item. Ab

is identically zero since the last q-components of v1 are zero, hence 0 ¼
Pp

i¼1Aijðv1Þi for p < j 6
P is a sum of non-negative numbers, and hence each term is zero. If vT

1 is also a right (proper)
eigenvector, Ac is also zero for an equivalent reason.A positive vector with zeros in the first p
components and strictly positive elements in the remaining q components evolves by exp(At) in
such a way that the last q components remain positive. We can repeat the argument in item 3
above, restricted to these components and find that there exists a positive vector
v2 = (0, . . . , 0,s1, . . . , sq) where at least some sk > 0 that is a (possibly Jordan generalised) eigen-
vector of A with real and negative eigenvalue. v2A may have non-zero entries in the first p ele-
ments but the important fact is that its last q components are strictly negative for the same
entries that were non-zero in v2.By choosing r > 0 sufficiently small, the vector v = v1 + rv2

has 0 6 q1 < q zero entries and the remaining P � q1 entries of vA are strictly negative. Repeat-
ing this procedure if necessary one obtains the desired vector with strictly positive entries and
strictly negative entries in its image by A.

5. In the present case of extinction we have that S1 is empty and the fixed point {0} belongs to S
(see (5) and (9)). For V sufficiently large, also S2 is non-empty. Moreover, S consists of only one
point, i.e., the extinction fixed point. Indeed, since H is linear, RDH = dH/dt and is hence neg-
ative in a suitable neighbourhood around the fixed point at {0}. The argument in item 5 of The-
orem 1 still holds and hence
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P sup
1>tP0

HðnðtÞÞP hmax

� �
6

Hðnð0ÞÞ
hmax

:

The probability of not escaping the set M is then 1 � H(n(0))/hmax. Moreover, in the set S2 DH is
strictly negative and attains a (negative) maximum value DM. Hence, the reasoning in item 7 of
Theorem 1 can be repeated and the trajectories not leaving M reach {0} in finite time. h

3. Example

We would like to illustrate the theorems and their practical use in a simple epidemiological
model. The model was chosen to keep the example as simple as possible but without being trivial.
Our model is a SIS-epidemic model with fluctuating population and it is described by two popu-
lations: susceptibles s, and infected, I, subject to the events of Table 1. Notice that the birth rate
for very large populations has been taken as unit time, and in this mild disease the mortality of the
infected individuals equals the mortality of the susceptible individuals. We note on passing that
the line {I = 0} is invariant Since there are no events that produce infected individuals in the
absence of at least one infected individual.

The resulting deterministic equations for the densities x = s/V, y = I/V are then:

dx=dt ¼ ðxþ yÞ
1þ bðxþ yÞ � mx� bxyþ ry;

dy=dt ¼ yðbx� m� rÞ: ð22Þ

There are at most three biologically relevant equilibrium points:

ðx; yÞ ¼ ð0; 0Þ; ð23Þ

ðx; yÞ ¼ ð1� mÞ
mb

; 0

� �
if m < 1; ð24Þ

ðx; yÞ ¼ ðrþ mÞ
b

;
ð1� mÞ

mb
� ðrþ mÞ

b

� �
if m < 1 and y > 0: ð25Þ

The solution (23) represents the extinction of the population; Eq. (24) represents the population
free of disease (‘sane’ solution) while (25) represents the endemic solution.

Table 1
Events in the susceptible-infected-susceptible model of the example

j Event dj Transition rate

1 Birth (1,0) (s + I)/(1 + b(s + I)/V)
2 Death s (�1,0) ms

3 Contagious (�1, 1) bIs/V
4 Recovery I (1, �1) rI

5 Death I (0,�1) mI
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3.1. Stochastic stability of the exctintion solution

The deterministic solution (23) is stable when m P 1, the largest eigenvalue of the stability ma-
trix is (1 � m) and its left eigenvector (1,1). Hence, by Theorem 3, we set H = (s + I)/V = x + y,
and compute

RDH ¼ H 1� m� H
1þ bH

� �

As already explained in Theorem 3, the region S1 is empty. Also S = {0} and S2 = {(x, ,y):0 < x +
y = H(n) < M} for some finite M > 1/V. Actually, the extinction equilibrium remains stable for
the stochastic process in the terms of item 5 in Theorem 3 as long as DH < 0 in S2 this is, as long
as (1 � m) � 1/(V + b) < 0. The term �1/(V + b) represents a finite size correction to the deter-
ministic limit, this is, the extinction is stable for m P 1 in the deterministic system and for
m P 1 � 1/(V + b) in the stochastic system.

3.2. Stochastic stability of the ‘sane’ solution

The linearization of the deterministic problem around

n0 ¼
1� m

mb
; 0

� �
¼ ðx0; y0Þ

produces the matrix

M ¼
D D� A

0 A

� �
ð26Þ

with A = bx0 � r � m and D = m(m � 1). Note that m = 1/(1 + b(x0 + y0)).
The eigenvalues are k1 = D, k2 = A and the associated left eigenvectors are (1,1) and (0,1)

respectively.
Since y0 = 0 represents the extinction of the infected subpopulation we look for a Lyapunov

function of the form

H ¼ Q1ðxþ y� x0Þ2 þ Q2y ð27Þ
with Q1,Q2 > 0. Then DH reads

RDH ¼ Q1

V 2

� �
ðxþ yÞ 1

1þ bðxþ yÞ þ m
� �

� 2mb
Q1

V

� �
ðxþ yÞ ðxþ y� x0Þ2

1þ bðxþ yÞ

þ Q2

V

� �
yðbx� r� mÞ: ð28Þ

The contributions in Q1 and Q2 can be analyzed independently. The Q1-terms determine a
region,
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xþ y� x0 �
1

4V

� �2

6
1

mbV
þ 1

16V 2

where the contribution is positive. The term associated to Q2 is negative provided y > 0 and
0 > (bx � r � m).

The region U 0 of Lemma 1 contains the set

V 0 ¼ ðx; yÞ : y ¼ 0; x > 0; jx� x0 �
1

4V
j 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mbV
þ 1

16V 2

r( )

provided that

rþ m
b

> x0 þ
1

4V
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mbV
þ 1

16V 2

r

so that all the x 2 V 0 satisfy the condition of stability associated to Q2. V 0 � U 0 for any choice of
H, i.e., for any positive values for Q1 and Q2. For fixed, specified Q1 and Q2 U 0 is homotopic to a
sphere and may contain other points beyond those in V 0. Similarly, all points in V 0 are in S1,
except the endpoints that lie in S.

It is interesting to note that our choice of Lyapunov function for the ‘sane’ fixed point lies out-
side the scope of all three theorems: The function is not a quadratic form in the variables (x,y), the
eigenvalues of the fixed point are not complex and the fixed point is not an extinction point.
Replacing y by y2 in the Q2 term, Theorem 1 can be used and the recurrence Corollary as well.
However, what we learn about the system with such a modification is more or less the same we
learned already with the simpler Lyapunov function proposed above. Indeed, the region V 0 iden-
tified through H is an invariant of the dynamics both for the deterministic and for the stochastic
setups. The moment the stochastic dynamics places the system in V 0, it will remain there and in
such case it could be described as a one-dimensional problem. The Lyapunov function H above,
restricted to y = 0 satisfies now Theorem 1 and the recurrence Corollary holds as well: The system
moves back and forth in and out of V 0 in finite time. The advantage as compared with using an-
other Lyapunov function is that we have narrowed the oscillation region from a more or less thick
sphere to a line segment.

3.3. Stochastic stability of the endemic solution

The endemic solution is

ðx1; y1Þ ¼
rþ m

b
; x0 � x1

� �

which exists in the population space provided y1 = x0 � x1 > 0. The matrix associated to the lin-
earization of the vector field reads

M ¼
D� B D

B 0

� �
ð29Þ
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where D = m(m � 1) and B = by1, with eigenvalues k1 = D,k2 = �B and left eigenvectors
(1,1)(�B,D) respectively.

For V sufficiently large and in a region U sufficiently small around the fixed point (x1,y1) the
function

H ¼ Q1ðx� x1 þ y� y1Þ
2 þ Q2ðBðx� x1Þ � Dðy� y1ÞÞ

2

is a good Lyapunov function for the system. Consequently

RDH ¼ xþ y
1þ bðxþ yÞQ1

1

V 2
þ 2

V
ððx� x1Þ þ ðy� y1ÞÞ

� �

þ xþ y
1þ bðxþ yÞQ2

B2

V 2
þ 2B

V
ðBðx� x1Þ � Dðy� y1ÞÞ

� �

þ mðxþ yÞQ1

1

V 2
� 2

V
ððx� x1Þ þ ðy� y1ÞÞ

� �

þ mxQ2

B2

V 2
� 2B

V
ðBðx� x1Þ � Dðy� y1ÞÞ

� �

þ myQ2

D2

V 2
þ 2D

V
ðBðx� x1Þ � Dðy� y1ÞÞ

� �

þ ryQ2

ðBþ DÞ2

V 2
þ 2ðBþ DÞ

V
ðBðx� x1Þ � Dðy� y1ÞÞ

 !

þ bxyQ2

ðBþ DÞ2

V 2
� 2ðBþ DÞ

V
ðBðx� x1Þ � Dðy� y1ÞÞ

 !
:

In this case Theorem 1 and its corollary can be applied straightforwardly. The system pre-
sents a recurrent behaviour (although not ‘circulating’ around the fixed point since the
eigenvalues are real) and the deterministic fixed point shows up as a blurred spot. More-
over this spot is quantitatively correct (as opposed to an ‘ODE + fluctuation’ approach) in
the sense that we can estimate the probability of finding the system in the recurrent
behaviour.

4. Summary and conclusions

We have considered stochastic population processes with deterministic limit, and particularly,
the meaning of linearly stable fixed points of the deterministic equations for the stochastic process.
If the stability analysis of the deterministic problem is going to be meaningful for the population
dynamics problem, then the size of the system must be large enough. How large, is a matter that
can be studied in terms of the satisfaction of the hypothesis needed for Theorems 1 and 2 as we
have shown in the example.
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Two situations are worth considering as separate cases: (a) equilibrium points far from extinc-
tion and (b) extinction fixed points where all populations under consideration eventually vanish
and the stochastic system reaches an absorbing state.

In the case (a), the deterministic fixed point blows up in the stochastic process into two regions:
an unstable region and a stable one (Theorem 1 and Corollary 1).

Additionally, we have proved a conjecture of [25] with respect to sustained oscillations in sys-
tems with two sub-populations, for the case of a stable equilibrium of focus type in the determin-
istic problem (Theorem 2).

The case (b) is different in that the unstable region does not exist. When disperse populations
remain such for a time t and the deterministic equilibrium is stable a linear Lyapunov function is
enough to put lower bounds to the survival probability (Theorem 3). The mathematical situation
is related to the most frequent case analysed in terms of Stochastic Differential Equations [18]
although details can be added considering that the problem under consideration belongs to pop-
ulation dynamics.

The present work is an extension of the methods of analysis introduced by Kushner [23]
adapted to the case of population dynamics, and we hope it can be further extended to the case
of bifurcations of the deterministic problem.
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