
Metal-Insulator Transitions in the Periodic Anderson Model

G. Sordi,1 A. Amaricci,1 and M. J. Rozenberg1,2

1Laboratoire de Physique des Solides, CNRS-UMR8502, Université de Paris-Sud, Orsay 91405, France
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We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory.
Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively
similar to that of the single band Hubbard model, namely, with a divergent effective mass and a first order
character at finite temperatures. Surprisingly, upon hole doping, the metal-insulator transition is not first
order and does not show a divergent mass. Thus, the transition scenario of the single band Hubbard model
is not generic for the periodic Anderson model, even in the Mott-Hubbard regime.
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The metal-insulator transition in strongly correlated ma-
terials remains a central problem of modern condensed
matter physics [1,2]. Great progress in its understanding
was made possible by the development of new theoretical
approaches such as the dynamical mean field theory [3],
which is a method that becomes exact in the limit of large
lattice connectivity [4]. The mean field equations can
usually be tackled with a variety of numerical approaches
which allow us to obtain reliable solutions and insights. In
this context, the Hubbard model, which is probably the
simplest model that captures a correlation driven metal-
insulator transition (MIT), called Mott-Hubbard transition,
has received most of the attention in the past 15 years. As a
result of intense investigation, our understanding of the
metal-insulator transition in that model is now profound.
The studies have unveiled a scenario where, at low tem-
peratures and moderate interaction, the half-filled Mott
insulator may be driven to a correlated metallic state
through a first order transition [5]. The transition can occur
as a function of correlation strength, temperature, or dop-
ing. The first order line ends at finite temperature in a
critical point and the critical region can be described by a
Ginzburg-Landau theory [6]. This theoretical prediction
was experimentally verified in experiments on V2O3 [7].
The Hubbard model is often considered as a minimal
model for the study of rather complicated compounds
such as transition metal oxides and heavy fermion systems.
This is supported by the implicit assumption that the
Hubbard model is expected to be the effective low energy
Hamiltonian for a wider class of more realistic multiband
models for strongly correlated electron systems.

On the other hand, a more realistic model which is also
widely used in theoretical investigations of strongly inter-
acting systems, though still schematic, is the periodic
Anderson model (PAM). In the context of correlated elec-
tron systems, this model permits us to describe explicitly
both the localized orbitals, such as the d in transition metal
oxides or the f in heavy fermion systems, and their hy-
bridization to an itinerant electron band (such as that of p
orbitals of oxygen in transition metal oxides). In fact, the
PAM allows us to investigate the various regimes where

Mott insulating states occur, as characterized by the
Zaanen-Sawatzky-Allen (ZSA) scheme [8]. They are clas-
sified as either Mott-Hubbard insulators or charge transfer
insulators. The first apply to the early transition metal
oxides such as titanates and vanadates, while the second
is relevant for cuprates, such as the high-Tc superconduc-
tors, and manganites, which show colossal magnetoresis-
tance [2]. In theoretical studies, however, it is often
assumed that both Mott-Hubbard and charge transfer sys-
tems may be described at low energies by a simpler one
band Hubbard model Hamiltonian.

In the present work we shall test the putative validity
of the Hubbard model as the effective low energy
Hamiltonian of the more realistic periodic Anderson
model. We shall do this within a well-defined mathematical
framework, namely, the dynamical mean field theory
(DMFT), that allows us to obtain essentially exact numeri-
cal solutions of the models (in the statistical Monte Carlo
sense). In particular, we shall concentrate on the nature of
the (paramagnetic) metal-insulator transitions that occur in
the periodic Anderson model with parameters that set it in
the Mott-Hubbard regime and discuss it with respect to the
corresponding scenario that is realized in the one band
Hubbard model case. In addition, our results should also
be valuable for the interpretation of experimental spectros-
copies of strongly correlated transition metal oxides that
experienced fantastic improvements in the last decade. In
fact, the analysis of experimental data of systems which
have a mixed orbital character is not always simple when
strong correlations are present. Finally, our work addresses
a very relevant issue in regard of the intense effort that is
currently dedicated to the implementation of ab initio
methods for strongly correlated materials [9] which makes
heavy use of the DMFT methodology [10].

Among our main results we find that in the case of the
electron doped driven MIT, the scenario is indeed similar
to the one realized in the Hubbard model; however, the
hole doping scenario is qualitatively different. In this case,
the correlated metal has a resonance peak at the Fermi
energy flanked by a Hubbard band, but, unlike the Hubbard
model scenario, it is not related to the formation of a
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Kondo-like resonance and its mass does not diverge at the
transition. Moreover, and also in contrast to the Hubbard
model case, our results indicate that this metal-insulator
transition is of second order as no signs of coexistent
solutions were observed. We shall argue that while the
metallic state in the former case is a renormalized
‘‘Brinkman-Rice’’ Fermi liquid [11], the latter can be
interpreted as liquid of ‘‘Zhang-Rice singlets’’ [12].

The periodic Anderson model Hamiltonian reads
 

H � �t
X
hiji�

�p�i�pj� � p
�
j�pi�� � ��p ���

X
i�

p�i�pi�

� ��d ���
X
i�

d�i�di� � tpd

X
i�

�d�i�pi� � p
�
i�di��

�U
X
i

�ndi" �
1
2��ndi# �

1
2�;

where the d� and d�� operators destroy and create electrons
at nondispersive d orbitals with energy �d, p� and p��
destroy and create electrons at p orbitals with energy �p
which form a band with hopping parameter t. The p and d
orbitals are hybridized with an amplitude tpd, and the
electron correlations are introduced by the Coulomb inter-
action U on the d sites. It is customary to define the charge
transfer energy � � �d � �p, and � is the chemical po-
tential. As described in the ZSA scheme, this model pre-
dicts correlated insulating states in two very different
regimes: at �� U the charge transfer insulator and at
U & � the Mott-Hubbard insulator. The latter is relevant
for the early transition metal oxides and will be the focus of
the present work.

To solve the PAM using DMFT, for simplicity we adopt
a Bethe lattice that corresponds to a semicircular density of
states (DOS) for the p-electron band. Setting the hopping
of the p electrons to t � 1=2, their half bandwidth is equal
to one and fixes the units of the model. To set the system in
the Mott-Hubbard regime, we adopt �d � 0 and �p nega-
tive, so that the p band lies well below the Fermi surface
and is almost full, while the occupation of the local d sites
will be close to 1. The parameter tpd controls the hybrid-
ization between the orbitals at each lattice site and permits
the delocalization of the d electrons. In fact, a finite tpd

turns the ‘‘flat’’ band of d orbitals into a conduction band
with mainly d character and bandwidth of the order of
t2pd=�. Now, for a moderate value of the repulsion U >
t2pd=� and an occupation of the d site nd close to 1, one
expects the conduction band to open a correlation gap and
the system becomes a Mott-Hubbard insulator.

The DMFT equations are most easily derived using the
cavity method [3,13], and one obtains the local effective
action for the d electrons:
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where d� and d�� correspond to a given (any) site of the
lattice. This equation defines the so-called associated im-
purity problem of the model that is subject to a self-
consistent constraint that reads

 G �1
0 �i!n� � i!n ��� �d �

t2pd

i!n ��� �p � t
2Gpp

:

The solution of the quantum impurity problem (1) gives the
local d-electron Green’s function Gdd and defines a self-
energy � � G�1

0 �G
�1
dd . The local Green’s function of the

p electrons Gpp is obtained in terms of � and the non-
interacting semicircular DOS �0 as:

 Gpp �
Z
d�

�0���

i!n ��� �p �
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i!n����d���i!n�
� �

:

We solve for these equations using two powerful, and in
principle exact, numerical methods: quantum Monte Carlo
(QMC) and exact diagonalization (ED) [3]. A similar
methodology was used in the study of a related two-band
Hubbard model [14]. The QMC is a finite temperature
method and is exact in the statistical sense, while the ED
is at T � 0 and relies on diagonalization of finite clusters
and extrapolations are performed to account for the sys-
tematic finite size effects [3].

We shall begin our discussion with the behavior of the
density of states of the model in different regimes. ForU �
0 and at tpd � 0 the system is an insulator since neither the
d orbitals at the Fermi energy can conduct (because they
are localized), nor can the p band conduct (because it is full
and well beneath the Fermi surface). At a finite hybridiza-
tion tpd, however, the system becomes metallic, as the p
and d orbitals form a partially filled band at the Fermi
energy with mixed p and d character. In Fig. 1 we show the
comparison of the p- and d-electron DOS. The one carry-
ing most of the spectral intensity at low frequencies is the
d-electron DOS �d�!�, since the bare atomic energy of the
d orbitals is at the Fermi energy. The lower panel of the
figure shows the dramatic effect of correlations; when the
interaction U is increased, a rather large gap opens in the
DOS at the Fermi energy, driving the system to a Mott
insulator state. The gap is of order U and results from the
high energetic cost of double occupation of the d site. An
interesting effect is that the size of the Mott gap �M may be
substantially renormalized. In the inset of Fig. 1 we show
the variation of �M�U� upon increasing the distance of the
p band with respect to the d-electron energy. Notice that
the gap �M�U� is always smaller than the bare U and
becomes equal only asymptotically when �p ! �1.
This renormalization effect is of relevance to the difficult
problem of the determination of the effective value of U in
realistic ab initio calculations using DMFT [9].

The Mott insulator can be destabilized by either particle
or hole doping. Therefore, the system has two doping
driven metal-insulator transitions. In the one band
Hubbard model, the two transitions have the same charac-
ter; however, as we shall see, this is not the case in the
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present model. In Fig. 2 we show the occupation nd and np
of the d and p sites for U � 2. The plateaux that appear
around 0:7 & � & 1:2 indicate the onset of the incom-
pressible Mott insulating state when correlations are
strong. While the Mott insulator is associated with the
energy cost of doubly occupying the local d orbital, it is
interesting to notice that the Mott plateau does not occur
exactly at nd � 1 but at a higher value, which depends on
the hybridization. The Mott state is in fact found when the
total number of particles per unit cell is exactly equal to
three. Thus, the object that becomes localized due to the
strong correlations is not simply a d electron, but a com-
posite object with mixed d and p character. The inset of the
figure shows the phase diagram in the U-� plane that maps
the region of the Mott insulator phase and the transition
lines to correlated metallic states.

In Fig. 3 we show the DOS for the p and d electrons in
the metallic states that are obtained by either particle or
hole doping of the Mott insulator. In both cases one finds
that the DOS clearly show the emergence of a correlated
small quasiparticle peak at the Fermi energy. The occur-
rence of a narrow quasiparticle peak at the Fermi energy
that is flanked by large Hubbard bands which are separated
by an energy of order U is a hallmark result of the solution
of the Hubbard model within DMFT [3]. Thus, one may be
led to conclude that the MIT in the PAM shares the same
qualitative features. Rather surprisingly, this expectation is
only fully confirmed for the case of particle doping, but the
MIT scenario in the hole doped case is strikingly different.

Upon particle doping of the Mott insulating state, we have
confirmed that there is a small region of parameters at the
MIT boundary where two coexistent solutions, one metal-
lic and one insulating, are found. In addition, the numerical
solutions show critical slowing down of the convergence
speed of the self-consistency close to the transition. These
two features were also observed in the previous studies of
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FIG. 2. nd (solid line), np (dashed line), and ntot (dotted line)
as a function of �, for U � 2. The data are from QMC at � � 1,
tpd � 0:9, and T � 1=64. The plateaux at ntot � 2 and 4 are band
insulator (BI) states. The one at ntot � 3 is the Mott insulator
(MI). The inset shows the phase diagram in the U-� plane. The
boundary lines are for T � 1=20 (dotted line), T � 1=64 (thick
solid line), and T � 0 (thin solid line). The dashed thick line
segment at T � 1=64 denotes the region of the MIT boundary
where the QMC data show coexistence of a metal and an
insulating solution. The T � 0 data are from extrapolated ED
calculations. This method is not suited for the study of coex-
istence of solutions at T � 0. The dash-dotted line denotes the
transition from a metal (M) to the band insulator (BI) at ntot � 4.
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FIG. 3 (color online). Density of states of p and d electrons
(dashed and solid line) for U � 2, � � 1, tpd � 0:9, and T �
1=64, as obtained from QMC. Upper panel: � � 0:554, which
corresponds to tiny hole doping. Lower panel: � � 1:234, which
corresponds to tiny particle doping.
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FIG. 1 (color online). Density of states for the p and d elec-
trons (dashed and solid line) for � � 1, tpd � 0:9. Upper panel
shows the U � 0 case with � � 0:529 that gives a total occu-
pation of three particles below the Fermi energy. The lower panel
shows analytically continued QMC data for the Mott insulator
state with U � 2, T � 1=64, and � � 1:079 that gives ntot � 3.
The double arrow head line indicates the large Mott gap �M. The
inset shows �M�U� for different positions of the of the
p-electron band �p � �6, �3, �2, �1 (top to bottom). The
results are obtained with ED of finite clusters of Ns sites and the
data shown are for the limit Ns ! 1.
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the finite T first order MIT in the Hubbard model [6]. In
contrast, in the hole doped case (ntot < 3) we found no
trace of coexistent solutions down to T � 1=128. The
solution seems to be always unique, which implies that
the transition is of second order, i.e., through a quantum
critical line in the U-� plane.

Insight on the physical reason for the qualitative differ-
ence observed upon particle or hole doping is obtained
from the behavior of the observables that measures the d-p
correlations. In Fig. 4 we show the behavior of magnetic
correlation between the d and p electrons hmz

dm
z
pi �

h�nd" � nd#��np" � np#�i across the metal-insulator transi-
tions. As the results show, the value of hmz

dm
z
pi is sizable on

the hole doped metal, while it becomes negligible on the
particle doped side. In the particle doped case hmz

dm
z
pi is

negligible because the p band is already full and the extra
particles mainly go to occupy d sites. Thus, the p sites do
not get an induced magnetic moment and they cannot
screen the magnetic moment of the local d sites. Thus
the magnetic correlations develop directly among neigh-
boring d orbitals. These correlations are of antiferromag-
netic character due to the superexchange mechanism and
are analogous to those created between neighboring sites in
the Hubbard model case. Thus we can understand that for
particle doping the character of the MIT in the periodic
Anderson and Hubbard models is in fact the same; the p
sites merely allow the charge fluctuation (and thus the
delocalization) of the d electrons, but they do not couple
magnetically and do not screen the local moments.

In striking contrast, upon hole doping the scenario is
quite different. In this case, the system finds it is energeti-
cally favorable to create holes in the p band and magneti-
cally bound the holes to the local moment of the correlated
d site. This feature is reminiscent of the ‘‘Zhang-Rice’’
singlet formation [12] and leads to the emergence of a
quasiparticle peak at the Fermi energy as the singlets
delocalize.

In conclusion, we have investigated the doping driven
metal-insulator transition in the periodic Anderson model
in the Mott-Hubbard regime. We found that the size of the
Mott gap can be significantly renormalized by hybridiza-
tion effects. In addition, we found that while both corre-
lated metallic states at small doping show a small
quasiparticle peak at the Fermi energy, the nature of the
MIT is qualitatively different on each side. In the particle
doped side, the quasiparticle peak is associated with a
Kondo-like resonance and the MIT shares the same quali-
tative nature of the first order transition found in the one
band Hubbard model. In contrast, on the hole doped side,
the quasiparticle peak is associated with the formation of
‘‘Zhang-Rice’’ singlets and the transition is second order.
Thus, our study demonstrates that, even in relatively sim-
ple situations, the one band Hubbard model should not be
automatically considered the low energy effective model of
more complicated multiorbital systems. The investigation
of the physical nature of the ‘‘Zhang-Rice’’ correlated
metal is a very interesting problem open for future
investigations.
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