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Abstract. The present paper studies the variation of the natural frequencies and mode shapes of
rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem
changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange
multipliers as well as a finite element formulation are employed and compared. Numerically reliable results
are presented for the first time, illustrating the convenience of using the present analytical method which
requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the
mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass
concept or Rayleigh’s statement. The analysis of frequency values of the whole system, when the 3-DOF
system approaches or moves away from the center, shows that the variations depend on each particular
mode of vibration. When the 3-DOF system is placed in the center of the plate, “new” modes are found to
be a combination of the subsystem’s modes (two rotations, traslation) and the bare plate’s modes that
possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the
center of the plate, since different bare plate’s modes enable distinct motions of the 3-DOF system
contributing differently to the “new’ modes as its location is modified. Also the natural frequencies of the
compound system are nearly uncoupled have been calculated by means of a first order eigenvalue
perturbation analysis. 
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1. Introduction

Investigations into natural frequencies and modal shapes of beams and plates carrying a spring-mass

system have been done by several researchers. Among them, the following works can be mentioned:

Jen and Magrab (1993) presented the exact solution for the natural frequencies and mode shapes of

beams with two degree of freedom spring-mass system attached; Low (2003) studied the frequencies

of beams carrying multiple masses; Cha (2007) studied the free vibration of a uniform beam with

multiple elastically mounted two-degree-of-freedom systems; Wu (2002) presented an alternative

approach for the free vibration of beams carrying a number of two-degree of freedom spring-mass

systems; Vera et al. (2005) analyzed the vibrations of plates with an attached two degree of freedom
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system, Avalos, Larrondo and Laura (1994) obtained the first six, axisymmetric natural frequencies

of vibration of circular plates with an elastically mounted centered mass; Mermerta and Gürgoze

(2004), analysed the preservation of the fundamental natural frequencies of rectangular plates with

mass and spring modification; Wu (2003), proposed the use of effective stiffness matrix for the free

vibration analyses of a non-uniform cantilever beam carrying multiple two degree-of-freedom spring-

damper-mass systems; Gürgoze (2005) presented the representation of a cantilevered beam carrying

a tip mass by an equivalent spring-mass system; Li and Daniels (2002) studied the vibrations of

elastically restrained plates arbitrary loaded with springs and masses with a Fourier series method;

Bambill, Felix and Rossit (2006) presented and approximate solution for the natural frequencies of

thin, rectangular plates with holes or orthotropic “patches” carrying an elastically mounted mass;

Dowell (1979) studied the vibration of beams carrying elastically mounted systems. Rossit and

Laura (2001) analyzed the free vibration of a cantilever beam with a spring-mass system attached to

the free end and Wu and Whittaker (1999) studied the natural frequencies and mode shapes of a uniform

cantilever beam with multiple two degree of freedom spring-mass systems. Rossit and Ciancio

(2008) studied the natural frequencies and normal modes of vibration of rectangular anisotropic plates

supported by different combinations of the classical boundary conditions and with additional

complexities,  holes and attached concentrated masses, using the Ritz method. A survey of the literature

reveals that the analysis of three degree-of-freedom systems attached to plates has not apparently

been studied, except for the solution obtained by Wu in his recent papers (Wu 2005, Wu 2006).

In the present work, an analytical approach for the study of the vibration of plates carrying three-

degree-of-freedom (3-DOF) systems is presented. The problem is of considerable technological

importance in view of the great variety of circumstances in which it can be found. In certain situations,

the natural frequencies of this compound system are required to determine its response when used as a

component of structural systems (like machinery elastically mounted on plates in building structure

or elements added to printed wiring boards for electronic systems). In other cases, the whole system

can be used as a vibration absorber to attenuate the vibration amplitude of the plate. From these points of

view, it is possible to affirm that the problem is not only of particular interest in respect to basic

knowledge of the mechanical behaviour of physical systems but, also of technological importance.

The paper is organized as follows. Section 2 presents the mathematical formulation of the problem

within the Lagrangian formalism. The natural frequencies and the normal mode shapes of the compound

system for different values of stiffness, mass, moment of inertia and location of the 3-DOF system

is presented in Section 3. Finally, concluding remarks are presented and discussed in Section 4.

2. Lagrange’s formulation

In the next lines, the equations of motion are derived using Lagrangian formalism. The advantage

of this approach resides in that a physical interpretation of Lagrange multipliers as the forces that

the 3-DOF system exerts on the bare plate (plate without the spring-mass system) is feasible.

First, consider the system of Fig. 1 which shows a 3-DOF spring-mass system (subsystem) attached

to a plate. The intervening parameters me, Iex, Iey are respectively, the lumped mass and mass moment

of inertia about the x and y axes; k1, k2, k3 and k4 are the spring constants and a1, a2, a3 and a4 are

the distances between the barycentre and the sides of the rigid mass of the 3-DOF spring-mass

system (see Fig. 2).

The total kinetic and strain energies of the entire system are
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(1)

with ae = a1 + a2; be = a3 + a4

(2)

where cij’s are the time dependent generalized coordinates, ωij are the eigenfrequencies of the bare

plate and the mij ’s are given by

(3)

Here, δij represents Kronecker’s delta, ρ is the plate’s mass density and h its thickness. The

transverse displacement of the plate is represented by
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Fig. 1 Rectangular plate with a three degree of freedom spring-mass subsystem attached to it

Fig. 2 Coordinates and dimensions
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(4)

where the φij(x, y)'s represent the normal mode shapes of the bare plate (Appendix A). The

summation is carried out up to the n × n' normal mode where the first N modes are considered.

Fig. 2 illustrates the connection between the position of a point in the drawing plane and its

coordinates.

For the mathematical model four restriction functions f1’s are imposed

(5a,b,c,d)

and another one is imposed, because the mass was considered as a rigid body

f5 = zm4 − (zm1+ zm3 − zm2) (6)

This gives a total of γ = 5 restriction functions

As it was previously expressed, the equations of motion are obtained by means of Lagrange’s

equations. The equations are

(7)

and γ constraint equations, Eq. (5) and Eq. 6). 

The system has N + m non-independent degrees of freedom sp with γ constraints

The complete system summarizes a total of N + m + γ equations (Meirovitch 1998) in the

variables sp (p = 1,2,......, N + m) and the Lagrange multipliers λ1(l = 1,....., γ).

Eq. (5) and Eq. (6) are used to remove the λ1(l = 1,....., γ) variables, and the system of equations

becomes in a set of N + m − γ, (N + 3 in the present case), coupled linear second order differential

equations in terms of the independent set of coordinates

q ≡ [q1, ...qN, qN+1, qN+2, qN+3] ≡ [c11, ......, cn,n', zm1, zm2, zm3]

(8)

The explicit form of matrices M and K are given in Appendix B. Finally, in order to calculate the

natural frequencies and normal mode shapes of the whole system (plate with 3-DOF system).

Eq. (8) is solved imposing a harmonic motion of qp(t) = eiωt. It is important to mention that as

matrices M and K contain constant coefficients. This means that the corresponding eigenvalue

problem obtained from Eq. (8) is linear. 

Once the eigenvalues (frequencies) are obtained, the eigenvectors  can be calculated. From Eq.

(4), it is possible to express every normal mode of the whole system by

(9)

where the superscript (i) indicates the plate mode under consideration.
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3. Numerical results

Numerical results are presented for the case of a SSSS plate (fully simply supported) and a SFSF

plate (simply supported on x = 0 and x = a; and free at y = 0 and y = b). The dimensions and the

material constants for the plate are: length a = 2 m, width b = 1 m, thickness h = 0.005 m, mass

density ρ = 7.850 × 103 kg/m3, plate’s mass mplate = ρabh = 78.5 kg, Poisson coefficient v = 0.30 and

Young modulus E = 2.051 × 1011 N/m2. These values and conditions have been chosen to compare

the present results with those given by Wu (2006).

The natural frequencies are shown in radians per second.

Concerning the selection of the number of modes assumed for the displacement amplitude, Eq.

(4), it is used N = 10 in the expansion. This choice is made since if a major number of modes are

considered the changes in all frequency values are negligible (less than 0.05% of the presented values).

With the aim of testing the numerical results (which will be called hereafter LMM model) the

authors apply a finite element method approach (FEM) to solve the same problem, implemented

with the professional code ALGOR (2007). The plate is modelled considering rectangular elements

of 12 degrees of freedom formulated by de Veubeke (1968) under thin elastic plate theory.

Regarding FEM implementation of the plate model, a mesh of 20000 square elements is

considered in all cases. This number of elements was previously selected under the result of a

convergence test where the number of plate’s elements (mesh density) were increased taking 5000,

20000, 80000, 180000 elements at each time. From those results, the authors considered that 20000

elements give an appropriate number to build the plate in all FEM models. As it can be seen in

Table 1, if more elements are taken in the FEM formulation no better results are obtained.

The values were obtained with a PC standard: AMD Athlon(tm) 64 Processor 3000+, 1.81 GHz,

RAM 448 MB, Microsoft Windows XP Professional.

In the LMM model, the number of degrees of freedom is equal to the number of assumed modes,

N = 10, (in the present study).

Table 1 Convergence analysis of the FEM model

Model 1 2 3 4

Elements 5000 20000 80000 180000

Nodes 5151 20301 80601 180901

DOF 14849 59699 239399 539099

ω1 95.421 95.417 95.415 95.415

ω2 152.689 152.670 152.666 152.665

ω3 248.135 248.093 248.082 2483081

ω4 324.436 324.417 324.412 324.412

ω5 381.760 381.685 381.666 381.663

ω6 381.760 381.685 381.666 381.663

ω7 477.301 477.131 477.089 477.081

ω8 553.564 553.446 553.417 553.411

Elapsed time (h : m : s) 00:00:49 00:05:02 01:04:46 04:34:35
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3.1 Comparison between analytical and numerical results; validation

Table 2 presents the first eight natural frequencies of a SSSS plate with a spring-mass system, in

one case a 3-DOF system of reduce dimensions, and in another case a 1-DOF system.

The 3-DOF system is adopted of reduced dimensions in order to prove if this model gives the

correct limit as its size is diminished. Therefore, the natural limit of this configuration must be a

plate with 1-DOF system attached to it. The 1-DOF system is located at (xm, ym) = (1.00 m, 0.50 m)

and has the same mass and equivalent stiffness as the 3-DOF system. Numerical tests are made

setting a1 = a2 = a3 = a4 = 0.01 m, (ae = be = 0.02 m ≈ 0) and k1 = k2 = k3 = k4 = k, with k = 250 N/m for

the 3-DOF system. Other constants of the attached mass are: thickness he = 0.04 m, density

ρ = 7.850 × 103 kg/m3, mass me = 0.1256 kg and mass moments of inertia Iex = me(h
2
e + ae

2)/12 =

Iey = me(he
2 + be

2)/12 = 2.0933 × 10−5 kg m2.

The rows labelled as FEM corresponds to the Finite Element Method’s results and LMM

corresponds to the Lagrange Multiplier Method’s results. The subsystem is located at x1 = xm − a1,

y1 = ym − a3; x2 = xm + a2, y2 = y1; x3 = x2, y3 = ym + a4; x4 = x1, y4 = y3; with xm = 1.00 m; ym = 0.50 m

(center of the plate) and its own natural frequencies are listed in a row labelled 3-DOF. Obviously,

the first two frequencies can not be avoided in spite of the fact that the dimensions of the subsystem

have been reduced. It can be observed that the LMM approach has an excellent agreement when

compared with FEM 3-DOF (differences below 0.7%). On the other hand, the frequencies of the

plate with 1-DOF system attached to it (FEM 1-DOF) coincide with the values presented in rows

named as FEM 3-DOF and LMM.

It can be seen that the displacement amplitude with N = 10 terms in the expansion gives excellent

agreement with accurate finite element results.

3.2 Eigenvalue perturbation analysis; nearly uncoupled system

Through observation of Table 1 it can be said that the first three natural frequencies of the

compound system are nearly identical to those of the 3-DOF oscillator and the subsequent natural

frequencies are merely tiny corrections to those of the bare plate.

For that reason one may think that a first order eigenvalue perturbation analysis can give an

approximate result to the perturbed eigenfrequencies. The authors numerically study this situation

and give a kind of heuristic criterion (without proving it formally) which may be applied to similar

cases.

Table 2 First eight natural frequencies of a SSSS rectangular plate with a spring-mass system

Model ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Plate
+

Subsystem

FEM 1-DOF - - 87.612 97.100 152.670 248.211 324.417 381.684

FEM 3-DOF 69.116 69.116 87.614 97.098 152.670 248.210 324.417 381.684

LMM 69.116 69.116 88.214 96.323 152.916 248.137 324.411 381.660

First-order-EP 69.116 69.116 88.721 96.472 152.916 248.137 324.411 381.660

3-DOF Exact 
solution

69.116 69.116 89.228
- - - - -

Bare plate - - - 95.415 152.663 248.078 324.410 381.659
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As it is not an intention of this paper to expose the theory of eigenvalue perturbation analysis, the

reader may refer to Inman (2006) for a detailed presentation of it.

Taking the theory’s main results, the increments of the perturbed eigenfrequencies are calculated as

(10)

where M0 is the unperturbed mass matrix; ω0i and x0i are respectively the i − th eigenfrequency and

eigenvector of the unperturbed problem. Finally, the perturbed eigenfrequencies are calculated with

ω2
i = ω2

0i + δω2
i.

These results are shown in Table 2 in row named “First-order-EP”. In order to obtain accurate

results for the general case, the norm of the matrices |δ K| and |δ M| have to be calculated first. If

they are within a 10% of |K| or |M|, or if xT0i(δK − ω2
0iδM)x0i ≤ 0.1ω2

0i, both systems are nearly

uncoupled to each other and a first order eigenvalue perturbation analysis could be used to

efficiently determine the natural frequencies of the compound system.

3.3 Influence of stiffness, mass, moment of inertia and location of 3-DOF system

 

The purpose of this subsection is to study the influence of the parameters of the 3-DOF system in

the dynamic behaviour of a SFSF rectangular plate.

Table 3 shows the influence of the spring stiffness, k1, on the first eight natural frequencies of the

compound system. The mass is elastically attached at the center of the plate, i.e., (xm, ym) = (1.0 m,

0.5 m) and its physical constants are me = 78.5 kg, he = 0.75 m, Iex = Iey = 7.3594 kg m2. a1 = a2 = a3 =

a4 =0.375 m. 

It can be observed that the results of FEM analysis and the analytical model LMM are in

excellent agreement between them. For k1 = k2 = k3 = k4 = k = 104 N/m, compared with previous

results Wu (2006), the present analytical results are proved to be more accurate -as the comparison

with FEM shows- and provide a new available data in the literature.

Moreover, they are qualitatively correct viewed from the following argument due to Lord

Rayleigh (1945).

In general, the frequencies of a bare plate change if a spring-mass system is added to it. The

frequencies of the bare plate originally higher than the basic spring-mass frequencies (3-DOF) are

increased. Those originally lower are decreased, and a new set of frequencies appears between the

originally pair of frequencies nearest the spring-mass frequencies. In Table 3, when k < 104 N/m, the

subsystem’s frequencies are always below the frequencies of the bare plate. As a result, the

frequencies of the whole system happen to be a bit higher than those of the bare plate (see row

“Bare plate” in Table 3 and Fig. 3). On the contrary, for k = 104 N/m, the first frequency of the bare

plate ω1
(bare) = 18.392 is below ω1

(3-DOF) = 22.573, which is the 3-DOF system first natural frequency

(traslation). As a consequence, according to Rayleigh’s statement, the first frequency of the whole

system (ω1 in Table 3) is lower than ω1
(bare) and superior frequencies, ω5, ω6, ω7, ω8, are higher than

ω2
(bare), ω3

(bare), ω4
(bare), ω5

(bare) respectively. Following the same argument, three “new” frequencies

appear in between (in this case ω2, ω3, ω4), due to the contribution of the degrees of freedom of the

subsystem to the motion of the entire system.

This may be understood by the following intuitive approach based on the concept of “effective mass”,

ω i
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T
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which in this case represents the mass that must be added to the attached subsystem to correct predict

the behaviour of the complete system and depends on frequency ω and the parameters of the attached

subsystem. With the help of this concept -which yields very accurate results if the frequencies of the bare

plate are far apart-, it is possible to explain Rayleigh’s statement. In the case of a 1-DOF system added

to a plate, the effective mass is mef = k/(ω2
a − ω2), where k and ωa

 are the elastic constant and the natural

frequency of the 1-DOF. Accordingly, the expression for the “new” frequencies of the compound system is 

(11)

where ωp is the natural frequency of the plate whose value is near to ωa, φp
2(x) is the displacement

amplitude of mode p where the subsystem is attached and mp is mode’s p modal mass of the bare

plate.

Then, if it is made ω ≈ ωp on the definition for mef (providing will be slightly modified), mef > 0

for ωa > ωp and the frequency of the compound system decreases. For ωa < ωp, mef < 0 and the

“new” frequency increases.

If multiple uncoupled DOF systems are added at (x1,....., xr,.....), expression Eq. (11) generalizes to

(12)
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Table 3 Influence of the spring stiffness on the first eight natural frequencies of a SFSF rectangular plate with
the 3-DOF system

k (N/m) Model ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

FEM 0.7131 0.8741 0.8742 18.412 53.220 74.494 124.785 168.763

10 LMM 0.7131 0.8741 0.8742 18.412 53.225 74.495 124.792 168.766

3-DOF 0.7138 0.8743 0.8743 - - - - -

FEM 2.233 2.758 2.762 18.591 53.321 74.550 124.837 168.764

100 LMM 2.233 2.758 2.762 18.590 53.326 74.551 124.845 168.767

3-DOF 2.257 2.764 2.764 - - - - -

FEM 6.394 8.556 8.662 20.508 54.341 75.111 125.361 168.775

1000 LMM 6.400 8.559 8.664 20.499 54.347 75.114 125.369 168.778

3-DOF 7.138 8.742 8.742 - - - - -

10000

FEM 10.866 22.430 25.187 37.790 65.272 81.044 130.433 168.885

LMM 10.891 22.486 25.228 37864 65.379 81.103 130.459 168.890

Wu (2006) - 21.169 25.210 33.996 59.760 - 124.996 168.890

3-DOF 22.573 27.646 27.646 - - - - -

Bare plate LMM 18.3924 53.2143 74.4896 124.7871 168.7663 203.9653 225.8961 284.0378
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which provides a simply approach to predict the “new” frequencies depending on the variation of

the parameters of multiple DOF added systems. Nevertheless, caution must be taken if one wants to

apply Eq. (12) to the 3-DOF (coupled) subsystem since it is no longer valid. In this case, a similar

equation can be calculated resulting in a much more complicated expression. Obtaining and solving

this equation means solving the problem. Since the present analysis is only qualitatively at this

stage, it is only provided here its general form

(13)

Obviously, the mefi (i = 1,....,4) -which depend on 3-DOF system’s parameters k1, Iex, Iey, me, as

well as on frequency ω-have not the same expression as in Eq. (12) and also the mefij’s have been

added (which represent the cross effective mass between xi and xj).

A more complete explanation exceeds the purpose of the present paper. Nonetheless, Eq.13 - although

approximate - shows how a variation of 3-DOF system’s parameters (stiffness, inertia and location)

affects the natural frequencies of the whole system in a different way compared with the simpler

case of multiple 1-DOF system attached to a plate.

Table 4 illustrates the influence of mass moments of inertia of the subsystem, on the first eight

natural frequencies of the compound system. The subsystem is located at the center of the plate.

Three different cases are analyzed:

ω
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Fig. 3 First six mode shapes of a rectangular SFSF bare plate

Case he (m) me (kg) Iex ≡ Iey k1 = k2 = k3 = k4 =  (N/m)

1 0.750 78.50 7.35940 10000

2 0.375 39.25 2.29980 10000

3 0.075 7.85 0.37165 10000
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Again, the values obtained by the analytical model LMM and FEM-based computations show

excellent agreement between them. For case 1, ω1
(3−DOF), ω2

(3−DOF), ω3
(3−DOF) lie between ω1

(bare) and

ω2
(bare). After applying Rayleigh’s statement (or effective mass concept), it can be conclude that

ω1 < ω1
(bare) ω5 < ω2

(bare) and there must be three frequencies ω2, ω3, ω4, appearing between them. A

similar reasoning to explain the “new” shifted frequencies could be applied for case 2 and 3.

Fig. 4 shows the first eight modes and mode shapes of a rectangular SFSF plate with a 3-DOF

system at its center. The Figure presents both, a perspective view of modal shapes as well as their

projection on plane x − z.

Referring to the analysis of the relative ratios of the normal coordinates q, that have been

obtained from solving Eq. (8), it is possible to analyze the relative contribution of bare plate’s and

subsystem’s modes to the motion of the compound system.

In particular, looking at the first six modes (case 1) in Table 3 and transcribing only the ratios

distinct from zero. For example analyzing the first mode ω1 = 10.891, Fig. 4(a), there is, q1
(1)/

q(1)
N+1 = 0.837, q(1)

N+1/q
(1)
N+2 = q(1)

N+1/q
(1)
N+3 = 1. This clearly means that the first mode’s motion is mainly

due to the contribution of the first mode of the bare plate plus a translation of the center of mass of

the subsystem (first mode of the 3-DOF system). The second mode, Fig. 4(b), has ω2 = 22.486 and

q(2)
N+3/q

(2)
N+1 = q(2)

N+3/q
(2)
N+2 = −1, q2

(2)/q(2)
N+3 = −0.491, showing a non-vanishing contribution of the second

mode of the bare plate plus a rotation around y axis of the subsystem (second mode of the 3-DOF

system). A similar analysis can be carried out for the third mode, Fig. 4(c), ω3 = 25.288, q(3)
N+1/

q(3)
N+2 = q(3)

N+1/q
(3)
N+3 = −1, q3

(3)/q(3)
N+1 = 0.161, which is mainly due mainly due to a rotation around y

axis of the subsystem (third mode of the subsystem) and a small contribution of the third mode of

the bare plate. Following the same arguments modes 4, 5 and 6 can be studied in a similar fashion:

ω4 = 37.864, q(4)
N+1/q

(4)
N+2 = q(4)

N+1/q
(4)
N+3 = 1, q(4)

N+1/q1
(4) = −0.491, represents a contribution of the first

mode of the bare plate and the first mode of the subsystem, Fig. 4(d); ω5 = 65.379, q(5)
N+3/q

(5)
N+1 = q(5)

N+3/

q(5)
N+2 = −1, q(5)

N+1/q2
(5) = −0.149 means a contribution of the second mode of the plate and the first mode

of the subsystem, Fig 4(e), and ω6 = 81.103, q(6)
N+1/q

(6)
N+2 = q(6)

N+1/q
(6)
N+3 = −1, q(6)

N+1/q3
(6) = −0.125 means

that its movement is mainly due to the third mode of the plate plus a rotation around y axis of the

subsystem, Fig. 4(f). Finally, higher modes (7-8) seem to remain undisturbed by the presence of the

Table 4 Influence of different moments of inertia of the 3-DOF system on the frequency values of a SFSF
rectangular plate

Case Model ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

1

FEM 10.866 22.429 25.186 37.789 65.271 81.044 130.433 168.885

LMM 10.891 22.486 25.228 37.864 65.379 81.103 130.459 168.890

3-DOF 22.573 27.646 27.646 - - - - -

2

FEM 13.453 36.751 43.167 43.857 71.262 83.249 130.433 168.887

LMM 13.473 36.810 43.280 43.915 71.443 83.334 130.459 168.892

3-DOF 31.923 49.455 49.455 - - - - -

3

FEM 17.142 50.855 71.271 75.682 127.273 128.053 130.433 168.908

LMM 17.148 50.862 71.267 75.977 127.588 128.586 130.459 168.914

3-DOF 71.383 123.025 123.025 - - - - -

Bare plate LMM 18.3924 53.2143 74.4896 124.7871 168.7663 203.9653 225.8961 284.0378
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subsystem and they can be represented with a high degree of accuracy by the corresponding modes

of the bare plate (plus a tiny displacement of the subsystem’s center of mass), Fig. 4 (g) and (h).

From this analysis, it can be observed that the “new” modes are due to the contribution of bare

plate’s modes and subsystem’s modes that present the same symmetry. Another example, mode 1

of the SFSF bare plate presents negative curvature along x axis (mainly a sine function) on its

whole domain, see Fig. 3; on the other side, the first mode of the subsystem is a pure translation

of its center of mass. Then, the first and fourth “new” modes are constituted by simply the

combination of these two modes. Moreover, “new” mode 2 is due to a combination of mode 2 of

the bare plate (alternative negative and positive curvature along y axis) and a rotation around x

axis of the 3-DOF system. Accordingly, the rest of the modes can be constructed following

similar analyses.

In order to study the influence of different subsystem’s locations on the frequencies and modes of

the compound system, Fig. 5 plots the first eight frequencies as a function of the location of the 3-DOF

system. The subsystem is defined by a1 = a2 = 0.30 m; a3 = a4 = 0.15 m, he = 0.40 m, Iex = 1.63546666 kg m2,

Iey = 3.40166666 kg m2, k = kl = 104 N/m. Five different 3-DOF system’ locations are analyzed, which

is defined by the coordinates of points 1 and 4

Each frequency is normalized to the frequency of the system, with the 3-DOF system at location

1; which are: ω1 = 12.7347, ω2 = 22.8678, ω3 = 27.0151, ω4 = 33.7895, ω5 = 58.7265, ω6 = 78.1048,

ω7 = 127.0677, ω8 = 169.1550, respectively.

Fig. 4 First 8 modes of a rectangular SFSF plate with 3-DOF system at its center
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First of all, it is important to remark that the results show no general tendency and the behaviour

depends on the mode under consideration. Whereas for mode 1 and 2 the frequency drops, as the 3-DOF

system’s location moves to the center of the plate, for mode 3 and 4 its value is increased. From

that fact, it can be concluded that the effect of adding the subsystem is to increase the total system’s

stiffness as it is moved away from the center of the plate for the first two modes and to decrease the

total system’s stiffness for modes 3 and 4, see Fig. 5(a). Of course, this can be understood since

different plate’s modes enable distinct motions of the 3-DOF system and contributes in different

ways to the overall mass and stiffness. Another consequence of the same results can be put in this

way: apparently, the more the subsystem moves to the center of the plate, the more symmetry of the

overall motion is required inducing the total system’s modes to be a combination of the modes of

bare plate and 3-DOF system that possesses the same symmetry.

For modes 5 to 8, Fig. 5(b), the situation is similar in the sense that there exists no general

tendency to increase/decrease the frequency values for all modes as the location of the 3-DOF

system is modified. Briefly, it can be seen that mode 5 and 7 drop their frequency values as the

subsystem is moved away from the corner side x1 = 0.10 m to the center x1 = 0.70 m. On the

contrary mode 6 and 8 behave in a different manner. Whereas mode 6, decreases its frequency

value up to x1 = 0.25 m and then it raises as it moves to the center, mode 8 makes the opposite, i.e.,

it increases the frequency until x1 = 0.40 m and then drops its value as the subsystem moves to the

center of the plate.

Location (x1, y1) (x4, y4)

1: (0.10 m, 0.650 m); (0.10 m, 0.950 m)

2: (0.25 m, 0.575 m); (0.25 m, 0.875 m)

3: (0.40 m, 0.500 m); (0.40 m, 0.800 m)

4: (0.55 m; 0.425 m); (0.55 m, 0.725 m)

5: (0.70 m, 0.350 m); (0.70 m, 0.650 m)

Fig. 5 First 8 natural frequencies (modes 1-8) of a SFSF plate with a 3-DOF system as a function of the
position the subsystem x1
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4. Conclusions

In this paper the free vibration characteristics of a rectangular plate carrying a 3-DOF spring-mass

system were calculated and analyzed by means of Lagrange multiplier method (analytical approach).

The obtained results showed that this method exhibits excellent agreement when compared with a finite

element formulation’s results. This study not only extends previous results, (Wu 2006), but also presents

a solution to the title problem, that requires solving a linear eigenvalue problem.

In order to perform a systematic study of problem, the influence of the parameters of the 3-DOF

system (stiffness, mass, moment of inertia, location) in the dynamic behaviour of the system.

Generally speaking it can be concluded that, apart from providing three more modes to the whole

system, the 3-DOF system mainly modifies the modes of the bare plate whose frequencies lie near

its natural frequencies. From the analysis of the variation of the frequencies, the influence of the

spring constants, mass and moment of inertia can be understood under the effective mass concept or

Rayleigh’s statement. Different locations of the 3-DOF system were presented in Figs. 5(a) and (b).

As a conclusion, it can be sustained that the increase or decrease of the frequency values as the

subsystem approaches to or moves away from the center of the plate depends on the mode and no

general tendency is observed. From the analysis of the “new” modes, which is possible through the

computation of the corresponding ratio of normal amplitudes, it can be affirmed that, when the 3-DOF

system is located at the center of the plate, the “new” modes result in a combination of the

subsystem’s modes (rotation around x axis, y axis, translation) and the bare plate’s modes that

posses the same symmetry. This situation no longer exists as the subsystem is apart from the center

of the plate. In these more general cases, different plate’s modes enable distinct motions of the 3-

DOF system contributing differently to the “new” modes as its location is modified.

As a complement, the authors also provide a way to efficiently determine the natural frequencies

of the compound system when the plate and subsystem are nearly uncoupled. This was performed

by means of a first order eigenvalue perturbation analysis.

Acknowledgements

The present study has been sponsored by Secretaria General de Ciencia y Tecnología of

Universidad Nacional del Sur at the Department of Physics and at Department of Engineering and

by CONICET (Argentina).

References

ALGOR V.20.3 (2007), Linear Mode Shapes and Natural Frequencies Module.
Avalos, D.R., Larrondo, H.A. and Laura, P.A.A. (1994), “Transverse vibration of a circular plate carrying an

elastically mounted mass”, J. Sound Vib., 177, 251-258.
Bambill, D.V., Felix, D.H. and Rossit, CA. (2006), “Natural frequencies of thin rectangular plates with holes or

orthotropic patches carrying an elastically mounted mass”, Int. J. Solids Struct., 43, 4116-4135.
Cha, P.D. (2007), “Free vibration of a uniform beam with multiple elastically mounted two-degree-of-freedom

systems’, J. Sound Vib., 307, 386-392.
de Veubeke, B.F. (1968), “A conforming finite element for plate bending”, Int. J. Solids Struct., 4, 95-108.
Dowell, E.H. (1979), “On some general properties of combined dynamical system’, J. Appl. Mech., 46, 206-209.
Gürgöze, M. (2005), “On the representation of a cantilevered beam carrying a tip mass by an equivalent

spring?mass system”, J. Sound Vib., 282, 538-542.



650 M. Febbo, D.V. Bambill and R.E. Rossi

Inman, D.J. (2006), Vibration with Control, John Wiley and Sons, NY.
Jen, M.U. and Magrab, E.B. (1993), “Natural frequencies and mode shapes of beams carrying a two degree of

freedom spring-mass system”, J. Vib. Acoust., 115, 202-209.
Leissa, A.W. (1993), Vibration of Plates, Acoustical Society of America, Ohio.
Li, W.L. and Daniels, M. (2002), “A Fourier series method for the vibrations of elastically restrained plates

arbitrarily loaded with springs and masses”, J. Sound Vib., 252, 768-781.
Low, K. H. (2003), “Frequencies of beams carrying multiple masses: Raleigh estimation versus eigenanalysis

solutions”, J. Sound Vib., 268(3), 843-853.
Mermerta, V. and Gürgöze, M. (2004), “Preservation of the fundamental natural frequencies of rectangular plates

with mass and spring modifications”, J. Sound Vib., 276, 440-448.
Meirovitch, L. (1998), Methods of Analytical Dynamics, Dover Publications, Mineola, NY.
Rayleigh, L. (1945), The Theory of Sound, Vol. I, Dover Publications, NY.
Rossit, C.A. and Laura, P.A.A. (2001), “Transverse, normal modes of vibration of a cantilever Timoshenko beam

with a mass elastically mounted at the free end”, J. Acoust. Society Am., 100, 2837-2840.
Rossit, C.A. and Ciancio, P.M. (2008), “Free vibrations of anisotropic rectangular plates with holes and attached

masses”, Struct. Eng. Mech., 28(1), 53-67.
Vera, S.A., Febbo, M., Mendez, C.G. and Paz, R. (2005), “Vibrations of plate with an attached two degree of

freedom system”, J. Sound Vib., 285, 457-466.
Wu, J.J. (2006), “Free vibration characteristics of a rectangular plate carrying multiple three-degree-of-freedom

spring-mass systems using the equivalent mass method”, Int. J. Solids Struct., 43, 727-746.
Wu, J.J. (2005), “Use of equivalent spring method for free vibration analyses of a rectangular plate carrying

multiple three-degree-of-freedom spring-mass systems”, Struct. Eng. Mech., 21, 713-736.
Wu, J.J. (2003), “Use of effective stiffness matrix for the free vibration analyses of a non-uniform cantilever

beam carrying multiple two degree-of-freedom spring?damper?mass systems”, Comput. Struct., 81, 2319-2330.
Wu, J.J. (2002), “Alternative approach for the free vibration of beams carrying a number of two-degree of

freedom spring-mass systems’, J. Struct. Eng., 128(12), 1604-1616.
Wu, J.J. and Whittaker, A.R. (1999), “The natural frequencies and mode shapes of a uniform cantilever beam

with multiple two-dof spring-mass systems”, J. Sound Vib., 227, 361-381.



Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system 651

Appendix A. Normal mode shape functions

The normal mode shape functions φij(x, y) used for the calculations are in all cases the exact

solution of the classical differential equation of motion for the transverse displacement w(x, y, t) of a

plate (Leissa 1993). These are

• simply supported plate at all sides (SSSS): φij(x, y) = sin sin

• simply supported at x = 0 and x = a, and free at y = 0 and y = b, and (SFSF): 

φij(x, y) = Φi(x)Ψj(y); where φi(x) = sin  and Ψj(y) is a linear combination of trigonometric

and hyperbolic functions given by;

with α = jπ/b. The constants Aj, Bj, Cj, Dj as well as the eigenvalue κ2 = , are calculated

substituting the equation for the displacement amplitude Eq. (4) into the boundary conditions for a

SFSF plate, see Leissa (1993).

Appendix B. Mass and Stiffness matrices

The (N + 3 × N + 3) M and K matrices of Eq. (8) are

, where Mp and Kp 

are N × N diagonal matrices whose elements are mk and mkωk
2 respectively. The Ksub matrix

represents the contribution of 3-DOF system, it is

where vector Φ (xl, yl) contains of the eigenfunctions of the plate evaluates at the points where the

3-DOF is attached.

Φ (xl, yl) = [φ1(xl, yl),.....,φΝ (xl, yl)]
T

M3DOF and K3DOF are 3 × 3 symmetric matrices that correspond to the mass and stiffness matrices

of the attached 3-DOF system. The calculation yields

iπ
x

a
---⎝ ⎠

⎛ ⎞ jπ
y

b
---⎝ ⎠

⎛ ⎞

iπ
x

a
---⎝ ⎠

⎛ ⎞

Ψj y( ) Ajsin κ
2

α
2
y–( ) Bjcos κ

2
α

2
y–( ) Cjsin κ

2
α

2
y–( ) Djcos κ

2
α

2
y–( )+ + +=

ρh D⁄

M
Mp 0

0
T
M3DOF

; K
Kp Ksub+ Kc

Kc

T
K3DOF

= =

Ksub klΦ xl yl,( )ΦT
xl yl,( )

l 1=

4

∑=
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The N × 3 rectangular Kc matrix rest to be defined. It results

Kc = [−k1Φ(x1, y1) − k4Φ(x4, y4) − k2Φ(x2, y2) − k4Φ(x4, y4) − k3Φ(x3, y3) − k4Φ(x4, y4)]

Appendix C. Nomenclature

me the lumped mass of the 3-DOF

Iex, Iey mass moments of inertia about x and y axes

ρe mass’ density

k1, k2, k3 and k4 spring constants of the 3-DOF

ae, be, he mass’ dimensions of the 3-DOF

a1, a2, a3 and a4 distances between the barycenter and the sides of the 3-DOF

system

T total kinetic energy

V total strain energy

x, y, z coordinates

t time

w(x, y, z) transverse displacement of the plate

wi = wi(t) = w(xi, yi, t) plate’s displacement at point i (xi, yi)

zmi mass’s displacement at i spring contact 

ωij eigenfrequencies of the bare plate

mij modal mass of the bare plate

δij Kronecker’s delta

M3DOF

mea2

2
Iey+

ae

----------------------
mea2 a1a4 a3a2–( ) Ieybe+

ae

2
be

----------------------------------------------------------
mea2a3

aebe

----------------

mea2 a1a4 a3a2–( ) Ieybe+

ae

2
be

----------------------------------------------------------
me a1a4 a3a2–( )2 Iexae

2
Ieybe

2
+ +

ae

2
be

------------------------------------------------------------------------
mea3 a1a4 a3a2–( ) Iexae+

aebe

2
----------------------------------------------------------

mea2a3

aebe

----------------
mea3 a1a4 a3a2–( ) Iexae+

aebe

2
----------------------------------------------------------

mea3

2
Iex+

be

----------------------

=

M3DOF

k1 k4+ k4– k4

k4– k2 k4+ k4–

k4 k4– k3 k4+

=
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a × b plate dimensions

ρ plate’s mass density

v plate’s Poisson coefficient

h plate’s thickness

E plate’s Young modulus

N first modes considered

f1 l restriction functions with l = 1, ....., 4

cij(t) time dependent generalized coordinates

f5
restriction function imposed because the mass is considered as

rigid body

γ = 5 total number of restriction functions

xm, ym, zm barycenter of the attached mass

xe, ye the mass barycentric coordinate system

L Lagrangian

sp non-independent degrees of freedom

λl Lagrange multiplier

N the number of modes considered 

q ≡ [q1, ....qN, qN+1, qN+2, qN+3]

q ≡ [c11, ....., cn,n', zm1, zm2, zm3]
independent set of coordinates

M, K mass and stiffness matrices

qp(t) = harmonic decomposition of the generalized coordinates

eigenvector

W(i)(x, y) (i) indicates the plate + subsystem natural mode shape

LMM corresponds to Lagrange multiplier method

FEM corresponds to finite element method

ω0i and x0i
i − th eigenfrequency and eigenvector of the unperturbed

problem

ωi
2 = ω2

0i + δω2
i perturbed eigenfrequencies

|δK| and |δM| norm of the corresponding matrices

M0 unperturbed mass matrix

ωi
(bare) i − th frequency of the bare plate

ωi
(3-DOF) i − th frequency of the 3-dof spring-mass-system

ωi
i − th frequency of the plate with 3-dof spring-mass-system

attached

mef effective mass

qpe
iω t

qp
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ωa frequency of the 1-dof spring-mass-system

ωp is plate’s frequency whose value is near to ωa

φp (x)
displacement amplitude of mode p where the subsystem is

attached

mp mode’s p modal mass of the bare plate

SFSF simple supported-Free-Simple supported-Free

SSSS
simple supported-Simple supported -Simple supported-Simple

supported
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