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Polyphenols are secondary metabolites with antioxidant properties and are abundant in the diet. Fruits,
vegetables, herbs, and various drinks (tea, wine, and juices) are all sources of these molecules. Despite
their abundance, investigations into the benefits of polyphenols in human health have only recently begun.
Phenolic compounds have received increasing interest because of numerous epidemiological studies.
These studies have suggested associations between the consumption of polyphenol-rich aliments and the
prevention of chronic diseases, such as cancer, cardiovascular diseases, and neurodegenerative diseases.
More specifically, in the last 10 years literature on the neuroprotective effects of a polyphenol-rich diet has

grown considerably. It has been demonstrated, in various cell culture and animal models, that these
metabolites are able to protect neuronal cells by attenuating oxidative stress and damage. However, it
remains unclear as to how these compounds reach the brain, what concentrations are necessary, and
what biologically active forms are needed to exert beneficial effects. Therefore, further research is needed
to identify the molecular pathways and intracellular targets responsible for polyphenol’s neuroprotective
effects. The aim of this paper is to present various well-known dietary polyphenols and their mechanisms
of neuroprotection with an emphasis on Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis.
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Introduction
The theory of free radicals in the aging process was
first formulated by Harman in the 1950s. Consequent
studies have indicated that oxidative damage (OD)
constitutes a mechanism of injury found in many
types of age-related diseases.1 As we age, antioxidant
defenses become attenuated. This results in the increase
of OD which is considered an important causative
factor in age-related diseases such as Alzheimer’s
and Parkinson’s.2 Neurodegenerative diseases such as
these are becoming increasingly prevalent; therefore,
research on the aging brain as a risk factor in the devel-
opment of these diseases is of paramount importance.
Natural antioxidant molecules have been proposed

as an alternative form of treatment for the prevention

of age-related neurological diseases. Different types of
antioxidant molecules (polyphenols and carotenoids)
and traditional antioxidant vitamins (vitamin C and
E) may contribute to this prevention. Epidemiological
studies have indicated significant differences in the
incidence of various diseases among ethnic groups
that have different alimentation practices. For
example, epidemiological evidence has shown that the
Mediterranean diet, which is rich in antioxidants, is
effective in the prevention of age-related diseases such
as Alzheimer’s.3–8 Many of the benefits derived from
the consumption of these antioxidant-rich diets may
be the result of a synergy between natural antioxidants
such as polyphenols, isoprenoid compounds, and
vitamins.9 This review focuses on the molecular
mechanisms responsible for the antioxidant capacity
of polyphenols and their roles in the prevention of
age-related neurological diseases.
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The brain and oxidative stress
The brain is particularly vulnerable to oxidative stress
(OS). It requires very high amounts of oxygen per unit
of weight (∼20% in humans). It also has a high
content of oxidizable polyunsaturated fatty acids,
especially 20:4 and 22:6 fatty acids. These are highly
susceptible to lipid peroxidation and the presence of
redox-active metals (Cu and Fe).2,10,11 Compounding
the issue is the brain’s relative deficiency in antioxidant
systems.2 Furthermore, energy metabolism of the
brain depends exclusively on glucose utilization and
its complete oxidation in the mitochondria via the
Krebs cycle and electron transport chain (ETC).12

The ETC is composed of complexes I (NADH ubiqui-
none oxidoreductase), II (succinate ubiquinone oxido-
reductase), III (ubiquinone cytochrome c reductase),
IV (cytochrome oxidase), and V (F1F0-ATP
synthase).13 The majority of reactive oxygen species
(ROS) (95–98%) are produced by the ETC during
aerobic metabolism.14 It has been estimated that up
to 2% of the O2 consumed during aerobic metabolism
is converted into the free radical superoxide. This
percent increases in damaged and aged mitochondria.
Mitochondrial complexes I and III are predominant
sites of free radical production, and damaged com-
plexes II and IV can also lead to the generation of
ROS in pathological conditions.15–17

ROS are well-recognized for being both detrimental
and beneficial to biological systems.18–20 These mol-
ecular species are beneficial because they are an inte-
gral component of cellular signaling and are essential
to normal growth and metabolism.18 This explains
why cells exhibit a low level of OS. These levels are
required and are maintained by ROS scavenging
mechanisms, such as catalase and manganese superox-
ide dismutase (Fig. 1).19,20 OS incurs from a disturb-
ance in the balance between free radical production
and scavenging. This results in the accumulation of
excess ROS which damages cellular lipids, proteins,
and DNA, thereby, attenuating their normal function
(Fig. 2). Therefore, under normal and pathological
conditions, mitochondria are the primary source of
ROS and primary target of OD.

OS and damage in neurodegenerative disease
The OS theory of neurodegeneration proposes that an
excess of free radicals leads to the death of nerve cells
via the accumulation of mitochondrial OD. More
specifically, damage of mitochondrial DNA and
protein, caused by OD, results in two major detrimen-
tal effects. It increases the release of ROS within the
mitochondria and attenuates ATP synthesis.21 These
defects in mitochondrial energy metabolism result in
the decrease of high-energy phosphates, deterioration
of membrane potential, and disruption of calcium
homeostasis.22

Mitochondria have a high capacity to sequester
Ca2+ which contributes to the functionality of
neurons.23–25 Mitochondrial calcium dysregulation
along with high levels of ROS, mitochondrial DNA
(mtDNA) mutations, and decreased mitochondrial
respiration have been widely observed in many neuro-
degenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s
disease, and amyotrophic lateral sclerosis (ALS).26–31

Calcium homeostasis can be disrupted by the hyper-
activation of N-methyl-D-aspartate (NMDA)-type
receptors. In neurodegenerative diseases, this results
in glutamate-induced excitotoxicity which can lead
to neuronal death.32 Hyper-activation of NMDA-
type receptors increases the concentration of Ca2+

which can induce the mitochondrial transition pore
(MTP) to open. This results in osmotic swelling and
collapse of the outer mitochondrial membrane. The
MTP is a multiprotein complex composed of a
voltage-dependent anion channel, adenine nucleotide
translocase, and regulatory protein cyclophilin D
(CypD). Once opened, the MTP allows the release of
pro-apoptotic proteins, such as cytochrome c and the
apoptosis inducing factor into the cytoplasm which
activates the apoptotic cascade.2,33,34 Recently, a
major transcription factor, Nrf2 (NF-E2-related
factor 2), has been shown to protect neurons from
toxic insults such as increases in intracellular
calcium, OS, and mitochondrial dysfunction. Nrf2
interacts with the antioxidant response element, acti-
vating a major pathway that regulates phase II antiox-
idant response which includes expression of free

Figure 1 Reactive oxygen species produced during
mitochondrial metabolism. The increased production of ROS
in addition to the decreased antioxidant capacity within the
cell results in damaged DNA, lipids, and proteins.

Figure 2 Redox homeostasis and its cellular impact.
Maintenance of “redox homeostasis” is crucial for normal cell
function. An imbalance can lead to apoptosis or decreased
cell proliferation.
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radical scavengers and cytoprotective enzymes.35 In
neurodegenerative diseases, Nrf2 expression has been
shown to be decreased and its over-expression has
been shown to protect against neurodegeneration
and cell death.35,36

Neuronal cell death is a hallmark feature of neuro-
degenerative diseases. However, it is not clear as to
whether neuronal cell death is a result of apoptosis
or necrosis.37–39 The disruption of calcium homeosta-
sis and resultant opening of the MTP, as well as the
neuroprotective effects of Nrf2 in diseases such as
Alzheimer’s and Parkinson’s suggest apoptosis.
Further research is needed to validate this theory.
Although neurodegenerative diseases share the
general features of increased OS and cell death, the
specific mechanisms underlying these pathologies are
quite different. The following neurodegenerative dis-
eases of Alzheimer’s, Parkinson’s, and ALS will sub-
sequently be discussed in detail.

Alzheimer’s disease
AD is the most common neurodegenerative disease
and presents with a progressive loss of memory as
neurons especially in the cerebral cortex and hippo-
campus, atrophy, and die. The main risk factor for
Alzheimer’s disease is age; its incidence rate doubles
every 5 years after the age of 65.40 It is estimated
that each year approximately 1300 new cases are diag-
nosed per 100 000 elderly people over 65 years of
age.40 While some studies show that the pathology is
not necessarily a result of aging, its prevalence is
expected to increase in the USA from 13.2 to
16.0 million cases in the mid-century due to the
increasing life expectancy of the population.40

Alzheimer’s disease is one the most common tauo-
pathies. Tauopathies are a diverse group of neurode-
generative diseases that present with cognitive and
motor impairments. They are associated with an
accumulation of protein abnormalities (Tau) in the
brain that results in oxidative damage, inflammation,
and increases in intracellular calcium levels.40,41 Two
major characteristics of Alzheimer’s are the intracellu-
lar aggregation of the Tau protein due to its hyper-
phosphorylation and the extracellular aggregation of
amyloid beta peptides (Aβs).41 Hyper-phosphorylated
Tau is insoluble and forms paired helical aggregates
that are cytotoxic.41 Abnormal production, degra-
dation, and aggregation of Aβs is also cytotoxic and
is thought to be an important initiating factor of
Alzheimer’s and is referred to as the ‘amyloid hypoth-
esis’.42 AD’s pathology is characterized by synaptic
dysfunction, nerve cell death, extracellular deposition
of Aβs (forming senile plaques), and intracellular pre-
cipitation/aggregation of hyper-phosphorylated Tau
(forming neurofibrillary tangles). The exact biochemi-
cal mechanisms of AD remain unknown, but much

attention has been given to the massive loss of the neu-
rotransmitter acetylcholine (necessary for cognition
and memory) and the possible implication of OS in
this process.43,44

Excitotoxicity and OS-induced triggering of degen-
erative signaling, including activation of stress kinases
such as JNK (c-Jun N-terminal kinases), are thought
to have important roles in AD.45 Activation of these
pathways could be contributed to, in part, by Aβs
role in the generation of ROS. Aβs have high-affinity
binding sites for both Cu and Zn, and amyloid
protein precursors (APPs) also bind these metals via
N-terminal metal-binding domains. Cu ions bind to
Aβ monomers via three histidine residues and a tyro-
sine, or via a bridging histidine molecule in aggregated
Aβ. Cu has been shown to induce significant Aβ aggre-
gation at mildly acidic conditions (pH 6.6) which
reflects the likely microenvironment in AD neuro-
phils.2 Both Aβs and APPs have strong Cu-reductase
activity, generating Cu+ from Cu2+. This reaction pro-
duces hydrogen peroxide as a by product. Cu+ is also a
potent mediator of the highly reactive hydroxyl radical
(OH·) and APP or Aβ associated Cu+ may contribute
to the elevated OS characteristic of the AD brain.2 Aβs
also may cause oxidation of non-saturated carbo-
hydrate side chains of membrane lipids. This leads to
the disintegration of neuronal membranes and ulti-
mately cell death.46 In addition to the direct induction
of OS, Aβs can also indirectly generate an oxidative
microenvironment via the induction of a local
immune response. In fact, cellular mediators of
inflammation are often found in post-mortem AD
tissue.47

Parkinson’s disease
PD is the second most common neurodegenerative
disease. It presents with abnormalities in motor
control and muscle rigidity as dopaminergic neurons
in the substantia nigra (SN) atrophy and die.48,49

The main risk factor for PD, as in Alzheimer’s, is
age. The estimated overall annual incidence rate is
12.3 per 100 000 and increases to 44 per 100 000
over the age of 50.50 Although PD is typically age
related and idiopathic, some atypical cases are
caused by genetic mutations in genes that encode pro-
teins associated with mitochondrial function.
Pathologically, PD is characterized by the death of

dopaminergic neurons, increases in OS/damage, and
mitochondrial dysfunction. These increases are nor-
mally caused by the accumulation and aggregation
of alpha-synuclein within Lewy bodies.51–53 Lewy
bodies are abnormal intracellular aggregates of
protein that develop inside nerve cells in PD and are
mainly composed of alpha-synuclein. Over-expression
of alpha-synuclein caused by gene multiplications is
the major causative factor in PD suggesting that

Albarracin et al. Effects of natural antioxidants in neurodegenerative disease

Nutritional Neuroscience 2012 VOL. 15 NO. 1 3



alpha-synuclein accumulation is toxic.52 However,
DNA mutations in the alpha-synuclein encoding
gene, parkinson protein 1 (PARK1), as well as other
genes, such as parkinson protein 2 (PARK2), polymer-
ase gamma (POLG), and phosphatase and tensin
homolog (PTEN)-induced putative kinase 1 (PINK1)
are also able to cause PD in atypical cases.51 Point
mutations in PARK1, which encodes the alpha-synu-
clein protein, cause the aggregation of this protein
with resultant cytotoxicity and onset of PD. Alpha-
synuclein is typically found in neuronal and glial
cells in a linear soluble form and interacts directly
with the inner mitochondrial membrane. It has been
shown to inhibit mitochondrial complex I activity in
the SN; therefore, it may be a major contributor to
mitochondrial dysfunction and generator of ROS in
PD.51 Mutations in PARK2, which encodes the parkin
protein that is a component of a multiprotein E3 ubiqui-
tin ligase complex, are not associated with Lewy body
formation but still cause dopaminergic cell death and
onset of PD.51 Mitochondrial DNA deletions in
POLG, which encodes a catalytic subunit of the mito-
chondrial DNA polymerase, cause reduced dopamine
transport and onset of PD.51 Recessive mutations in
the kinase domain of PINK1, which encodes the
PINK1 protein, result in the abnormal phosphorylation
of mitochondrial proteins, defective oxidative phos-
phorylation, increased OD, and onset of PD.51

Recently, monoamine oxidase B (MAO-B) has
emerged as another possible component in the pathol-
ogy of PD. MAO-B is bound to the outer mitochon-
drial membrane in neuronal and glial cells, and is
able to degrade the neurotransmitter dopamine. In
PD dopaminergic neurons in the SN selectively degen-
erate. MAO-B exacerbates this effect by degrading the
neurotransmitter dopamine that is already deficient in
this region; which, in return produces H2O2 and toxic
aldehydes as a by-product of this degradation.54

MAO-B is mainly localized in glial cells and is also
able to oxidize the xenobiotic 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine to 1-methyl-4-phenyl-pyri-
dinium which is a known neurotoxin that causes
PD.54 MAO-B levels have been shown to increase
with age and in PD as well as other neurodegenerative
diseases, and are associated with increases in the pro-
duction of ROS.53 In fact, transgenic C57Bl6 mice
expressing human MAO-B within astrocytes at levels
seen in advanced age was sufficient enough to
produce significant neuronal death due to increases
in ROS production and OD.53 ROS produced by
MAO-B can be released into the extracellular environ-
ment and can diffuse into neighboring cells. This can
result in the accumulation of intracellular H2O2

within the terminals of dopaminergic neurons. This
is followed by an accompanying increase in dopamine
oxidation to dopaminochrome (DACHR), as well as

selective mitochondrial complex I inhibition, and
elevation in mitochondrial superoxide levels.55

Amyotrophic lateral sclerosis
ALS; also known as Lou Gehrig’s disease is a neurode-
generative disease that involves the selective death of
neurons in the cortex, brainstem, and spinal cord.
This results in progressive paralysis and muscle
atrophy.56 The name of this disease reflects the differ-
ent tissue compartments that are severely affected. In
particular, ‘amyotrophic’ refers to the atrophy of
muscle fibers and loss of muscle mass, ‘lateral’ refers
to the nerve tracks that run down both sides of the
spinal cord where many neurons affected by ALS are
found, and ‘sclerosis’ refers to the scar tissue that
remains following neuronal degeneration.57 ALS has
an incidence of 1–4 per 100 000 each year, and a preva-
lence of 4–6 per 100 000 worldwide. People of all races
and ethnic backgrounds are affected, men more often
than women, and mostly between 40 and 60 years of
age.58 ALS is epidemiologically classified into two
forms sporadic (90–95%) and familial (5–10%).59

Pathologically, ALS is characterized by increases in
OS, loss of mitochondrial membrane potential (ΔΨm)
and changes in electron transport, formation of
protein aggregates, altered Ca2+ homeostasis, excito-
toxicity by AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor)/kainate receptos,
and aberrant functioning of surrounding glial
cells.60–70 Since the discovery of missense mutations
in the gene encoding the antioxidant enzyme Cu/Zn
superoxide dismutase 1 (SOD1) in familial ALS,
most ALS research has been directed toward elucidat-
ing this mechanism.71 A major hallmark of ALS is the
presence of intracellular protein inclusions. Which are
mainly composed of aggregated SOD1 caused by
mutations in the SOD1 gene.72,73 In fact, aggregation
of SOD1 in transgenic mice with mutations in the
SOD1 gene was sufficient enough to cause ALS.74,75

SOD1, which is predominantly a cytosolic protein,
normally localizes within the intermembranous space
(IMS) of the mitochondria; however, mutant SOD1
has been shown to accumulate on the outer membrane
(OM) and matrix.59,76–79 Mutant SOD1 aggregation
in both the matrix and OM has been shown to increase
ROS production resulting in morphological and func-
tional abnormalities in mitochondria, and eventually
neuronal cell death.80–82 Targeting mutant SOD1
specifically to the IMS also resulted in mitochondrial
dysfunction.83,84 The targets of mutant SOD1 in mito-
chondria are not fully characterized, but defects in the
activity of complex IV of the respiratory chain have
been consistently described.76,82,85,86 These defects
can be attributed to impaired association of cyto-
chrome c with the inner membrane, competition for
mitochondrial copper supply between mutant SOD1
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and complex IV, or inhibition by excess NO pro-
duction.62,87,88 ALS mediated by aggregated SOD1 is
not strictly limited to neurons and has a major glial
component as well. Forsberg et al.70 found that aggre-
gated SOD1 is also present in the nuclei of glial cells
with mutated SOD1 and in sporadic and familial
ALS that both lack such mutations. In one study,
nuclear staining of aggregated SOD1 in glial cells
was found in 59 out of 60 ALS patients investigated.
This demonstrated the important role of glial cells in
the dysfunction of motor neurons in ALS.89

Natural antioxidants and their neuroprotective
effects
OS/damage is one of the most important character-
istics of neurodegenerative diseases. Evidence supports
the hypothesis that neuroprotection may be an achiev-
able pharmacological target against neurodegenerative
disorders; however, to date few effective compounds
have been developed for clinical application and even
fewer have been successful because of their toxicity
and potential to cause cancer. On the other hand,
the use of relatively safe antioxidant compounds
found in the diet as a form of treatment in these dis-
orders is attractive but limited by the difficulty in
reaching an active concentration in the brain.90

Natural antioxidants like polyphenols provide neuro-
protective effects through a variety of biological
actions, such as interaction with transition metals,
inactivation of free radicals, modulation in the activity
of different enzymes, and effects on intracellular sig-
naling pathways and gene expression.91,92 Several epi-
demiological studies suggest that diets rich in
antioxidants play an important role in the protection
against various pathologies. The main sources of

these molecules are found in fruits and vegetables
and are associated with lower risks of cancer, heart
disease, hypertension, neurodegenerative diseases,
and stroke.93–95

Polyphenols are secondary plant metabolites that
represent a broad group of compounds having aro-
matic rings and are characterized by the presence of
one or more hydroxyl groups with different structural
complexities. The most abundant class of phenolic
compounds in plants are flavonoids, such as flavonols,
flavones, isoflavones, anthocyanidins, etc. (Fig. 3). The
most common dietary polyphenols in general are the
flavonols (quercetin and catechin) as well as the non-
flavoid compound resveratrol. Resveratrol (3,5,40-
trihydroxystilbene) is a phytoalexin present in red
wine and grapes. It has two phenolic rings connected
by a double bond and has two isoforms trans-resveratrol
and cis-resveratrol. Trans-resveratrol is the main focus
of current research and is thought to be responsible for
the French Paradox.91 Quercetin (2-(3,4-dihydroxy-
phenyl)-3,5,7-trihydroxy-4H-chromen-4-one) is a
flavonol found in apples, tea, capers, and onions.
Catechins are flavanol monomers comprising chemi-
cally similar compounds such as (+/−)-epicatechin,
(+)-gallocatechin, (−)-epicatechin gallate (EGC),
and (−)-epigallocatechin gallate (EGCG).96 There
are more than 50 different plant species and over
8000 phenolic compounds identified either in their
single or pure molecular form or in specific
proportions of differing plant extracts. Investigating
the health benefits of these natural compounds is an
enormous challenge to modern medicine.97

Green tea polyphenols are believed to be strong
antioxidants against hydroxyl radicals, nitric oxide,
and lipid oxidation.98 They contain a number of

Figure 3 The subgroups of flavonoids.
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bioactive chemicals and are particularly rich in flavo-
noids including catechins and their derivatives of
which epigallocatechin-3-gallate (EGCG) is the
main constituent. EGCG accounts for more than
10% of the dry weight extract, followed by (−-
)-epigallocatechin (EGC), (−)-epicatechin (EC), and
(−)-epicatechin-3-gallate (ECG).99 These flavonoids
have antioxidant potencies in the order of EGCG>
ECG> EGC> EC.100 Their free radical scavenging
abilities relate to the gallate moiety esterified at pos-
ition 3 of the C ring, the catechol group (3,4-dihy-
droxyl groups) on the B ring, and the hydroxyl
group at positions 5 and 7 on the A ring.
Moreover, the free radical scavenging property
increases with the number of hydroxyl groups that
the catechin possesses. For example, EGCG and
EC possess eight and five hydroxyl groups, respect-
ively, and the antioxidant activity of EGCG is
higher than that of EC.
In neurodegenerative diseases, administration of

green tea extracts reduced Aβ production/aggregation
when APP/Aβ was over-expressed in mice and when
APP/Aβ was over-expressed in neuron cell cultures
through enhanced beta-secretase activity.101 EGCG,
the most important flavonoid extracted from green
tea leaves, has been shown to reduce gamma and
beta-secretase activity, attenuate the amyloidogenic
pathway, reduce the presence of Aβ aggregation, and
in return prevent neuron cell death in Alzheimer’s
disease.102 Another study, using PC12 cells, demon-
strated the protective effects of EGCG and extracts
from grape skin on the neurotoxicity caused by
Aβ.103 Also of interest is the ability of catechins and
epicatechins, that were extracted from grape seeds, to
reverse the aggregation of tau in AD.104 An alternative
and putative mechanism for decreased aggregation of
Aβ in neurons is the ability of certain polyphenols to
interact with metals such as copper. It is known that
aggregates of Aβ interact with copper and promote
increases in ROS production.105

Other well-known polyphenols include Baicalin and
Curcumin. Baicalin, an ancient Chinese herbal medi-
cine, is another well-known flavonoid that is isolated
from the Scutellaria baicalensis root (Huang Qin).
Baicalin has been shown to inhibit the aggregation
of Aβ and reduce the production of H2O2 and oxi-
dative damage in SH-SY5Y cells.106 Curcumin (difer-
uloylmethane), a non-flavonoid polyphenol, is derived
from turmeric, the powdered rhizome of the medicinal
plant Curcuma longa Linn. It has been used for
centuries throughout Asia as a food additive and a
traditional herbal remedy. Recent studies demon-
strated that besides potent anti-oxidative and
anti-inflammatory properties, curcumin also exhibits
anti-amyloidogenic effects.107 Curcumin binds
amyloid directly and inhibits Aβ aggregation

preventing fibril and oligomer formation.108 These
anti-fibril effects of curcumin were also observed in
studies involving alpha-synuclein in PD.109 Other
studies have shown that curcumin may also be able
to increase Nrf2 expression and increase the neuropro-
tective effects in AD and PD.110

Conclusion
Neurodegenerative diseases such as Alzheimer’s,
Parkinson’s, and ALS are age-related diseases that
lead to protein aggregation, ROS production, OD,
mitochondrial dysfunction, and cell death.
Treatments (intranasal, intravenous, and oral) of
these diseases with synthetic compounds in clinical
trials have proven difficult due to their toxicity and
ability to cause cancer. Therefore, treatments with
natural antioxidants such as polyphenols through
diet or dietary supplements have become an attractive
alternative.

Clinical trials testing the efficacy of polyphenol
dietary supplements in the treatment of neurodegen-
erative diseases remain scarce. At this time we are
not aware of any clinical trials using polyphenols in
the treatment of ALS or PD. The following are the
current ongoing clinical trials using polyphenols in
the treatment of Alzhiemer’s disease: Phase IV clinical
trial, Effects of Dietary Interventions (including
resveratrol) on the Brain in Mild Cognitive
Impairment at Charité Universitätsmedizin Berlin
directed by Dr Agnes Floeel; Phase III clinical trials,
Randomized Trial of a Nutritional Supplement
(resveratrol) in Alzheimer’s Disease at the Mount
Sinai School of Medicine directed by Dr Mary Sano,
Pilot Study of the Effects of Resveratrol Supplement
in Mild-to-Moderate Alzheimer’s Disease at the
Institute of the Study of Aging directed by Dr John
Ringman; Phase II clinical trials, Curcumin in
Patients with Mild to Moderate Alzheimer’s Disease
at the UCLA Medical Center directed by Dr John
Ringman, and Efficacy and Safety of Curcumin
Formulation in Alzheimer’s Disease at the Jaslok
Hospital and Research Centre directed by Dr Fali
Poncha.

Polyphenols, both flavoids and non-flavoids, have
proven to be effective in alleviating and protecting
against the general mechanisms of neurodegenerative
diseases in various cell culture and animal models.
However, clinical trial research utilizing polyphenol
dietary supplementation or a novel dosage form
remains scarce. Much remains unknown about the
bioavailability of polyphenols such as absorption
after ingestion, effects of food matrix on absorption,
metabolic fate in the liver, and tissue uptake. Also,
very few circulating metabolites of polyphenols have
been researched and identified. Compounding this
issue is polyphenol’s poor absorption and rapid
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elimination from the plasma. Given the rapid plasma
elimination of polyphenols, a novel intravenous
dosage form would be of great interest. Future
research is needed to further elucidate the polyphenol
neuroprotective mechanisms and to identify which
classes and combinations of polyphenols have the
most efficacies. The further characterization of path-
ways involved in polyphenol bioavailability and trans-
port after consumption is also of importance.
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