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Purpose of review

In this review, we show novel evidence about the role of the liver in the development of insulin resistance
and suggest that abnormal hepatic triglyceride accumulation is not an innocent bystander comorbidity but
adversely affects the peripheral insulin sensitivity.

Recent findings

The core of this review is built up around the concept that liver DNA methylation of the peroxisome
proliferative activated receptor gamma coactivator one alpha gene promoter modulates the status of
peripheral insulin resistance and is strongly associated with plasma fasting insulin levels. We discuss about
other mechanisms associated with peroxisome proliferative activated receptor gamma coactivator one
alpha regulation, such as an acetylation and deacetylation switch and how these events impact on the liver
metabolic function. We suggest a mitochondrial-centric approach to understand the connection between
nonalcoholic fatty liver disease and insulin resistance. We finally show new data about how the liver
epigenome is modulated by nutritional cues and introduce the role of epigenetics in liver metabolic
programming.

Summary

The implications of these findings for clinical practice are promising, as the inherent plasticity of epigenetic
modifications, produced either physiologically or pathologically, suggests that early therapeutic intervention
in patients with fatty liver can potentially revert the systemic phenotype associated with insulin resistance.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD), a highly
prevalent disease that results from excessive fat
accumulation in the liver, is regarded as the hepatic
manifestation of the metabolic syndrome [1] and is
independently associated with an increased cardio-
vascular risk [2]. In a recentmeta-analysis,we showed
that NAFLD patients carry an increase of 13%
of carotid intima-media thickness [3]. In addition,
patients with NAFLD not only have increased circu-
lating levels of biomarkers of atherosclerosis [4], but
also show abnormal liver expression of mediators of
atherogenesis and endothelial damage [5]. As insulin
resistance is the hallmark feature of the metabolic
syndrome, clinical and epidemiological evidence has
suggested it as a major contributor to the pathogen-
esis and disease progression of NAFLD [1]. Neverthe-
less, there is scarce data about the molecular
mechanisms by which insulin resistance and NAFLD
are biologically linked. In addition, there is still a
debate aboutwhether insulin resistance is the trigger-
ing physiopathological mechanism of NAFLD, or
conversely, NAFLD initiates the metabolic events
associated with insulin resistance andmetabolic syn-
drome-related phenotypes.

In this review, we describe novel evidence on the
role of the liver in the development of insulin
resistance and suggest that the abnormal hepatic
triglycerides accumulation is not a bystander
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KEY POINTS

� Liver DNA methylation of PPARGC1A gene promoter
might be the triggering event and perhaps an important
causative factor of insulin resistance.

� Adaptation of body metabolic demands and variable
environmental conditions is achieved through regulation
of the liver PPARGC1A activity by mechanisms such as
acetylation and deacetylation.

� Changes in liver mitochondrial DNA may explain the
molecular events associated with the ‘dyad’ NAFLD-IR.

� Nutritional, pharmacological, and chemical cues can
modify the metabolic capacity of the liver by epigenetic
mechanisms and may imply a target for preventive or
therapeutic intervention.

� Exposure to a nutritional insult in early life modulates
the functionality of the liver during adulthood, and ‘liver
metabolic imprinting’ during fetal life may further
contribute to the pathogenesis of adult complications
such as insulin resistance and NAFLD.
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comorbiditybut adversely affects theperipheral insu-
lin sensitivity. This review is built up around the
hypothesis that local epigenetic changes occurring
in the liver critically modulate insulin resistance.
We additionally suggest a mitochondrial-centric
approach to understand the mechanisms associated
with the ‘dyad’ NAFLD-IR. We also discuss new data
about how the liver epigenome is modulated by
nutritional cues; the list below summarizes schemati-
cally why we considered epigenetic factors as modi-
fiers of NAFLD and insulin resistance.
(1)
1363
What we know about NAFLD and insulin
resistance?
(a) Insulin resistance and NAFLD result from

a complex interplay between genes and
environment.

(b) Genetic risk factors seem to explain a small
portion of the heritability of metabolic
syndrome components.

(c) Environmental factors, such as decreased
physical activity and overnutrition, play
an important role in the development of
metabolic disturbances associated with the
modern epidemic of metabolic syndrome-
-195
related phenotypes.
(2)
 Why epigenetics explains the pathogenesis of
NAFLD and insulin resistance?
(a) Epigenetic gene regulation is a key factor in

the pathogenesis of complex disorders.
(b) Epigenetic modifications can explain the

mechanisms involved in the gene–environ-
ment interaction, sexual dimorphism,
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and metabolic programming during fetal
development.

(c) Epigenetic regulation is dynamic and is
subject to both internal and external
influences.

(d) Epigenetic marks like DNA methylation
can permanently modify the phenotype
and be propagated during cell division and
even transmitted to the next organismal

generation.
(3)
 Implications for clinical practice or research
(a) Epigenetic marks could be modified by diet,
habits, and drugs.
LIVER DNA METHYLATION OF THE
PPARGC1A PROMOTER LINKS FATTY
LIVER WITH INSULIN RESISTANCE

Metabolic disturbances in the hepatic tissue, such as
those found in the fatty liver, may be the triggering
events and perhaps the causative factors of insulin
resistance [6]. Furthermore, it also was suggested
that fatty liver could be directly involved in the
pathogenesis of obesity-associated dyslipidemia [6].

There are several candidates that can provide a
direct link between external physiological stimuli
and the metabolic disorders associated with NAFLD
and insulin resistance. Perhaps, the main one that
can orchestrate the regulation of genes involved in
energy metabolism, response to starvation, positive
regulation of gluconeogenesis and cell glucose
homeostasis, positive regulation of fatty-acid beta
oxidation, brown fat cell differentiation and adap-
tive thermogenesis, and mitochondrial biogenesis
is the transcriptional coactivator PPARGC1A, also
known as PGC1a. PPARGC1A also is putatively
involved in the regulation of physiological proc-
esses, such as blood pressure [7] and cellular choles-
terol homoeostasis, and clinical phenotypes, such as
obesity and type 2 diabetes (T2D) [8].

Hence, we focused on the methylation of
5-methylcytosine in dinucleotides CpG, which
is generally associated with gene silencing, and
measured the level of DNA methylation of three
putative methylation target sites in the promoter
of the PPARGC1A (located at positions –513, –519,
and –615 relative to the transcriptional start site)
[9

&

]. Interestingly, we demonstrated that the meth-
ylation status of the PPARGC1A promoter in
the liver of patients with NAFLD is significantly
associated with plasma fasting insulin levels and
homeostasis model assessment of insulin resistance
(HOMA-IR), regardless of the liver disease severity
[9

&

]. As expected, we observed that the methylation
status of the PPARGC1A promoter was significantly
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associated with fatty liver as disease trait, showing
that a higher proportion of the alleles were meth-
ylated inNAFLD patients in comparisonwith that in
the liver of control individuals [9

&

]. In addition, we
also observed that liver PPARGC1A mRNA abun-
dance was inversely correlated with themethylation
levels of PPARGC1A promoter CpGs, suggesting that
themethylation of at least the three explored sites in
the promoter efficiently repressed the transcrip-
tional gene activity [9

&

].
One may wonder whether this is a ‘tissue-

specific’ event or if it is part of a global phenomena
occurring in all of the metabolic syndrome target
tissues. Actually, just few human studies have
explored the DNA methylation status of candidate
genes in tissues from affected patients. Thus, the
evidence is still inconclusive, partly because of the
limitations in sampling human tissues. Neverthe-
less, the published evidence confirms that the DNA
methylation of the PPARGC1A promoter is critically
involved in highly active metabolic tissues such as
skeletal muscle and pancreas. For instance, Barres
et al. [10] observed that in skeletal muscle biopsies of
patients with T2D, the PPARGC1A promoter was
hypermethylated, and most of the methylated cyto-
sines were found within non-CpG dinucleotides,
although surprisingly, the methylation status was
neither related with peripheral insulin resistance
nor influenced by glucose or insulin. In addition,
DNA methylation of PPARGC1A promoter was
explored in vitro in human isolated pancreatic islets
of T2D patients, andmethylation also was increased
[11]. Despite PPARGC1AmRNA expression and insu-
lin secretion being reduced in pancreatic islets, the
methylation status was not correlated with insulin
resistance [11]. In conclusion, altogether, these data
support the ‘liver-centric’ hypothesis of the patho-
physiology of insulin resistance and suggest the
fatty liver as a modulator of the progressive impair-
ment of insulin action in the liver, skeletal muscle,
and adipose tissue, as shown by the clinical evidence
[1,12,13]. This hypothesis supposes that liver epige-
netic changes are not necessarily ‘tissue specific’, but
their consequences on the systemic phenotype are
‘organ specific’.
PPARGC1A IS HIGHLY REGULATED BY
METABOLIC DEMANDS AND IS A TARGET
FOR EPIGENETICALLY ACTIVE DRUGS

PPARGC1A activity is highly regulated by posttrans-
lational modifications responding to metabolic
stimuli. This premise supposes an important attrib-
ute of PPARGC1A: its capacity to adapt tissue metab-
olism to variable environmental conditions. The
liver is particularly affected by nutritional factors,
352 www.co-clinicalnutrition.com
and the way the organ adapts to the metabolic
demands is by a highly dynamic process that
includes changes in metabolic enzymes and mito-
chondria. For example, a proteomic survey of
mousse liver identified 388 acetylation sites in
195 proteins, being particularly abundant in the
mitochondria [14].

In fact, nutritional signals modulate the effects
of PPARGC1A on glycolytic genes in response to
fasting, and this effect is regulated by sirtuin 1
(SIRT1) [15]. Recent data showed that AMP-acti-
vated protein kinase (AMPK) and SIRT1 directly
affect PPARGC1A activity through phosphorylation
and deacetylation, respectively [16]; actually, a
previous report demonstrated that SIRT1 catalyzes
PPARGC1A deacetylation both in vitro and in vivo
[17]. Interestingly, these molecular events not only
have a significant impact on energy expenditure,
but also enhance mitochondrial biogenesis and oxi-
dative phosphorylation (OXPHOS) capacity and
indirectly modulate fatty acid oxidation and insulin
resistance. The enzyme histone acetyltransferase
GCN5 also acetylates PPARGC1A, a process that
results in a transcriptional repression of the down-
stream PPARGC1A-regulated genes [18]; in-vitro
functional evaluation showed that expression of
GCN5 in mouse liver largely represses gluconeo-
genic enzyme gene transcription and decreases hep-
atic glucose production [18].

The coupled action of PPARGC1A and estrogen-
related receptor alpha (ERRa) plays a central role in
the transcriptional control of energy homeostasis,
and the regulation of the ERRa activity also is under
a dynamic acetylation and deacetylation switch [19].
Recent findings identified prospero homeobox 1
(Prox1), a genetic locus implicated in fasting
glucose homeostasis and increased risk for T2D
[20], as a negative regulator in the liver tissue of
the ERRa–PPARGC1A axis [21].

A summary of functional protein interaction
analysis around PPARGC1A-associated network
using the above-mentioned proteins as template is
shown in Figure 1; cellular response to hypoxia
and histone modifications is highly predicted, and
putative interesting new targets of epigenetic modi-
fications are suggested. As a general conclusion,
enzymes and complexes involved in epigenetic
modifications of the chromatin structure also seem
to play an important role in post-translationalmodi-
fications of key proteins in metabolic pathways.

What may be the implications of these findings
for clinical practice? As a possible answer, we high-
light the concept of ‘reversibility’ supposing that
these processes are plausible of intervention. For
instance, acetylation–deacetylation of PPARGC1A
was described to adapt mitochondrial energy
Volume 15 � Number 4 � July 2012
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FIGURE 1. Network analysis of PPARGC1A protein interactions predicts new targets of epigenetic modifications. In-silico,
protein-predicted interactions were performed by the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
resource that includes direct (physical) and indirect (functional) associations; they are derived from four sources: genomic
context, high-throughput experiments, conserved coexpression, and previous knowledge from literature. Network prediction
shows putative functional links based on binding activity, post-translational modification, coexpression, or activation. Input
genes: AMPK or PRKAB1, protein kinase, AMP-activated, beta 1 noncatalytic subunit-activated; ESRRA, estrogen-related
receptor alpha; GCN5 or KAT2A, K (lysine) acetyltransferase 2A (functions as a histone acetyltransferase (HAT) to promote
transcriptional activation; HIF1A, hypoxia-inducible factor 1, alpha subunit (basic helix -loop -helix transcription factor);
PPARGC1A, peroxisome proliferator-activated receptor gamma, coactivator 1 alpha; and SIRT1, sirtuin (silent mating type
information regulation 2 homolog) 1. New predicted targets: ARNT, aryl hydrocarbon receptor nuclear translocator; CREBBP,
binding protein; EGLN1, egl nine homolog 1 (C. elegans); EP300, microRNA 1281 (functions as histone acetyltransferase
and regulates transcription via chromatin); FOXO1, forkhead box O1; HIF1AN, hypoxia-inducible factor 1, alpha subunit
inhibitor; PRKAA1, protein kinase; TP53, tumor protein p53; TRRAP, transformation/transcription domain-associated protein;
VHL, von Hippel-Lindau tumor suppressor. Prediction of Go Biological processes are shown in dashed circles, which includes
P values from predicted pathway.
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demands [22
&&

]. Same concepts apply to histone
methylation and demethylation [23].

As an example of the prospect of therapeutic
intervention, several drugs or even natural com-
pounds seem to act on histone deacetylases that
decrease the acetylation of PPARGC1A and con-
sequently increase its activity [24]. A small molecu-
lar activator of SIRT1, which is structurally unrelated
to resveratrol but is a thousand-fold more potent,
1363-1950 � 2012 Wolters Kluwer Health | Lippincott Williams & Wilk
showed improvements in insulin sensitivity,
plasma glucose levels, and increased mitochondrial
capacity in an experimental model of insulin resist-
ance [25].

In addition, a new concept is the ‘mitochondrial
epigenetics’ asmitochondrial DNA (mtDNA)may be
subject to methylation by a novel isoform of DNA
methyltransferase 1 (DNMT1), which is upregulated
by PPARGC1A [26

&

]. We have found that the ND6
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[NADH dehydrogenase, subunit 6 (complex I)]
encoding by the mtDNA is hypermethylated in liver
biopsies from NAFLD patients (unpublished data).
This finding may be important to explain the
following aspect.
INSULIN RESISTANCE AND
NONALCOHOLIC FATTY LIVER DISEASE:
A MITOCHONDRIAL-CENTRIC APPROACH
TO EXPLAIN THE PATHOGENETIC
CONNECTION

Mitochondrial dysfunction is largely recognized as
being critically involved in the development of
insulin resistance. In fact, normal activity of the
mitochondria critically determines fatty acid beta-
oxidation, OXPHOS, and insulin signaling. There is
a close relation among metabolic stressors, mito-
chondrial biogenesis, and mtDNA copy number.
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FIGURE 2. Mitochondrial-centric approach to explain the patho
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reactive oxygen species, mitochondrial changes, and inflammatio
disease develops when adaptive mechanisms fail to keep the phy
accumulation and environmental pressure lead to changes in mito
for instance, an increase in mtDNA copy number during initial di
decrease when the disease progress and insulin resistance develo
changes in the liver epigenome, which directly have an impact on
that modulate the mitochondrial function and physiology.
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We observed that mitochondrial biogenesis is
reduced in the liver of NAFLD patients, and this
reduction is associatedwith peripheral insulin resist-
ance and PPARGC1A promoter methylation status
[9

&

]. This finding also was observed in other tissues,
such as skeletal muscle [10]. Interestingly, in our
study, mtDNA copy number was inversely corre-
lated with HOMA-IR, serum fasting glucose, and
plasma fasting insulin [9

&

], suggesting that liver
mtDNA is critically involved in the modulation of
insulin resistance. The liver epigenome is perhaps
more complex than expected, and other molecular
mediators involved in the modulation of the
mtDNA copy number, such as hypoxia-inducible
factor 1 alpha (HIF1a) (Fig. 2) [27], are regulated
by epigenetic modifications and also are substrate of
histone deacetylases [28]. Remarkably, PPARGC1A is
coupled to HIF1a signaling to modulate mitochon-
drial biogenesis [29].
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sease state to adapt metabolic demands and a significant
ps. In addition, NAFLD is associated with significant
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THE LIVER EPIGENOME IS MODULATED
BY NUTRITIONAL CUES

Recent evidence from diet-induced NAFLD animal
models showed that metabolic insults modify the
DNA methylation of candidate gene promoters. For
example, high-fat diet (HFD)-induced NAFLD is
associated with markedly promoter hypermethyla-
tion of glycolytic genes, such as glucokinase (Gck)
and L-type pyruvate kinase (LPK), that significantly
correlated with the downregulation of their tran-
scription and a profound impact on insulin sensi-
tivity [30

&

]. Conversely, high-sucrose diet was not
associated with changes in liver DNA Gck methyl-
ation [31], suggesting that epigenetic changes in the
liver might be influenced by some, but not all,
nutritional factors.

Furthermore, mice fed a lipogenic methyl-
deficient diet, which causes liver injury similar to
that observed in human nonalcoholic steatohepa-
titis (NASH), showed aberrant histonemodifications
and alterations in the expression of Dnmt1 and
Dnmt3a proteins in the liver [32].

Finally, recent data showed that under physio-
logical conditions, protein acetylation is crucial
in the regulation of liver gluconeogenesis. For
example, the two key enzymes that catalyze the last
and first step of glycolysis and gluconeogenesis,
pyruvate kinase, and phosphoenolpyruvate carboxy
kinase (PEPCK or PCK1), respectively, are both
regulated by lysine acetylation [33,34].
METABOLIC PROGRAMMING OF THE
LIVER EPIGENOME AND INSULIN
RESISTANCE

Epigenetic changes, such as DNA methylation and
histone modifications, also contribute to metabolic
programming, and the most remarkable con-
sequence is the transmission of the phenotype
through generations. The concept of metabolic pro-
gramming presumes a permanent change of the
metabolism of the newborns exposed to an adverse
intrauterine environment that continues to be
expressed even without the original stimulus.
Remarkably, epigenetic changes are the most attrac-
tivemechanisms to explain these events. This prem-
ise is well documented in rodents, and epigenetic
changes in the liver tissue were demonstrated in
models of maternal protein restriction and under-
nutrition. For example, maternal low-protein diet is
associated with a significant increase in the hepatic
expression of Dnmt1 and Dnmt3a and methyl CpG-
binding domain 2 (Mbd2) proteins, suggesting that
maternal protein and folic acid restriction during
gestation alters in the pups the global liver gene
expression by regulating the genome-wide DNA
1363-1950 � 2012 Wolters Kluwer Health | Lippincott Williams & Wilk
methylation [35]. An interesting example was
recently reported by Plosch et al. [36] showing that
the liver X-receptor alpha (Lxra, a nuclear receptor
involved in control of cholesterol and fatty acid
metabolism) promoter is hypermethylated in the
fetal liver of protein-restricted pups, leading to a
significant reduction of its mRNA.

Maternal overnutrition also causes a significant
impact on the metabolic programming of the liver
tissue. For instance, gestational HFD results inmodi-
fications of the hepatic Pck1 histone code in off-
spring livers, suggesting that in-utero exposure to
HFD programs the gluconeogenic capacity of the
offspring through epigenetic modifications leading
to excessive glucose production and altered insulin
sensitivity in adulthood [37].

In addition, HFD during pregnancy significantly
causes transgenerational accumulation of epige-
netic modifications leading to the upregulation of
metabolic pathways in the liver [33].

Finally, reinforcing our mitochondrial-centric
concept of the pathogenesis of insulin resistance,
in a rodent model, we showed that maternal HFD
feeding during pregnancy programs liver mtDNA
content and the liver transcriptional activity
of Ppargc1a, which strongly modulates, in a sex-
specific manner, glucose homeostasis and organ
fat accumulation in adult life, including the devel-
opment of fatty liver [38]. Again, the association of
changes in DNA methylation and mtDNA content
also are seen in the abnormal extremes of fetal
growth in human newborns [39,40].

In addition, gestational protein restriction
that results in low birth weight was associated with
significant changes in liver gene expression, specifi-
cally showing an upregulation of mitochondrial
genes [41].
CONCLUSION

The liver is a critical metabolic sensor that tightly
commands glucose and lipid metabolism. Pheno-
typic changes, such as fatty liver, are associated with
tissue modifications at molecular level, particularly
the liver epigenome. Hepatic DNA methylation of
the promoter ofmastermetabolic regulators, such as
PPARGC1A, has a strong impact on peripheral insu-
lin resistance and body insulin sensitivity and on
liver mitochondrial biogenesis. Nutritional cues are
powerful modulators of the liver epigenome and
operate at different levels, including metabolic pro-
gramming. It is still an open question to what extent
the liver epigenetic marks are reversible by any
intervention and if so, by modifying the epigenetic
marks, we can operate efficiently on the phenotype.
In addition, epigenetic marks are now found in
ins www.co-clinicalnutrition.com 355
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mtDNA; mitochondrial genomes should be
included and further investigated. Finally, as DNA
and histone-modifying enzymes are active on a
wide array of cytosolic and mitochondrial proteins,
the concept of the ‘epiproteomics’ may emerge.
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