Antiparasitic Effect of Vitamin B$_{12}$ on Trypanosoma cruzi

Alejandra B. Ciccarelli, Fernanda M. Frank, Vanesa Puente, Emilio L. Malchiodi, Alcira Batlle and Maria Elisa Lombardo

Published Ahead of Print 6 August 2012.

Updated information and services can be found at: http://aac.asm.org/content/56/10/5315

These include:

REFERENCES

This article cites 25 articles, 5 of which can be accessed free at: http://aac.asm.org/content/56/10/5315#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml
To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Antiparasitic Effect of Vitamin B$_{12}$ on *Trypanosoma cruzi*

Alejandra B. Ciccarelli, Fernanda M. Frank, Vanesa Puente, Emilio L. Malchiodi, Alcira Batlle, and Maria Elisa Lombardo

Centro de Investigaciones sobre Porfirinas y Porfirias, CIPYP (UBA-CONICET), Hospital de Clínicas José de San Martín, UBA, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, UBA, Buenos Aires, Argentina; Cátedra de Inmunología, IDEHU (UBA-CONICET), Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina; and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina.

A nutritional characteristic of trypanosomatid protozoa is that they need a heme compound as a growth factor. Because of the cytotoxic activity of heme and its structural similarity to cobalamins, we have investigated the in vitro and in vivo effect of vitamin B$_{12}$ (or cyanocobalamin) on the different forms of *Trypanosoma cruzi*. Cyanocobalamin showed a marked antiparasitic activity against epimastigotes (50% inhibitory concentration [IC$_{50}$], 2.42 μM), amastigotes (IC$_{50}$ 10.69 μM), and trypomastigotes (IC$_{50}$ 9.46 μM). Anti-epimastigote and -trypomastigote values were 1.7 to 4 times lower than those obtained with the reference drug benznidazole (Bnz). We also found that B$_{12}$ and hemin do not interact with each other in their modes of action. Our results show that B$_{12}$ increases intracellular oxidative activity and stimulates both superoxide dismutase (50%) and ascorbate peroxidase (20%) activities, while the activity of trypanothione reductase was not modified. In addition, we found that the antioxidants diithiothreitol and ascorbic acid increase the susceptibility of the parasite to the cytotoxic action of B$_{12}$. We propose that vitamin B$_{12}$ exerts its growth-inhibitory effect through the generation of reactive oxygen species. In an in vivo assay, a significant reduction in the number of circulating parasites was found in *T. cruzi*-infected mice treated with cyanocobalamin and ascorbic acid. The reduction of parasitemia in benznidazole-treated mice was improved by the addition of these vitamins. According to our results, a combination of B$_{12}$ and Bnz should be further investigated due to its potential as a new therapeutic modality for the treatment of Chagas’ disease.

Trypanosoma cruzi is the causative agent of Chagas’ disease, which is a major disease that is endemic to Latin America. Current treatments employ benznidazole (Bnz) or nifurtimox, two drugs that have been in use for more than 40 years. The chemotherapy for this disease is not satisfactory due to the limited efficacy and the toxicity associated with long-term treatments (15, 16). Research and development of new drugs effective in the treatment of this disease, which affects 16 to 18 million people in the Americas (25), is a real need and requires new strategies for drug development (2, 22).

Heme compounds are necessary as growth factors for *T. cruzi* (7). However, hemin and related porphyrins have an important cytotoxic action through the generation of reactive oxygen species (ROS), such as superoxide anion (O$_{2}$$^{-}$), hydrogen peroxide (H$_{2}O_{2}$), and the highly reactive hydroxyl radical (OH$^{-}$) (6). We have previously studied the effect of hemin on growth and the antioxidant defense system in *T. cruzi* epimastigotes (4), demonstrating the correlation between higher hemin concentrations in the culture medium and oxidative damage in the cells. Concentrations above 15 μg/ml hemin produced a clear decrease in growth rate, inducing the transformation of epimastigotes into amastigotes accompanied by a marked injury to the antioxidant enzymatic machinery of the parasite (4). Similar results have been reported for *Leishmania donovani* promastigotes cultured in vitro (14).

Since the structures and uptake systems of heme and cobalamin are alike (5), and the known cytotoxic and antitumor activity of cobalamins administered either alone or combined with antioxidants are also similar (10, 18, 19, 23), it was of great interest to investigate the effect of cyanocobalamin (vitamin B$_{12}$) on *T. cruzi*.

Here, we have evaluated the *in vitro* antiparasitic activity of vitamin B$_{12}$ against different forms of *T. cruzi*, and we have explored its possible mode of action. Additionally, we have analyzed the interaction of B$_{12}$ with hemin and the improvement in activity by the addition of antioxidants. More importantly, we have investigated the capacity of B$_{12}$ to control parasitemia in the murine model, showing its effect combined with Bnz treatment as a novel therapeutic modality.

MATERIALS AND METHODS

Chemicals. Hemin, NADPH, EDTA, NADH, chlorophenol red-β-D-galactopyranoside (CPRG), RPMI 1640 medium, hydrogen peroxide, ascorbic acid, and 2’,7’-dichlorodihydrofluorescein diacetate (H$_{2}$DCFDA) were obtained from Sigma Chemical Co. (St. Louis, MO). Yeast extract, tryptose, powdered beef liver, and brain heart infusion were from Difco Laboratories (Sparks, MD). Trypanothione was purchased from Bachem Bioscience Inc. Bnz was kindly provided by Roche (Argentina). All other chemicals were of the highest purity commercially available.

Parasites. *Trypanosoma cruzi* epimastigotes (Tulahuen strain) were grown at 28°C in a liquid medium containing 0.3% yeast extract, 0.9% tryptose, 0.4% dextrose, 1% disodium phosphate 2-hydrate, 0.36% sodium chloride, 0.04% potassium chloride, 0.15% powdered beef liver, 0.5% brain heart infusion, and 0.5 to 1.0 mg/100 ml hemin. *T. cruzi* bloodstream trypomastigotes were obtained from infected CFI mice by cardiac puncture at the peak of parasitemia on day 15 postinfection. Trypomastigotes were routinely maintained by infecting 21-day-old CFI mice. *T. cruzi* parasites from the Tulahuen strain stably expressing the β-galactosidase (β-gal) gene were kindly provided by F. S. Buckner (3).

Received 6 March 2012 Returned for modification 5 April 2012 Accepted 29 July 2012 Published ahead of print 6 August 2012 Address correspondence to Maria Elisa Lombardo, elombardo@qb.fcen.uba.ar, or Alicia Batlle, batllealcira@yahoo.com.ar. A.B.C. and F.M.F. contributed equally to this work. Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/AAC.00481-12
Animals. Oubred CF1 male and inbred C3H/HeN female mice were
nursed at the Departamento de Microbiologia, Facultad de Medicina,
Universidad de Buenos Aires. Animals were treated in accordance with
guidelines established by the Animal Care and Use Committee of the
Argentine Association of Specialists in Laboratory Animals (AADELAC).

In vitro assays for anti- T. cruzi activity.** To evaluate the growth in-
hibition of T. cruzi epimastigotes, parasites from a 3-day-old culture were
inoculated into fresh culture medium to reach an initial concentration of
1.5 × 10^5 to 2.5 × 10^6 cells/ml. Cells were cultured in the presence of 0.125
to 15 μM B12 or 0.75 to 25 μM Bnz (used as a positive control) for 3 days
(or the time indicated in the experiment). The compound’s ability to
inhibit the growth of the parasite was evaluated in triplicate and compared
to the control without drug. Cell growth was monitored by counting the
number of cells per ml of culture using a Neubauer chamber and was
expressed as cellular density (CD). The percent inhibition (%I) was cal-
culated as %I = [(1 - (CDc - CDt))/(CDc - CDu)] × 100, where CDc is
the cellular density of treated parasites at day 3, CDt is the cellular
density of parasites at day 0, and CDu is the cellular density of untreated
parasites (control) at day 3. To evaluate the combinatory effect of B12 and
Bnz, the 50% inhibitory concentrations (IC50) for Bnz in the presence of
different B12 concentrations (0.8 to 2.4 μM) were calculated. The inhibi-
tory activity of B12 (0.25 μM) was also evaluated in the presence of anti-
obxidant agents such as diethiothreitol (DTT); 0.5 to 1 μM) and vitamin C or
ascorbic acid (0.5 to 1.5 μM).

The trypanocidal effects were also tested on bloodstream trypomastig-
otes according to a standard WHO protocol with minor modifications
(20, 21). Briefly, parasites were counted in a Neubauer chamber and the
blood was diluted in RPMI culture medium to a final concentration of
1.5 × 10^5 trypomastigotes/ml. Parasites were seeded (150 μl/well) in dup-
licate in a 96-well microplate in the presence of B12 (0.37 to 72 μM) or
Bnz (0.38 to 38 μM). Plates were incubated for 24 h, and the remaining
five parasites were counted in a Neubauer chamber. The results were
expressed as the percentage of lysed parasites (%L) relative to the number
of parasites in the control (without adding the drug).

An amastigote growth inhibition assay was performed on 96-well-tis-
 sue culture plates seeded with a murine macrophage cell line, J774, at 10^5
cells/ml, and stained for 30 min in the dark at 37°C with 10 μM DCF
(chlorofluorescein (DCF) in cells was analyzed by a Becton, Dickinson
FACScalibur flow cytometer with an excitation wavelength of 480 nm and
an emission wavelength of 530 nm. The flow cytometry results were ex-
pressed by the ratio Gm/Gm, where Gm and Gm correspond to the
genic means of histograms obtained for treated and untreated (con-
 trol) cells, respectively.

Enzymatic determinations. All steps were performed at 2 to 4°C. Par-
asites (200 ml of culture) coming from short-time treatment were har-
vested by centrifugation at 12,000 × g for 10 min, washed once, and
resuspended in 5 ml of (i) Tris- HCl buffer for ascorbate peroxidase (APx)
activity, (ii) sodium phosphate buffer for superoxide dismutase (SOD)
activity, and (iii) potassium phosphate buffer for trypanothione reduc-
tase (TryR) activity. Cells in suspension were disrupted by sonication in an
MSE Soniprep 150 ultrasonic disintegrator for 45 s. The resulting homog-
enate was centrifuged at 5,000 × g for 15 min, the precipitate was dis-
card, and the supernatant was employed as the source of enzymes.
Protein concentration was determined according to the method described
by Lowry et al. (8), and these values were considered to express the enzy-
matic activities as specific activities (enzyme unit [EU]/mg of protein).
SOD activity has been assayed by a spectrophotometric method based
on the inhibition of superoxide-driven NADH oxidation as previously
described (4). One EU is defined as the amount of protein required to
inhibit 50% NADH oxidation.

APx activity was measured following the change in absorbance at 265
nm due to ascorbate oxidation at 25°C (4). Enzyme activity was calculated
by using an ε value of 16.00 × 10^3 M^-1 cm^-1. The EU is defined as the
amount of enzyme forming 1 nmol of product per s under standard in-
cubation conditions.

TryR activity was determined following NADPH oxidation at 340 nm
at 25°C (1). The activity was calculated using an extinction coefficient of
6.22 × 10^4 M^-1 cm^-1. One EU is defined as the amount of enzyme
forming 1 nmol of product per min under standard incubation condi-
tions. The specific activity was calculated by Lowry et al. (8), and these
values were considered to express the enzymatic activities as specific
activities (enzyme unit [EU]/mg of protein).

In vivo trypanocidal activity assay. Groups of five C3H/HeN mice (6
to 8 weeks old) maintained under standard conditions were infected with
5 × 10^3 bloodstream T. cruzi trypomastigotes by the intraperitoneal
route. Five days after infection, the presence of circulating parasites was
confirmed by a microhematocrit method. Mice were treated with B12 (1.5
mg/kg of body weight/day), B12 (1.5 mg/kg/day) plus ascorbic acid (1.5
mg/kg/day), or Bnz (0.75 mg/kg/day), or a combination of the treatments.
The administration of the drugs was performed from Monday through
Friday during 2 weeks (days 5 to 9 and 12 to 16 postinfection) by the
intraperitoneal route. Drugs were resuspended in 0.1 M PBS (pH 7.2), and
this vehicle also was employed as a negative control. In addition, control
groups receiving ascorbic acid (1.5 mg/kg/day) or a combination of both
treatment groups were also included. Levels of parasitemia were monitored
every 2 days in 5 μl of blood diluted 1:5 in lysis buffer (0.75% NH4Cl, 0.2% Tris, pH 7.2) by counting parasites in a Neubauer
chamber. The number of deaths was recorded daily.

Statistical analysis. All data are expressed as means ± standard errors
of the means (SEM), and parasitemia is also expressed as the area under
the curve. To calculate the IC50s, the %I or %L values were plotted against
the log of drug concentration (μM) and fitted with a straight line deter-
mined by a linear regression (Sigma Plot 10 software). The fractional

inhibitory concentrations (FICs) were calculated as the ratio of the IC50 of the drug in combination and the IC50 of the drug alone. The FIC index (FICI) for two drugs was the FIC of B12 plus the FIC of Bnz. The significance of differences was evaluated using Student’s t test, taking P < 0.05 as significant. The results presented are representative of three to four independent experiments. Survival curves were compared using a log-rank test.

RESULTS

In vitro antiparasitic activity. T. cruzi epimastigotes were grown for 7 days in culture medium containing 10 μg/ml hemin plus different concentrations of B12 (Fig. 1), and cells were counted daily. All of the tested B12 concentrations produced a decrease in the growth rate compared to the control in a dose-dependent manner, as observed on the third day. A concentration of B12 as high as 45 μM presented trypanocidal activity showing a negative slope until day 3. For longer times, growth rates were similar, showing that the B12 antiparasitic effect only lasts for short periods of time, which may be explained by the instability of B12 in the culture.

Independently of the doses and exposure time, B12 did not produce morphological changes, as observed by optical microscopy, but motility was markedly diminished (data not shown). The inhibitory effect of B12 was manifested independently of the hemin concentration added to the cultures (Fig. 2). To corroborate if the parasites were still B12 susceptible after 4 days of treatment, a new addition was made showing a dose-dependent response. The results obtained in the absence of B12 corroborate the inhibitory effect of high concentrations of hemin (30 μg/ml) on the growth of T. cruzi epimastigotes already reported (4) (Fig. 2).

We next analyzed the inhibitory activity of B12 and Bnz, the drug currently used for treatment of Chagas’ disease, against the three stages of T. cruzi (Table 1). Similar IC50s for B12 on trypan- and amastigote forms were found. B12 was found to be 1.7 to 3.6 and 2.6 to 4 times more active than Bnz on the epimastigote and trypomastigote forms, respectively.

In epimastigotes the combined effect of B12 and Bnz was also investigated. The isobologram depicted in Fig. 3 shows an additive effect for the combination of both drugs.

Cytotoxicity assay. The results of the cytotoxic activity of B12 or Bnz on Vero cells are shown in Fig. 4. For B12 concentrations as high as 2,400 μM, no cytotoxic effect was found, while for Bnz the 50% cytotoxic concentration was 82.79 ± 2.75 μM. The SI was employed to compare the toxicity for mammalian cells and the activity against the parasites. The SIs for the epimastigote form of T. cruzi were >991.7 for B12 and 14.1 for Bnz, while for the trypomastigote forms, values of >253.7 for B12 and 2.7 for Bnz were found. For the amastigote form, the SI value for B12 was 224.5.

Short-time treatment and action mode. To elucidate the mechanism of action, high concentrations of B12 (15 to 60 μM) and short-time treatment (3 to 24 h) on epimastigotes of T. cruzi were employed. We expected that B12, by analogy to hemin, would act by inducing the generation of ROS. Results obtained by flow cytometry to evaluate intracellular oxidative stress are shown in Fig. 5. Independently of B12 concentration, the fluorescence of H2DCFDA-loaded epimastigotes increased ~12 to 14 times after only 3 h of treatment and was kept markedly high (~16 to 18 times) until the end of treatment (24 h). The addition of 0.2 mM H2O2 as a positive control caused a similar increase of around 15 times in cell fluorescence intensity (data not shown).

Because of evidence for oxidative stress on treated parasites, we studied the antioxidant enzyme activities in short-time treatments.
Similar behaviors of SOD and APx activities were observed. During the first 3 h of treatment, the oxidative damage of the enzymes is evident, presenting an equally reduced activity (around 25% below control). The antioxidant activity of these enzymes was manifested after 7 and 24 h with an increased activity for SOD (50 to 55% above control) and APx (20 to 25% above control). During the evaluated period of time, the activity of TryR was not significantly different from that of the control. Taking these results together, it can be considered that treatment with B12 induces the generation of superoxide anion and hydrogen peroxide, and that despite the increased activity of SOD and APx, the intracellular oxidative stage persists due to an incomplete metabolism of those reactive species and/or the lack of an increase in TryR activity.

Effect of antioxidant agents. To obtain further information regarding the mode of action of B12, the effect of antioxidant agents such as DTT and ascorbic acid (vitamin C) was evaluated (Table 2). Employing a low concentration of B12 (0.25 μM), both antioxidants enhanced considerably the antiparasitic activity in vitro. As expected, the antioxidants showed a dose-dependent antiparasitic activity, reaching 8-fold inhibition when DTT and ascorbic acid were used at 1.0 and 1.5 μM, respectively (Table 2).

In vivo antiparasitic activity. To determine whether treatments could be useful for in vivo therapies, an acute murine model was employed. Thus, 7 groups of mice were infected with T. cruzi trypomastigotes and injected with B12 alone, B12 plus ascorbic acid, Bnz alone, and Bnz plus ascorbic acid and B12. Individual parasitemia levels were assessed every other day. At the peak of parasitemia, around day 13, all treated mice presented an important decrease in the number of circulating parasites compared to the control group (P < 0.01) (Fig. 7A). When B12 was administered alone, a reduction in parasitemia could be observed ([2.23 ± 0.28] × 10^6; the control level was [4.18 ± 0.02] × 10^6 parasites/ml), thus this reduction was improved by the administration of B12 simultaneously with ascorbic acid ([1.26 ± 0.17] × 10^6 parasites/ml). Moreover, when infected animals were treated with half of the doses of the vitamins, we still observed a significant reduction in parasitemia ([1.62 ± 0.23] × 10^6; P < 0.01) (data not shown).

![FIG 3 Isobologram describing the interaction between vitamin B₁₂ and Bnz against epimastigotes of T. cruzi. The fractional inhibitory concentrations (FICs) and the FIC index (FICI) were determined as described in Materials and Methods. An FICI of >0.5 to 4.0 indicates no interaction between vitamin B₁₂ and Bnz.](http://aac.asm.org/)

![FIG 4 Effect of vitamin B₁₂ and Bnz on Vero cell viability. Cells were cultured for 24 h in the presence of different concentrations of B₁₂ (6 to 2,400 μM) and Bnz (3 to 3,000 μM). Cell viability was determined by the MTT assay as described in Materials and Methods.](http://aac.asm.org/)

![FIG 5 Intracellular oxidative stress during the short-time treatment with vitamin B₁₂. Epimastigotes were treated with B₁₂ (15, 30, or 60 μM) for 3, 7, or 24 h. Intracellular oxidative stress then was evaluated by flow cytometry (n = 20,000 cells/analysis). (a) Histograms corresponding to untreated cells (curve 1, control) and treated with 30 μM B₁₂ for 3, 7, or 24 h (curves 2, 3, and 4, respectively). (b) Time course of the Gm/Gmc ratio (see Materials and Methods) for parasites treated with the different concentrations of B₁₂.](http://aac.asm.org/)
At the peak of parasitemia, mice treated with Bnz alone or combined with vitamins presented levels of circulating parasites ([1.43 ± 0.12] × 10^6 and [1.33 ± 0.25] × 10^6 parasites/ml, respectively) similar to those after mice were treated with the vitamins. Important differences in the kinetics of parasitemia could be observed throughout the acute phase of infection. Thus, calculating the area under the curve, decreases in the number of circulating parasites of 43.9, 58.6, and 64.6% were observed for the mice treated only with vitamins, only with Bnz, or the combination of both, respectively (Fig. 7A). The reduced number of parasites was crucial for animal survival, as shown in Fig. 7B. Control mice presented high levels of parasitemia, leading to death between days 14 and 28 postinfection. In contrast, 83.3% of animals treated with Bnz plus vitamins survived until the end of the experiment (100 days postinfection). Only animals receiving Bnz combined with vitamins presented significant survival rates compared to control animals (P < 0.05).

DISCUSSION

The effect of B12 on the parasite *T. cruzi* was investigated for the first time. B12 produced a marked decrease in epimastigote growth rate (Fig. 1), together with significant changes in motility. Unlike hemin, which at 25 μg/ml produces the epimastigote transformation to amastigotes (4), no morphological changes were observed for B12 concentrations up to 45 μM. The inhibitory effect of B12 on epimastigote growth was increased in a dose-dependent manner by a second addition of B12 on the fifth day. Previously, we have demonstrated that high concentrations of hemin produce an antiproliferative effect on *T. cruzi* epimastigotes (4). Although there are structural similarities between B12 and hemin, the antiproliferative effect of cyanocobalamin occurs regardless of the hemin concentration present in the culture medium (Fig. 2). Even in the presence of B12, the trypanocidal effect of high concentrations of hemin was manifested, demonstrating that B12 does not influence its effect. These results corroborate that B12 and hemin do not interact with each other in their modes of action. At the concentrations assayed, apparently there was not a competitive effect between both compounds.

Cyanocobalamin showed a marked *in vitro* anti-*T. cruzi* activity, with IC50s of 2.42 ± 0.54, 10.69 ± 1.50, and 9.46 ± 1.20 μM for epimastigote, amastigote, and trypomastigote forms, respectively (Table 1). B12 showed activity levels between 1.7 and 4 times higher than those of Bnz in epimastigote and trypomastigote stages. Moreover, the effect produced by a combination of B12 and Bnz was the sum of the effects produced by the components alone (Fig. 3).

Due to the high trypanocidal activity and low cytotoxicity, cyanocobalamin presented high SI values (>200) in all parasite stages. This is particularly significant since an SI of >50 is considered adequate for trypanocidal drugs under development (13).

The short-time treatment of *T. cruzi* epimastigotes with high doses of B12 (15 to 60 μM) showed a significant increase in the cellular oxidative state (Fig. 5). Superoxide anion generation may cause the increased activity of SOD (50% above the control value; Fig. 6), which would transform the superoxide anion into hydrogen peroxide. Under these conditions, it was expected that hydrogen peroxide-metabolizing enzymes would increase their activity. Although catalase and selenocysteine-containing glutathione peroxidases are absent from *T. cruzi* (24), the parasite has an efficient, redundant, and ubiquitously distributed antioxidant defense system. The enzymes APx and tryparedoxin peroxidase would be responsible for degrading the hydrogen peroxide (24). In this work, we have evaluated the TryR activity as an indirect way to measure APx and tryparedoxin peroxidase activities, finding that there were not significant differences from the untreated control.

TABLE 2 Effect of DTT and ascorbic acid on the anti- *T. cruzi* activity of vitamin B12.

<table>
<thead>
<tr>
<th>Antioxidant concn (μM)</th>
<th>Vitamin B12 activity (μM)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.25</td>
<td>5.4 ± 1.5</td>
</tr>
<tr>
<td>DTT</td>
<td>0.5</td>
<td>5.9 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>21.3 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>23.9 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>41.4 ± 2.2</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0.5</td>
<td>3.7 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.4 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>10.3 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>18.4 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>22.9 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>47.7 ± 1.9</td>
</tr>
</tbody>
</table>

a Zero percent inhibition corresponds to parasites cultured in the absence of either B12 or antioxidant compound.

FIG 7 Effect of vitamin B12 and Bnz on the treatment of infected mice. Parasitemia levels (A) and survival curve (B) during the acute infection period in C3H mice infected with 5 × 10^7 bloodstream trypomastigotes of *T. cruzi*. Mice were treated from days 5 to 10 and 12 to 17 of infection. Parasitemia was determined by counting the number of trypomastigotes in 5 μl of fresh blood collected from the tail every other day. Mortality was recorded every day.
(Fig. 6). TryR is an enzyme that is likely to be pivotal to peroxide metabolism in all trypanosomatids, because reduced Try is the molecule reducing dehydroascorbate to ascorbate and oxidized trypaoxidin to reduced trypaoxidin (11). The lack of increased activity of TryR above control levels and the slight increase of APx activity could be responsible for the accumulation of hydrogen peroxide within the cell. This excess of hydrogen peroxide and the rest of the superoxide anions that may not have been metabolized by SOD would be the species responsible for intracellular oxidative stress induced by B12. A deleterious action of B12 treatment only became evident for SOD and APx (with activity values significantly lower than the control) at 3 h of treatment with B12 (Fig. 5). At later times the antioxidant action of these enzymes was manifested, but it was not enough to reconstitute the cellular equilibrium.

As was observed with hemin (4), vitamin B12 appears to express its cytotoxic action on the parasite through the generation of ROS. By adding antioxidants such as DTT or vitamin C, the oxidative damage increases instead of decreases, probably due to the well-known prooxidant effect of these compounds combined with transition metal ions (Fe, Cu, and Co), which makes itself evident through the generation of ROS (18, 19). Concerning the possible mechanism of action of B12, additional studies should carry out. The oxygen-reduction products have been implicated in the mechanism of action of several trypansomical agents active in vitro and in vivo (11), and they make the parasite very vulnerable because of its partially deficient antioxidant defense system.

It is relevant to highlight that, in the presence of ascorbic acid for the epimastigote stage, a decrease of 10 times the IC50 of B12 can be achieved (data not shown). In our in vivo model, the addition of ascorbic acid to B12 treatment produced an important increase in the antiparasitic activity, since mice treated with both presented a reduction 2 times higher than those which received B12 alone at the peak of parasitemia. The fact that an antioxidant enhances the effect of B12 would ensure that concentrations of B12 required to express antiparasitic activity do not exceed the maximum concentration that can be achieved in circulation.

Benznidazol is the reference drug used currently; however, it is unsatisfactory because of its limited efficacy and its toxic side effects, such as anorexia, vomiting, peripheral polyneuropathy, and allergic dermopathy. Instead, B12 rarely presents side effects and is an over-the-counter drug. As shown in Fig. 7, the administration of vitamins together with Bnz was able to improve the antiparasitic effect of the Bnz treatment, showing its potential as a candidate for novel therapeutic modalities for the treatment of Chagas’ disease.

ACKNOWLEDGMENTS

F.M.F., E.L.M., A.B., and M.E.L. hold the post of Scientific Researchers at the Argentine National Research Council (CONICET). A.B.C., F.M.F., E.L.M., and M.E.L. are members of the University of Buenos Aires. A.B.C. is a Postdoctoral Fellow of CONICET.

This work was supported by the University of Buenos Aires (UBACYT X083 and 20020902004778) and the Argentine National Research Council, CONICET (PIP 5263).

REFERENCES