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Abstract In this work, we study the structure–activity
relationship of a series of Dihydrofolate reductase inhibitors
by two-dimensional quantitative activity–structure relation-
ship and three-dimensional quantitative activity–structure
relationship techniques. The two-dimensional quantitative
activity–structure relationship models were developed by
using two different types of topological molecular descrip-
tors, PaDEL and Dragon descriptors. The models showed an
excellent predictive power, R2

train= 0.916 and R2
val= 0.806

for the PaDEL, and R2
train= 0.952 and R2

val= 0.963 for
those obtained with Dragon descriptors. Simple molecular
descriptors as maxHCsats, IC3, SPI, SIC2, and GATS5p
were adequate to obtain predictive models. The three-
dimensional quantitative activity–structure relationship was
performed through three variable selected approaches,
Partial Linear Square (PLS), Fractional Factorial Design
(FFD) and Uninformative Variable Elimination-Partial Lin-
ear Square (UVE-PLS) using the Open3DQSAR software.

All the 2D and 3D models were validated using two com-
pounds (number 24 and 25), which were synthesized and
presented here for the first time. Their biological activities
were correctly predicted by all the quantitative
activity–structure relationship models. Finally, we proposed
three compounds (26, 27, and 28), which showed a high
predicted Dihydrofolate reductase inhibitory activity.
Molecular docking study suggested that compounds bind to
receptor similarly to the most active inhibitors.
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Introduction

The enzyme Dihydrofolate reductase (DHFR) plays a key
role in the folate pathway, responsible for the biosynthesis
of deoxythymidine monophosphate, as well as purine
nucleotides and the amino acids histidine and methionine
(Beierlein et al. 2008; Li et al. 2011; Nammalwar et al.
2012). The DHFR catalyzes the transformation of dihy-
drofolate to tetrahydrofolate (Beierlein et al. 2009). The
literature shows that DHFR is important in the studies of
several human diseases such as protozoal, bacterial and
fungal infections, psoriasis, autoimmune disease, and neo-
plastic diseases (Li et al. 2011; Sharma and Chauhan 2012).

The availability of high resolution crystal structures of
DHFR of P. carinii (pcDHFR) and human DHFR (hDHFR),
as well as a plethora of information in regard to the active
and inactive compounds, has provided a solid platform for
ligand-based drug design of potent and specific DHFR
inhibitors (Champness et al. 1994; Klon et al. 2002). Our
research group has previous experience in the synthesis of
pyrimidine derivatives (Quiroga et al. 2009; De la Torre
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et al. 2014; Olivella et al. 2012) and we have reported a new
series of DHFR inhibitor, which possesses a moderate
inhibitory effect against hDHFR (Tosso et al. 2013). More
recently (Tosso et al. 2014) we have synthesized and tested
seven novel compounds structurally related to those pre-
viously reported in Tosso et al. (2013).

The quantitative activity–structure relationship (QSAR) is
one of the most utilized tools in rational drug design aided by
computers. This approach is a mathematical hypothesis sub-
stantiated on the supposition that molecular structure (prop-
erties or descriptors of the molecules) is responsible for the
biological activity of a compound. Thus, entities with analo-
gous structure would present a similar biological activity.
Various QSAR approaches [as three-dimensional QSAR (3D-
QSAR)] have been developed gradually over a time span
from the called “classic QSAR” [two-dimensional QSAR (2D-
QSAR)], and served as a valuable predictive tool, particularly
in the design of pharmaceuticals. The main difference
between them resides in the manner as the structural prop-
erties are represented and the quantitative relationships with
the biological activities are extracted (Verma et al. 2010).

In the past years, several QSAR studies specifically tar-
geted to DHFR inhibitors have been performed. These
investigations span from methods which use simple 2D
descriptors to more complex and advanced receptor based
3D-QSAR methods. One of the most relevant papers is
published by Agrawal et al. (2002), who reported a QSAR
model using a series of 19 2,6-substituted 2,4-diaminopyrido
[3,2-d]pyrimidine derivatives against pcDHFR using topo-
logical indexes. In another paper, (Mattioni and Jurs 2003)
the author used a data set of 345 diverse DHFR inhibitors to
build QSAR models using artificial neural networks. Deb-
nath et al. (2003) reported a study of nonparabolic Hansch
QSAR models with the aim to obtain physicochemical and
structural features of pyrimidine derivatives. Manchester and
Czerminski (2008) used a data set of DHFR inhibitors
from the work of Sutherlandand and Weaver (2004) to
compare simple atom mapping following alignment
(SAMFA), a newly proposed 3D-QSAR method, with
CoMFA. More recently, Gangjee et al. (2010) have descri-
bed a CoMFA analysis of tgDHFR and rlDHFR based on 80
antifolates. This brief discussion shows the current interest in
to elucidate the key structural characteristics for the inhibi-
tion through developing new QSAR models specific for
DHFR.

In the present work, we performed a QSAR analysis on a
series of compounds (Imino and Guanine derivatives) that
possess DHFR inhibitory activity (Tosso et al. 2013, 2014).
In contrast with other papers, we presented a combined 2D-
QSAR and 3D-QSAR analysis in which two types of
topological molecular descriptors (PaDEL and Dragon) and
different variable selection methods are utilized. We think
that information provided in this work would help in

understanding of molecular structural requirements neces-
sary for developing new potential DHFR inhibitors.

Material and methods

Data set

The data set contains 23 DHFR inhibitors including Imino
and Guanine derivatives and classical inhibitors as Metho-
trexate (MTX). These compounds were synthetized and
evaluated as DHFR inhibitors in previous works (Tosso
et al. 2013, 2014). We separated the training and validation
set compounds applying a procedure that is based on the
combination of k-means clustering and Kennard–Stone
algorithms (MacQueen 1967) implemented in Matlab.
Thus, we performed a rational sets partition avoiding the
random selection which is sometimes inappropriate or
unsuitable (Andrada et al. 2015). To achieve comparable
results all developed 2D-QSAR and 3D-QSAR models
were obtained using the same training and validation sets.

The IC50 values expressed in micromole (concentration of
a compound required to inhibit 50 % of the DHFR activity)
were converted to log(1/IC50) and used as dependent vari-
able. The compounds of the training and validation sets and
their biological activity values are presented in Table 1.

2D-QSAR analysis

The structures of the 23 DHFR inhibitors were obtained
from Molecular Dynamics calculations using the human
DHFR as the starting structure (PDB entry code 2W3M)
and subsequent optimization into a reduced model of the
binding comprising 23 amino acids (Tosso et al. 2013). The
optimizations were performed at the PM6 level of theory
using the MOPAC2009 program (Stewart 2008).

The optimized structures were used as input in the
PaDEL and Dragon software to calculate the topological
and 2D-molecular descriptors (Yap 2011; Tetko et al.
2005). A total of 1444 and 762 molecular descriptors were
obtained with PaDLE and Dragon software, respectively.
To avoid the redundant information the descriptors with a
correlation higher than 0.9 were removed from total set.

The most relevant descriptors were chosen through
multiple linear regression (MLR) using the enhanced
replacement method (ERM) as the molecular descriptor
selection approach (Mercader et al. 2011). The ERM is an
optimization tool that generates QSAR models by searching
an optimal subset of d descriptors from a set of D
descriptors (d⋘D) with minimum standard deviation (S)
of the model (Mercader et al. 2010). This method produces
multivariable linear QSAR models close to the full search
methods with lower computational cost (Paz et al. 2015;
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Table 1 Structure and experimental biological activity of the data set

ID structure IC50 µM log(1/IC50) ID structure IC50 µM log(1/IC50)

1 0.022 1.658 13 5.8 −0.763

2 0.066 1.180 14a 1.4 −0.146

3a 0.21 0.678 15 54.45 −1.736

4 18 −1.255 16 68.01 −1.833

5 32 −1.505 17 49.39 −1.694

6 6.0 −0.778 18 63.05 −1.800

7 2.8 −0.447 19 64.54 −1.810

8 2.9 −0.462 20a 65.98 −1.819

9 5.8 −0.763 21 27.87 −1.445
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Garro Martinez et al. 2014). The quality of the models was
quantified with the traditional statistic parameters; regres-
sion coefficient (R), determination coefficient (R2), the
standard deviation (S), and root-means square error (RMS).

The validation was performed using a set of compounds
(validation set), which was selected from the data set through
k-means clustering (using k= 2 and 3) and Kennard–Stone
algorithms. In addition, the optimal QSARs were also vali-
dated using the leave-one-out (loo) and the leave-more-out
(lmo) cross-validation procedures, generating 100,000 cases
of random data removal for lmo, (m is ≈20%) and y-ran-
domization. The y-randomization involves the interchange of
the dependent variable (biological activity) between the
compounds. To establish a meaningful validation, we per-
formed 100,000 cases of y-randomization. All the calcula-
tions were computed using the algorithms included in
Matlab software (Matlab, The MathWorks Inc. 2008).

3D-QSAR method

3D-QSAR study was performed with Open3DQSAR
packages developed by Tosco and Balle (2011). Open3-
DQSAR is free available software for statistical manipula-
tion of the molecular interaction fields (MIF). Recent
investigations indicate that results obtained using this
method is comparable to CoMFA/CoMSIA (Ghasemi and
Shiri 2012).

The 3D structures of the compounds were aligned with
Open3DALIGN (Tosco et al. 2011). The alignment was

carried out using all available molecules (N) as possible
templates. Therefore, N alignments were produced, each
obtained by superimposition of all molecules on the corre-
sponding template compound of each alignment. A score
value was computed for each alignment which indicates the
quality of the molecular overlap.

The next step to generate a 3D-QSAR model was gath-
ering MIF information for all analyzed compounds. We
computed a steric and an electrostatic field. The steric field
was based on AMBERFF99 Van der Waals parameters
(Wang et al. 2000) and was calculated using a
Lennard–Jones’ 6–12 potential between the n atoms of the
molecule and a sp3 carbon. Equation 1, while the electro-
static field was based on a point charge model and was
obtained through Coulomb interactions between a positively
charged probe and the n atoms of the molecules (Eq. 2).

EVDW ¼
Xn

i¼1

Ai

r12i
� Bi

r6i

� �
ð1Þ

Eele ¼ k
Xn

i¼1

qi
rmi

� �
ð2Þ

In order to carry out the MIF calculation, we generated a
grid box with a step size of 1.0 and a 5.0 Å outgap around of
the compounds. Then, we performed pre-processing of data
to exclude uninformative variables, which only add noise or
even can negatively condition the model. The following
steps were performed (Tosco et al. 2011):

Table 1 continued

ID structure IC50 µM log(1/IC50) ID structure IC50 µM log(1/IC50)

10a 2.7 −0.431 22 43.84 −1.642

11 1.4 −0.146 23 77.09 −1.887

12 2.9 −0.462

a Compounds of validation set
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(a) Zeroing [sets to zero grid values that are close to zero
(value ≤ 0.05)];

(b) Max/Min cut-off [sets to user-defined maximum/
minimum threshold values the grid points lying above
or below these boundaries, respectively (Max= 30,
Min= −30)];

(c) Standard deviation cut-off [removes variables having
a standard deviation among different objects lower
than a user-defined threshold, in order to improve the
signal to-noise ratio (value= 0.1)];

(d) N-level variable elimination (removes variables assum-
ing only a few different values across the different
objects to prevent them from biasing the model).

Once pre-treatment and scaling operations were com-
pleted, Partial Linear Square (PLS) models were built
examining from 1 to 5 principal components (PC). As well
as in 2D-QSAR model, predicted power of the obtained 3D-
QSAR models was challenged by an external validation set
and cross-validation (loo and lmo).

The predictivity of a 3D-QSAR model can be sig-
nificantly improved by appropriate variable clustering and
selection methods or procedures (Baroni et al. 1993). Herein,
we implemented the Fractional Factorial Design (FFD) and
UVE-PLS (uninformative variable elimination-partial linear
square) variables selection methods. The FFD selection
method, described by Baroni et al. (1992), aims at selecting
the variables which have the largest effect on predictivity
and can operate on both, single variables or groups of
variables identified by a previous smart region definition
(SRD) run. The UVE-PLS variable selection removes the
least informative variables, i.e., those characterized by small
PLS pseudo-coefficients (Centner et al. 1996).

We selected the determination coefficient (R2) and the
standard deviation (S) as parameters, which suggest the
quality of training and validation.

Experimental section

Synthesis of the new DHFR inhibitors

In this paper, two new compounds were synthetized. The
synthetic route of the Imino and Guanine derivative com-
pounds is shown in the Fig. 1. The experimental data are
available in supplementary material.

General Procedure for the synthesis of imine derivatives

To a solution of triaminopyrimidine, 1 (1 mmol) in 15 mL
of methanol, 1 mmol of appropriate aryl aldehyde was
added, and this solution was stirred overnight at room
temperature. The solid formed was filtered off, washed with

fresh methanol and dried at 50 °C, if necessary it can be
recrystallized from MeOH.

2-[(E)-{[2-amino-4-methoxy-6-(phenylamino)pyrimidin-5-
yl]imino}methyl]phenol (24) 78 % yield; yellow solid; mp
178–180 °C; Rf 0.29 (CHCl3); IR (ν cm-1): 3462, 3345,
3229, 1632,1601, 1555, 1120, 1082; 1H NMR (DMSO-d6):
δ 3.89 (s, 3H), 6.50 (s, 2H), 6.90–6.98 (m, 3H), 7.25–7.29
(m, 3H), 7.70–7.74 (m, 3H), 8.43 (s, 1H), 9.08 (s, 1H),
11.83 (s, 1H). 13C NMR (DMSO-d6): δ 53.2, 103.5, 116.2,
119.0, 120.2, 121.7, 121.8, 128.3, 129.8, 131.5, 140.3,
157.0.7, 158.0, 158.6, 159.5, 160.9. MS (m/z, %) (assig-
nation, abundance %): 335 (M+, 54.8), 334 (M-1, 16.2), 242
(M-93, 100), 215 (M-120, 8.8), 77 (C6H5

+, 11.9). Calcu-
lated HRMS for C18H17N5O2: 335.1382; found: 335.1380.

Procedure for the synthesis of guanine derivative

To a solution of triaminopyrimidine, 1 (1 mmol) in 15 mL
of methanol, 1 mmol of appropriate aryl aldehyde was
added, and this solution was stirred overnight at room
temperature. The solid formed was filtered off, washed with
fresh methanol and used directly without further purification
with 1 mmol of iodine in 20 mL of AcOEt; the reaction
mixture was stirred for 24 h at room temperature. The solid
formed is filtered off and washed with a solution of
NaHCO3, then with a solution of sodium thiosulfate and,
dried in an oven at 100 °C) (see Fig. 1).

2-amino-8-(1,3-benzodioxol-5-yl)-9-phenyl-1,9-dihydro-
6H-purin-6-one (25) 52 % global yield; beige solid; mp >
300 °C; Rf 0.82 (CHCl3/CH3OH, 9:1); IR (ν cm−1): 3422,
3186, 1694, 1645, 1232, 1032; 1H NMR (DMSO-d6): δ
6.00 (s, 2H), 6.49 (s, 2H), 6.80–6.84 (m, 3H, broad band),
7.33 (s, 1H, broad band), 7.48 (s, 4H, broad band),10.63 (s,
1H). 13C NMR (DMSO-d6): δ 101.3, 108.2, 108.3, 122.4,
123.8, 123.9, 128.2, 128.7, 129.4, 135.6, 144.9, 147.0,
147.6, 153.6, 153.7, 156.7. MS (m/z, %) (assignation,
abundance %): 347 (M+, 100), 346 (M-1, 45), 304 (M-43,
4), 224 (M-123, 13), 77 (C6H5

+, 5). Calculated HRMS for
C18H13N5O3: 347.1018; found: 347.1015.

Bioassays of the new DHFR inhibitors

The bioassay is based on the capacity of DHFR to catalyze
the NADPH-dependent reduction of dihydrofolic acid to
tetrahydrofolic acid, such as it is described by Tosso et al.
(2013, 2014). The rate of NADPH consumption in the
presence of the compound is monitored by the decrease in
absorbance at 340 nm (Gready 1980; Blakley 1995; Costi
and Ferrari 2001; Schweitzer et al. 1990; Mathews et al.
1963; Hillcoat et al. 1967). The reactions were carried out in
a solution with saturating concentrations of the cofactor
(80 μM NADPH) and the substrate (50 μM dihydrofolate),
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50 mM Tris-HCl, 0.001M 2-mercaptoethanol, and 0.001M
EDTA at pH 7.4 and 30 °C. The enzyme was purchased
from Sigma-Aldrich Co. (St. Louis, MO).

Results and discussion

Clustering and sets selection

The training and validation sets were designated through k-
means clustering and Kennard–Stone algorithms. Dendro-
gram and silhouette plots were performed using the PaDEL
and Dragon molecular descriptors information, Fig. 2. The
dendrograms indicate the data set could be clustered
according to the type of descriptors, two clusters for PaDEL
and three clusters for Dragon. In support of these results, we
carried out silhouette plots with k= 2 and 3 (number of
clusters). The silhouette values near to +1 are points that are
very distant from neighboring clusters and values close to
−1 indicate points that are probably assigned to the wrong
cluster. A value equal to 0 (zero) are up to points that cannot
be assigned to any cluster.

The negative values in PaDEL silhouette plots indicate
that there exists a compound which cannot be correctly
assigned to a specific cluster. The other compounds could be
possibly grouped in two cluster or less likely in three clusters.

In contrast, the Dragon silhouette plots confirm the three
clusters found in the respective dendrogram only with an
unassigned compound.

Then, we used the Kennard–Stone algorithm to find the
most representative compounds for each cluster to build a
validation set that depicted the whole data set. The selected
compounds are: 3, 10, 14, 20 (see Table 1). Thus, we shape
a training set containing 19 compounds (≈82 %) and a
validation set with four compounds (≈18%).

Development of 2D-QSAR models

The search of predictive QSAR models was carried out
using two different families of topological and 2D molecular
descriptors: PaDEL and Dragon (Yap 2011; Tetko 2005).
In each case, 2D-QSAR regression containing from 1 to 3
of the most representative descriptors were constructed.

All the constructed models comply with the classic semi-
empirical “rule of thumb”, which indicates that at least six or
seven data points (i.e., compounds) should be present by
descriptor (Hansch 1990). These descriptors were selected
from the total set using MLR approach. The statistic para-
meters of the models with lower standard deviation are
shown in Table 2.

Both type of descriptors (PaDEL and Dragon) showed an
excellent correlation with the biological activity. A smaller
number of PaDEL descriptors (two descriptors) were
required to achieve a predictive model. However, a sig-
nificant difference of predictability, which allows us to rule
out any of models, is not appreciated. Thus, we selected the
PaDEL model with two descriptors and the Dragon model
with three descriptors as the most predictive 2D-QSAR
models. The mathematical equations are:

PaDEL model

logð1=IC50Þ ¼ �11:504þ 1:847ðmaxHCsatsÞþ
2:042ðIC3Þ ð3Þ

N= 19, R2
train= 0.916, Strain= 0.319, Rloo= 0.939,

Sloo= 0.379, Rlmo= 0.879 Slmo= 0.528, Srand= 0.474

Dragon model

logð1=IC50Þ ¼ �8:885þ 0:0001ðSPIÞ þ 8:490ðSIC2Þþ
0:961ðGATS5pÞ

ð4Þ
N= 19, R2

train= 0.952, Strain = 0.248, Rloo= 0.963, Sloo
= 0.306, Rlmo= 0.938 Slmo = 0.395, Srand= 0.396

The selected models were validated using loo, lmo,
external set and y-randomization. All the validation
regression coefficients (Rloo, Rlmo, and Rval) exceed amply
the accepted value of 0.50. Also, we performed 100,000
cases of y-randomization obtaining standard deviation (S)
values greater (PaDEL; 0.474 and Dragon; 0.396) than
those found, when true calibration was considered (PaDEL;

Imine Deivatives Guanine Deivatives

Fig. 1 The common synthetic
route of Imine and Guanine
derivatives
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0.319 and Dragon; 0.248). The y-randomization results
prove that the best models were not found by chance.

The plots shown in Fig. 3 illustrate the correlation
between the predicted and experimental log(1/IC50). As can
be appreciated, the training and validation data set values
are close to the perfect fit, showing the high predictive
power of the models. The predicted log(1/IC50) values are
shown in Table 3.

Molecular descriptors analysis

The Table 4 lists a brief description of selected MDs. In the
PaDEL model, the most relevant molecular descriptors
related to the DHFR inhibitory activity were maxHCsats
and IC3 (Hall and Kier 1995; Todeschini and Consonni
2009), with correlation of 63 % (0.636), Fig. 3 (top).
For Dragon model, the most significant molecular

Fig. 2 Dendrogram and silhouette plots. (Top): Using PaDEL descriptors. (Bottom): Using Dragon descriptors
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descriptors were SPI, SIC2, and GATS5p (Todeschini and
Consonni 2009). The maximum correlation (47 %) was
found between SIC2 and GATS5p (Fig. 3 (bottom). The
numerical values of the molecular descriptors are listed in
Table 1S of supplementary material.

The standardization of the regression coefficients
allowed assigning a greater importance to the molecular
descriptors (Draper and Smith 1981). The coefficients
values are presented in the Fig. 4. For the descriptors in the
PaDEL model, the absolute standardized regression coeffi-
cients were: maxHCsats= 0.598 and IC3= 0.457. Thus, the
maxHCsats [an electrotopological state atom-type descrip-
tor (Hall and Kier 1995)] was found as the most important
PaDEL descriptor. These topological descriptors arise from
the electronic environment of each atom due to its intrinsic
electronic properties and the influence of other atoms in the
molecule, and they are computed to parameterize key
properties such as hydrogen bonds, molecular polarity, etc.
In addition, atom-type and the group-type electro-
topological state sums are computed for a number of atoms
and functional groups (Hall and Kier 1995). Specifically,
maxHCsats is associated to hydrogen atoms on carbons
bonded to saturated carbon atoms, such as the ones present
in compounds 1, 2, and 3 structures, Table 1. The positive
sign of this descriptor in the Eq. (3) indicates that presence

Fig. 3 Predicted vs. experimental log(1/IC50) plots and descriptors
correlation matrix. (Top): PaDEL model, Eq. (1). (Bottom): Dragon
model, Eq. (2)

Table 3 Experimental and predicted values of biological activity for
the data set

ID Exp. log
(1/IC50)

2D-QSAR 3D-QSAR

PaDEL Dragon PLS FDD UVE-PLS

1 1.658 1.265 1.706 1.452 1.319 1.590

2 1.180 1.174 1.059 1.029 1.231 1.199

3a 0.678 1.038 0.724 0.854 0.803 0.706

4 −1.255 −1.163 −0.819 −0.734 −0.619 −1.143
5 −1.505 −1.145 −1.079 −1.022 −1.099 −1.401
6 −0.778 −0.515 −0.919 −0.709 −0.842 −0.558
7 −0.447 −0.776 −0.486 −0.585 −0.945 −0.447
8 −0.462 −0.656 −0.826 −0.629 −0.604 −0.626
9 −0.763 −0.745 −0.518 −0.457 −0.438 −0.731
10a −0.431 −1.012 −0.812 −0.564 −0.519 −0.740
11 −0.146 −0.414 −0.376 −0.488 −0.391 −0.191
12 −0.462 −0.806 −0.765 −0.671 −0.944 −0.486
13 −0.763 −0.690 −0.788 −0.891 −1.035 −0.733
14a −0.146 −0.158 −0.328 −0.974 −0.933 −0.986
15 −1.736 −1.796 −1.683 −1.360 -1.163 −1.732
16 −1.833 −2.024 −2.074 −1.952 −1.967 −1.890
17 −1.694 −1.551 −1.719 −1.648 −1.542 −1.834
18 −1.800 −1.631 −1.749 −1.810 −1.736 −1.807
19 −1.810 −1.843 −1.631 −1.696 −1.558 −1.846
20a −1.819 −1.843 −1.728 −1.847 −1.804 −1.545
21 −1.445 −2.049 −1.733 −1.971 −1.884 −1.510
22 −1.642 −1.075 −1.705 −1.541 −1.559 −1.585
23 −1.887 −1.539 −1.685 −1.939 −1.824 −1.775
a Compounds of validation set

Table 2 Statistic parameters of the 2D-QSAR models

N° Descriptors R2
train Strain RMS R2

val Sval RMS

PaDEL models

1 nHBDon_Lipinski 0.804 0.476 0.452 0.803 0.428 0.331

2a maxHCsats, IC3 0.916 0.319 0.294 0.806 0.475 0.300

3 ATSC4p,
MATS4c, SsNH2

0.984 0.140 0.126 0.645 1.236 0.553

Dragon models

1 IC2 0.892 0.352 0.334 0.927 0.378 0.293

2 SPI, IC2 0.926 0.300 0.276 0.930 0.518 0.328

3a SPI, SIC2,
GATS5p

0.952 0.248 0.222 0.963 0.447 0.200

a Selected models
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of this class of hydrogen atoms in the molecule improve the
biological activity.

IC3 is an Information Content index (neighborhood
symmetry of 3-order) descriptor. It is a topological
descriptor which indicates the complexity of graph based on
the 3rd order neighborhood of vertices. It describes the
connectivity and branching in a molecule and can be related
to molecular shape and symmetry. The relative number of
rings in the fragments can also be related to molecular
shape. A higher positive value of the information content
would be beneficiary to the activity (Todeschini and Con-
sonni 2009). Similarly, the compounds 1, 2, and 3 present
the highest values of this descriptor, see Table S1.

In the Dragon model, the absolute standardized regres-
sion coefficients for each descriptor were: SPI= 0.669,
SIC2= 0.396, GATS5p = 0.187. In this case, the main
descriptor was SPI [superpendentic index, topological
descriptors (Todeschini and Consonni 2009)]. The value of
this descriptor changes significantly with a small change in
the branching of a molecule The high sensitivity towards
branching, exceptionally high discriminating power coupled
with extremely low degeneracy, suggest that superpendentic
indexes are the promising tools for isomer discrimination
(Gupta and Singh 1999). The second descriptors SIC2 is the
Structural Information Content index (neighborhood sym-
metry of 2-order). These types of descriptors are mod-
ifications of information content index (ICn) and are also
related to the complexity of the molecular graph. In
agreement with the PaDEL model, compounds 1, 2, and 3,
present high values SPI and SIC2 due to branching of their
molecular structures. GATS5p (Geary autocorrelation of lag
5 weighted by atomic polarizabilities, autocorrelation
descriptors) is associated to the presence of polarizable
atoms at a topological distance of 5. This descriptor has a
little influence on the activity. The positive sign of the three
Dragon descriptors in the Eq. 4 indicates that log(1/IC50)
values are directly related to these descriptors.

Development of 3D-QSAR model

The 3D-QSAR models were built based on the same
training and validation sets utilized in the 2D-QSAR

Table 4 Brief descriptors of MDs of PaDEL and Dragon models

Descriptors Type Description

PaDEL models

nHBDon_Lipinski PaDEL HBond donor count Number of hydrogen bond donors (using Lipinski’s definition: any OH or
NH. Each available hydrogen atom is counted as one hydrogen bond
donor)

maxHCsats Electrotopological state atom type Maximum atom-type H E-State

SsNH2 Electrotopological state atom type Count of atom-type H E-State: –NH2–+

IC3 Information content Information Content index (neighborhood symmetry of 3-order)

ATSC4p Autocorrelation

Centered Broto-Moreau autocorrelation—lag 4/
weighted by polarizabilities

MATS4c Autocorrelation

Moran autocorrelation—lag 4/weighted by
charges

Dragon models

IC2 Information content Information Content index (neighborhood symmetry of 2-order)

SIC2 Information content Structural Information Content index (neighborhood symmetry of 2-
order)

SPI Topological indices Superpendentic index

GATS5p 2D autocorrelations Geary autocorrelation of lag 5 weighted by polarizability

Fig. 4 Standardized regression coefficient for PaDEL and Dragon
descriptors
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analysis. The PLS, FFD, and UVE-PLS variable selection
methods were used to correlate chemical structures to
DHFR inhibitory activity (Baroni et al. 1993, 1992; Centner
et al. 1996).

The molecular alignment is the key procedure to develop
3D-QSAR models (Li et al. 2013). The ligand-based
alignment was carried out using the 19 compounds of
training set as possible templates. According to the score
values, the best overlap is obtained when compound num-
ber 6 is used as template, the Fig. 5.

We constructed five 3D-QSAR models (from 1 to 5
principal component) for each variable selection method
(PLS, FFD, and UVE-PLS). The statistical results are
summarized in the Table 5. The PLS exhibited satisfactory
results when three principal components (PC= 3) were
considered (R2

train> 0.9 and R2
val> 0.6). The calibration

and external validation statistic parameters in FFD and
UVE-PLS methods were similar to PLS. However, we
found an improvement in the internal validation quality (loo
and lmo) when these two approaches were applied.

The model with PC= 3 was the most predictive PLS
model with values of R2

loo> 0.5 for internal validation (loo
and lmo) and R2

val= 0.694 for the external validation. In
FFD, two principal components (PC= 2) were adequate to
build a predictive model. This presented acceptable vali-
dation parameter statistic: R2

(loo,lmo) > 0.7 for the loo and
lmo and R2

val similar to PLS (0.693). When we used UVE-
PLS, the best model was found with PC = 5. This variable
selection method presents validation parameters (R2

loo=
0.820, R2

lmo= 0.801, and R2
val= 0.626) that demonstrate

the robustness and the excellent predictive power of the
derived model.

The predicted log(1/IC50) values are listed in the Table 3,
while Fig. 6 shows the correlation between the predicted
and experimental values of log(1/IC50) obtained for the
most predictive models.

The Fig. 7 shows the steric and electrostatic contour
maps of the aligned compounds (Fig. 7a, c) and the same
type of map obtained for the most active compound
(Fig. 7b, d). In the steric contour map, the interaction
regions are represented by green and yellow contours,
Fig. 7a, b. The bulky groups, near the green regions,
increase the activity but negatively affect when they are
located near the yellow regions. The electrostatic maps
represent the regions where an increase in the positive
charge (blue regions) and/or negative charge (red regions) is
favorable to the biological activity (Fig. 7c, d).

The contours for the steric field showed an important
green region, which involves the phenyl group and its
substituents. The presence of bulky groups in this region
could improve the activities of the compounds; the most
active compounds (1, 2, 3, 8, 11, and 14) have bulky sub-
stituents on this region. In contrast, the compounds with low

activity (compounds 16, 18, 20, and 23) have bulky groups
in the yellow regions.

According to the electrostatic contour maps of Fig. 7c, d,
there is a noticeable influence of the electropositive groups
on the activity. The presence of electropositive substituents
in the blue region could increase the biological activity.
This is evidenced by comparing the activity of the

Fig. 5 The molecular alignment of the 23 compounds

Table 5 Statistic results of 3D-QSAR models

PC Strain R2
train Sloo R2

loo Slmo R2
lmo Sval R2

val

PLS

1 0.846 0.314 0.983 0.074 0.973 0.091 0.793 0.336

2 0.428 0.824 0.644 0.602 0.655 0.588 0.609 0.212

3 0.268 0.931 0.689 0.545 0.694 0.535 0.379 0.694

4 0.177 0.970 0.731 0.488 0.728 0.489 0.446 0.577

5 0.120 0.986 0.753 0.457 0.748 0.459 0.409 0.645

FFD

1 0.819 0.356 0.947 0.140 0.930 0.156 0.803 0.369

2 0.329 0.896 0.528 0.733 0.539 0.720 0.381 0.693

3 0.228 0.950 0.596 0.659 0.603 0.650 0.381 0.692

4 0.160 0.976 0.661 0.581 0.655 0.588 0.340 0.754

5 0.117 0.987 0.680 0.557 0.670 0.568 0.413 0.637

UVE-PLS

1 0.824 0.349 0.952 0.132 0.945 0.141 0.793 0.336

2 0.308 0.909 0.497 0.764 0.504 0.756 0.541 0.379

3 0.180 0.969 0.471 0.787 0.474 0.784 0.434 0.600

4 0.120 0.986 0.439 0.815 0.457 0.798 0.455 0.561

5 0.089 0.992 0.433 0.820 0.454 0.801 0.420 0.626
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compounds with –NH2 in the guanine group with respect to
the compounds with –OH or –OCH3 as substituents.

Proposal, bioassay and molecular docking of new DHFR
inhibitors

The information provided from the structure-activity rela-
tionship studies (2D-QSAR and 3D-QSAR) was very
helpful to design and propose new compounds as DHFR
inhibitor. Two new compounds (24 and 25) were synthe-
tized and their activities were experimentally evaluated
(52.89 and 20.81 µM, respectively). The general procedure
for the synthesis and bioassay was showed in the experi-
mental section. The biological activities of the compounds
24 and 25 are in a complete agreement with the predicted
values by the QSAR models, providing an additional sup-
port and an experimental corroboration for such studies.
The Table 6 presents the structure, experimental and pre-
dicted activities values.

In addition, we propose three new structures (26, 27, and
29) as possible potent DHFR inhibitors. These were
designed with a molecular structure similar to the most
active compounds maximizing the maxHCsats, IC3 and SPI
descriptors values and considering the effect of size and
electronegativity of the substituents. All the QSAR models
predicted the log(1/IC50) values that indicate these com-
pounds could have an important biological activity. The
IC50 mean values (including all QSAR models) of com-
pounds 26, 27, and 28 are 0.13, 0.16, and 0.06 µM,
respectively, which are similar to the most active compound
of the data set. The structure and the predicted activity are
show in the Table 7.

The inhibitor-enzyme interaction was compared to MTX
by means of molecular docking study. The structure of
human DHFR (PDB entry code 2W3M) and Autodock Vina
(Trott and Olson 2008) software were used for docking
analysis. The results indicate that the three new structures
bind to the active site of DHFR similarly to MTX (score:
9.9 kcal/mol). The Fig. 8 illustrates the molecular docking
of the three compounds and MTX in the active site of
DHFR. The 3D-QSAR models predicted that electro-
positive substituents located in the blue region (Fig. 7)
would increase inhibitor activity. This is in agreement with
the docking complexes where the orientation of ligands
point electropositive groups towards electroctronegative
residues of the active site (see GLU30 in Fig. 8). Moreover,
electronegative substituents, located in red region of Fig. 7,
establish favorable interactions with ARG70 (electro-
positive residue). The implementation of QSAR models and
molecular docking about the three compounds suggests that
they could be used as lead compounds.

Fig. 6 Predicted vs. experimental log(1/IC50) plots. (Top): PLS model
using PC= 3. (Middle): FFD model using PC= 2. (Bottom): UVE-
PLS model using PC= 5
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Conclusion

In this manuscript, we performed 2D-QSAR and 3D-QSAR
analysis applied to a series of DHFR inhibitors. In the 2D-

QSAR, we used two types of molecular descriptors that
provided different information to the models: PaDEL and
Dragon. Simple topological and 2D descriptors (maxHC-
sats, IC3, SPI, SIC2, and GATS5p) were adequate to obtain

a) b)

c) d)

Fig. 7 The steric and
electrostatic contour maps.
Green and yellow represent
sterically favored and disfavored
regions, respectively. Blue and
red represent electrically favored
and disfavored regions. a and c:
Contour maps based on the
training set compounds. b and d:
Contour maps based on the most
active compound (color figure
online)

Table 6 Experimental and
predicted values of biological
activity for two new compounds

ID Structure Exp.log(1/IC50) 2D-QSAR 3D-QSAR

PaDEL Dragon PLS FFD UVE-PLS

24 −1.723 −1.393 −1.607 −1.732 −1.571 −1.592

25 −1.318 −1.217 −1.191 −1.582 −1.707 −1.401
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models with excellent predictive power. The 3D-QSAR
analysis was developed using different selection approaches
(PLS, FDD, and UVE-PLS). The results helped to explain
that the biological activity is affected by the size and elec-
tronegativity of the substituents. The statistic parameters of
the all developed models exceed with amplitude the
accepted value of the calibration and validation steps.

The models were experimentally corroborated with two
new compounds, 24 and 25. These were synthesized and
their experimental activities were correctly predicted by all
QSAR models. In addition, three new compounds (26, 27,
and 28) with possible high DHFR inhibitory activity are
proposed in this investigation.

We think that the information provided in this report
could be a useful tool for a better understanding of struc-
tural requirements of substituents to develop new potential
DHFR inhibitors.
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