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Abstract

Innovative methods to select sperm subpopulations with the best fertilizing ability are needed in assisted
reproductive techniques (ART) in order to improve fertilization and pregnancy rates, while also considering possible
epigenetic effects on the offspring. Molecular based selection methods are searched for, under the premise that they
could be an improvement over classical selection by morphology and movement. One of these methods sustains the
elimination of sperm that can bind to annexin A5 (ANX V), coupled to paramagnetic beads, through the
phosphatidyl-serine exposed on their membranes upon apoptosis. Although reports accumulate about the use of
this method, controversy persists as to the benefits of ANX V based sperm selection in ART. In this review we
consider the arguments in favour and against this method and conclude that to the moment the evidence does not
support MACS regular use in ART.
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Novel Concepts in Male Factor Diagnosis and
Treatment: Andrological Laboratory Perspectives

ARTs, which overcome physiological steps to fertilization [1,2]
include: intra-uterine insemination (IUI), in vitro fertilization/embryo
transfer (IVF-ET), and intracytoplasmic sperm injection/embryo
transfer (ICSI-ET) [3]. Since the introduction of ICSI in 1992, it has
become the indication in treating severe male factor [4]. Despite that
ARTs have worldwide become the treatment of choice in most cases of
infertility; current success rates of these procedures remain suboptimal
[5,6]. Evaluation and assessment of semen is very important for both,
diagnosis of infertility status and the selection of the appropriated
treatment for each couple. In IVF, spermatozoa must recognize and
bind to the zona pellucida, undergo the acrosome reaction, penetrate
the zona and fuse with the oolemma to fertilize the egg [2]. Instead, in
ICSI, a spermatozoon is directly introduced into the oocyte cytoplasm,
bypassing natural and physiological barriers. Therefore, although the
success of IVF or ICSI is closely related to semen quality, in ICSI sperm
are not challenged to perform most physiological activities. Sperm
selection for ICSI is mostly based on morphology and motility of
spermatozoa [7]. Thus, sperm with low quality as to DNA
condensation or damage, and other non-noticeable defects, might
fertilize producing an embryo with developmental issues. Motile
spermatozoa provide better results in IVF and ICSI respect to non-
motile, and are necessary for optimal fertilization and pregnancy rates
[8], and morphologically abnormal spermatozoa show a negative effect
on pre-implantation embryo development [9]. It is generally accepted
that standard semen analysis involves the measures of volume, pH,
sperm concentration, motility and morphology with strict criteria and
should be performed according to the World Health Organization
guidelines [10]. However, sometimes thresholds are not able to
discriminate between fertile and infertile patients, and have a poor

predictive power for the outcome of embryo development [11]. In
recent years, the management of male factor has undergone important
changes with the introduction of novel concepts, such as sperm
apoptosis, and the need of new tests for diagnosis and therapeutic
interventions [12]. To this end, some apoptotic markers have been
proposed in semen, such as activation of caspases, disruption of
mitochondrial transmembrane potential (MMP), externalization of
phosphatidyl-serine (PS), and increased DNA fragmentation [13,14].
Despite that higher levels of some of the mentioned factors have been
found in infertile patients [15], to the moment their use is limited only
to research protocols, with no application in routine andrological
laboratories [16]. Several tests were developed to detect damaged DNA
and are used to evaluate the proportion of spermatozoa with
fragmented DNA. The standardized methods are: the sperm chromatin
structure assay (SCSA), the sperm chromatin dispersion (SCD) test,
the terminal deoxynucleotidyl transferase mediated deoxyuridine
triphosphate nick end labeling (TUNEL) assay and the single cell gel
electrophoresis (COMET) assay [17-19]. DNA damage may be
produced by excessive ROS and as a part of apoptosis or necrosis.
Damaged DNA is associated with a range of adverse clinical outcomes
including infertility, abortion and offspring’s diseases [20,21]. In a
meta-analysis, Zhao et al. [22], demonstrated that high-level of sperm
DNA fragmentation has a detrimental effect on outcome of IVF/ICSI,
with decreased pregnancy rates and increased miscarriage rates.
Moreover, when DNA fragmentation in basal semen exceeds 30%, ICSI
should be the method of choice [23-25]. As good as methods could be
to detect sperm quality, techniques are permanently being searched for
in order to select those sperm from a semen population that exhibit
better fertilizing chances.

Traditional and Advanced Methods of Sperm
Preparation for ART
Efforts are made to develope new methods to select in vitro a sperm

subpopulation with the highest fertilizing potential [26,27].
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Conventional sperm preparation techniques, namely glass wool
filtration, SU, and DG are based on the premise that cervical mucus
selectively allows only progressively motile sperm of normal shape and
size to penetrate and migrate through the cervix [2]. Sperm recovered
after glass wool filtration show significantly higher quality than the
original ejaculate [28] and acrosomes are mostly intact [29]. Both DG
and SU methods for sperm selection were introduced in the last (5th

edition) of World Health Organization guidelines [10]. Higher rates of
morphologically normal spermatozoa are recovered after DG than SU
or glass wool filtration [30]; however, this does not produce significant
differences in the fertilization, implantation and pregnancy rates after
IVF [30]. Respect to the capacity of DG and SU to clean the whole
semen from DNA-damaged spermatozoa, some authors reported that
both techniques yield a significantly higher proportion of motile sperm
with non-fragmented-DNA in comparison to unprocessed semen [31].
However, others provided evidence that DG increases sperm DNA
fragmentation in some subjects (about 50% of patients), severely
affecting pregnancy chances [32].

In our experience, when spermatozoa are incubated for several
hours under biological conditions, a common practice during IVF, an
increase in oxidative sperm metabolism and in the proportion of
fragmented-DNA should be expected as a consequence of sperm’s own
oxidative metabolism [33]. However, there is some individual
susceptibility, in 20-30% of the patients selection results iatrogenic,
suggesting that the particular response of each patient’s sperm should
be evaluated in a previous cycle [34]. It has become evident that the
traditional selection methods are individual-dependent and in some
cases inefficient in identifying the most suitable spermatozoa for
fertilization. New insights into the molecular biology of sperm have led
to the development of molecular selection strategies [35]. Human
oocytes are surrounded by hyaluronic acid (HA), which acts as a
natural selector of spermatozoa, thus a biological test using HA-coated
slides has been developed [36,37].

Bound spermatozoa are selected and used for ICSI, and the
procedure is called “physiologic ICSI”, PICSI. There are some reports
showing that PICSI has a considerably higher chance (≈5 fold) to
achieve pregnancy than ICSI, using sperm selected only by
morphology assessment [38,39]. However, a meta-analysis of all
available studies showed that although an improvement in embryo
quality is sustained for PICSI over ICSI, the evidence is not enough as
to justify the routine use of PICSI [40]. Another type of molecular
selection method is based on the elimination of those spermatozoa
that have begun apoptosis. To this aim, the exposure of PS at early
stages of the apoptotic process and the ability of ANX V to selectively
bind to exposed PS are used. In one method, ANX V is coupled to a
glass wool matrix to produce a solid phase filter, combining the
binding ability of ANX V to PS with the glass wool filtering
characteristics [41]. However, the top ranking technique based on
sperm binding to ANX V is MACS.

Acquisition of Fertilizing Capacity by Human Sperm
The mammalian spermatozoa are not capable of fertilizing oocytes

immediately after ejaculation. Physiological changes that allow them to
fertilize occur during their transit through the female genital tract [1,2]
and are completed in the oviduct, and are collectively known as
capacitation [42,43]. Capacitation consists of several changes in
spermatozoa such as removal and modification of many surface
proteins, changes in the oxidative metabolism, changes in the pattern
of movement (hyperactivated motility), efflux of cholesterol from the

membranes, membrane scramble and modification of the
phosphotyrosine content of several proteins [2,44]. Despite
capacitation takes place in vivo, it can also be achieved by incubation
of spermatozoa in vitro at body temperature, using physiologically
based media [45]. Some of the events that occur during sperm
capacitation are shared with other processes as apoptosis-programmed
cell death. It is generally accepted that in the capacitation process
reactive oxygen species (ROS) are generated, and stimulate
intracellular cAMP generation followed by inhibition of tyrosine
phosphatase activity and by tyrosine protein phosphorylation [46,47].
However, under stress conditions, excessive ROS generation would
eventually result in activation of the apoptotic cascade, characterized
by enhanced mitochondrial ROS generation, capsize activation, PS
externalization, lipid peroxidation and motility loss [48,49]. Studies on
capsize activation show that capsize 3 is present in human sperm and
may function to increase PS externalization and DNA fragmentation
[50]. Caspases 1, 8 and 9 are also present in sperm and are associated
with changes in the cell membrane that include PS exposure. On the
other hand, some studies suggest that sperm apoptosis can proceed via
a capsize-independent pathway [51,52]. Then, membrane scramble
and PS exposure occur during apoptosis and also upon capacitation,
and PS exposure on live sperm cells has been considered a sign of
capacitating ability, directly related to fertilizing chances [53]. In
addition, necrosis produced by certain pathological conditions may
also produce ROS and thus, PS translocation [54]. All these events are
also prone to occur in a population of sperm subjected to
manipulation in vitro.

Understanding the Use of Annexin V in Sperm
Selection
The annexins constitute a family of calcium-dependent membrane-

binding proteins [55] which due to the ability to bind to and hold
together certain biological structures were named annexins, a term
derived from the Greek annex meaning “bring/hold together” [56].
The members of the annexin family share the property of calcium-
dependent binding to membranes containing negatively charged
phospholipids [57-59]. ANX V was first isolated as a vascular
anticoagulant [60] and has a high calcium-dependent binding affinity
for negatively charged phospholipids as PS [60-62]. ANX V binding to
PS liposomes requires 10 to 100 M of Ca2+ and the binding surface
area is of 59 phospholipid molecules per protein. Further, the plication
serine displaces bound annexins, supporting the hypothesis that this
binding is of ionic nature [63]. As revealed by X-ray crystallography,
ANX V tertiary structure consists of a core of four domains that are
arranged in a cyclic way, which gives the molecule a slightly curved
shape with a convex and a concave face (Figure 1). The Ca2+ and PS
binding sites are located at the convex, membrane-facing side of the
protein [64].

Data obtained from crystallography provide evidence that the
interfacial basic cluster is the place for dimerization of molecules of
ANX V, which is synergistically coupled to membrane phospholipid
binding [65]. The lipid bilayer shows a bent shape and contains a
concave region in the annexin-membrane interaction interface, which
supports the idea that ANX V could disturb the stability of lipids and
bend membranes [66]. Cell injury leads to redistribution of lipids
within the plasma membrane resulting in surface exposure of PS and
phosphatidylethanolamine (PE) [67] and phospholipid scramblase
activity produces a collapse of phospholipid asymmetry with
externalization of PS [68]. The physiological functions known for
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externalized PS are: (1) control of the hemostatic balance, since several
pro-coagulant as well as anticoagulant reactions require PS-containing
lipid surfaces [69], and (2) mediating recognition and clearance of
apoptotic cells by phagocytic cells, to prevent release of the
inflammatory cell content upon cell lysis [70]. The asymmetry of
plasma membrane phospholipids is maintained by an
aminophospholipid translocase that transports PS and PE from the
outer to the inner membrane leaflets [67], thus the exposure of PS
results from a balance between aminophospholipid translocase and
scramblase activities [71]. TMEM16F, a scramblase regulated by
elevated intracellular Ca2+ and XKR8, a caspase-sensitive protein,
have been recently identified as required for PS exposure in apoptotic
cells [72]. deVries et al. [51] found an isoform of phospholipid
scramblase (PLSCR) homogeneously distributed in human sperm cells,
which is activated by bicarbonate and associated to protein kinase A
function and is caspase-independent. Recently, transmembrane protein
16E (TMEM16E) has been identified in mouse sperm tail, and its
function as a PLSCR at inner membranes involved in sperm motility
was proposed [73]. Apoptosis in spermatozoa is considered to be
different from the process in somatic cells, due to the particularities of
these cells as scarce cytoplasm and organelles and transcriptional
inactivity, and is still poorly understood [48]. Between de apoptotic
phenomena produced in human spermatozoa are PS externalization,
caspase activation, loss of MMP and DNA fragmentation [74]. During
apoptosis, the increase of ROS in mitochondria produces lipid
peroxidation, with a concomitant loss of sperm motility, also related to
effects on the electron transport chain proteins in the mitochondria
[75]. When using MACS, PS apoptotic sperm are eliminated. However,
PS exposure also occurs during sperm capacitation, independently of
the activation of apoptotic mechanisms [51]. Although sperm
capacitation is irrelevant when using ICSI, the events that follow sperm
entry to the oocyte also require correct sperm function, and the ability
to capacitate is related to sperm physiological quality [53].

Figure 1: Crystal and molecular structure of human Annexin V
after refinement. Yellow-red crosses indicate sulfate ions. Grey
spheres show calcium ions.

How does MACS Work?
The principle of ANX V binding for cell discrimination was initially

applied in the immunology field to isolate red blood cells from
lymphocytes [76,77]. This approach was developed and
commercialized by MiltenyiBiotec GmbH for sperm samples
(BergischGladbach, Germany [78]). MACS is based on the binding of
colloidal superparamagnetic microbeads (50 nm diameter) coupled to
ANX V to externalized PS of the plasma membrane of sperm with
activated apoptosis pathway signaling [79]. Thus, apoptotic and other

PS exposing (EPS) cells can be depleted from the whole sample. Sperm
presenting such translocation on their membranes bind to the
microspheres-ANX V. The sperm/micro-beads suspension is then
loaded on top of a separation column, which is placed in a fitted
magnet. ANX V bound sperm stay trapped in the matrix, and the
separation process would give two sperm populations: EPS-negative
(vital, non-apoptotic sperm with intact membranes) and EPS-positive
[80]. Electron microscopy has revealed microbead’s binding on
membranes at the acrosomal and postacrosomal regions only in EPS-
positive and not in the EPS-negative sperm fraction [81]. The EPS-
positive fraction contains the apoptotic sperm population, but the
ANX V-conjugated microbeads may also label dead cells, cells with
acrosome reacted sperm [79] and sperm that have begun capacitation
[51]. MACS use involves the passage of sperm through a high power
static magnetic field (SMF) of 0.5 T and up to 1.5 T [82,83]. Several
researches have shown that SMF can generate some kind of effect on
biological systems, as pro-inflammatory changes and increase in the
generation of ROS [84-86], which is highly detrimental to sperm.
Although the mechanism by which SMF affects cells is not well
understood, some reports speculate that it might increase the activity,
concentration, and life time of paramagnetic free radicals, which could
ultimately produce oxidative stress, genetic mutations, and/or
apoptosis [87-89]. Thus, the concentration and/or lifetime of free
radicals that escape from the radical pair would increase by exposure
to SMF, and free radicals initiate membrane lipids, proteins and DNA
damage, and may lead to apoptosis or necrosis [89,90]. The diversity of
alterations reported for SMF exposure may be related to varied
duration, intensity, tissue penetration, and the type of cells [86,91]. In
reproductive tissues, SMF has been shown to modulate the activity of
several enzymes related to oxidative stress in the testicles of exposed
rats [92]. Studies in model animals and humans exposed to magnetic
fields show varied effects on spermatogenesis that range from no effect
to severe alterations [93-98]. Instead, there is consistency about
detrimental effects on embryos and development, upon animal
exposure during spermatogenesis [99,100]. Although there are few
reports about the effects of SMF direct action on human sperm cells
[97], the biological alterations reported in other systems race an alarm
about its application on spermatozoa used for ARTs, particularly ICSI
where posterior sperm function is not challenged.

In vitro studies on the Quality of Sperm Selected by
MACS

A cumulous of studies has been done in order to analyze the effect
of MACS selection on the quality of sperm in vitro. As mentioned,
apoptosis in sperm is speculated to show particular characteristics,
however, some submicroscopic features typical for apoptosis of somatic
cells have been described in sperm [101] and the transference of PS
from the inner to the outer membrane is considered to occur as a sign
of early apoptosis. An interesting analysis was performed in this
regard, by assessing for PS exposure by ANX V binding and for vitality
with propidium iodide (PI) stains [53]. In this study ANX V-positive
PI-negative sperm were considered with signs of capacitation; while
ANX V-positive PI negative spermatozoa were related to apoptosis.
According to this idea, depleting semen samples from spermatozoa
with EPS, might discard not only apoptotic cells but also spermatozoa
that have begun capacitation.

Some early studies concerning MACS use in sperm preparation for
ART, assayed motility, viability, morphology and markers of apoptosis
(levels of active caspase-3, MMP and EPS) in semen samples from
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healthy donors (n=15) [102]. The results showed that the combination
of DG and MACS was superior to all other sperm preparation methods
in terms of providing motile, viable and non-apoptotic spermatozoa,
supporting the incorporation of MACS to actual protocols. Studying
sperm selection by MACS in 29 selected normozoospermic semen
samples, combining DG with MACS was analyzed, and the nuclear
parameters DNA fragmentation index and protamine deficiency were
measured [103]. It was found that selection by each of the techniques
alone (DG or MACS) significantly decreased the DNA fragmentation
index and the protamine deficiency. However, the combination of DG
and MACS allowed isolating high-quality sperm with higher DNA
integrity and lower protamine deficiency than any of the methods
alone. Morphological evaluation of sperm selected by SU followed by
MACS was performed by electronic microscopy using samples from
infertile men [101]. Although the number of spermatozoa with
characteristics compatible with cell death diminished after the
selection process, no significant differences were noted when the SU/
MACS semen fractions were compared with SU alone. Moreover, as
expected, the number of spermatozoa was reduced by the additional
selection step, and MACS did not eliminate spermatozoa with
uncondensed and vacuolated chromatin, which may represent
immature cells [101]. Bucar et al. [104] evaluated sperm DNA
fragmentation in semen samples (n=100) processed by several
combinations of MACS, DG and SU techniques. They showed that
MACS decreased the DNA fragmentation rates when performed
before DG and SU, especially in samples with low values of progressive
motility, vitality and hypoosmotic swelling test. Also, groups DG-SU,
DG-MACS-SU, DG-SU-MACS and MACS-SU presented a significant
decrease in DNA fragmentation, but the highest reduction rate was
obtained with MACS-DG-SU. In accordance with previous results,
DNA fragmentation negatively correlated with sperm vitality,
membrane integrity and progressive motility. The authors suggested
that this combination of methods could be applied to sperm samples
with low motility, viability and membrane integrity. However, the
increase of manipulation steps and time are not recommended in
sperm processing for ART. In a recent study using normozoospermic
(n=10) and oligozoospermic (n=10) semen samples, a comparison was
done between selection by SU and DG alone or combined with MACS
[105]. In this case, no statistically significant level was found, but the
authors reported improved aspects when adding the MACS step,
although it also produced a significant loss in the numbers of total and
rapid progressive spermatozoa. When studying samples from three
categories: normozoospermic (n=13), asthenoteratozoospermic (n=17)
and teratozoospermic (n=12), for chromatin quality and improvement
by DGC-MACS, Delbes et al. [106] found that compared with
normozoospermic samples, raw asthenoteratozoospermic and
teratozoospermic samples had a higher proportion of spermatozoa
containing DNA breaks, but only sperm from
asthenoteratozoospermic samples exhibited altered chromatin
structure and decreased binding to hyaluronic acid. The analysis
showed that DG appeared to select for more mature spermatozoa with
high DNA compaction, and all three categories of sperm were enriched
on spermatozoa with good chromatin quality after DG-MACS.
Another parameter analyzed upon selection of sperm from infertile
patients was the MMP [107]. A combination of MACS with DG
allowed a significant reduction of 70% sperm exposing PS and of 60%
sperm with disrupted MMP, which also provided a mean increase of
50% in sperm survival at 24 h, that is, DG plus MACS resulted in
improved sperm long term viability, motility and mitochondrial
membrane integrity. Studying patients with unexplained infertility, and

with unsuccessful intrauterine insemination, Lee et al. [108] showed
that not only MACS selection provided spermatozoa with significantly
reduced apoptotic markers respect to DG, but also with improved
induced acrosome reaction rates. However, motility was slightly
decreased. Yet another study using samples from men attending the
andrology laboratory (n=25) analyzed DNA fragmentation after DG-
MACS or DG-SU [83]. In this case, SU method provided sperm of
higher quality in terms of motility, morphology and extent of DNA
fragmentation compared to MACS, after DG. As most reports about
the efficiency of MACS selection evaluate sperm post DG, and DG
induces EPS due to capacitation and acrosome reaction, Tavalaee et al.
[109] assayed the role of MACS before DG (MACS-DG) and MACS
after DG (DG-MACS) using semen samples from 15 infertile men.
Under these conditions, DG resulted more efficient than MACS in
separating intact sperm only in terms of normal morphology, DNA
and chromatin integrity but not for active caspase, and a combination
of sperm selection methods was more efficient than a single procedure.
Also, combined procedures showed higher efficiency to separate sperm
with active caspase but only in the MACS-DG group. The use of MACS
in relation to aneuploidy has also been considered. In ejaculates from
normozoospermic patients with implantation failure, aneuploid,
apoptotic and DNA-injured spermatozoa decreased significantly after
MACS [110]. However, the interactions between apoptotic markers,
DNA integrity and aneuploidy and the effect of MACS on these
parameters remain unknown [110]. Other study was conducted in
order to determine the fertilization potential of selected sperm (n=35)
by hamster oocyte penetration and hamster oocyte-intracytoplasmic
sperm injection [111]. ANX V-negative sperm, showing higher
motility, lower caspase 3 activation, better mitochondrial membrane
integrity and smaller extent of DNA fragmentation than ANX V-
positive ones; had higher oocyte penetration capacity, but comparable
sperm chromatin decondensation following ICSI. Thus, while oocyte
penetration was favored in selected sperm, posterior steps in
fertilization, as chromatin decondensation did not correlate with PS
exposure/MACS selection. As seen, despite the huge bibliography on in
vitro assays related to MACS use, discrepancy about the benefits
persists. Some studies have been done considering particular health
situations. The presence of varicocele in patients was taken into
account and analysis of semen samples (n=36) was performed by DG
followed by MACS. Semen parameters of varicocele men are usually
suspected to exhibit higher levels of abnormalities including DNA
fragmentation, ROS and apoptotic markers. After MACS, samples
showed no deleterious reduction in total sperm motility while sperm
DNA fragmentation was significantly reduced [112]. Thus, this
selection method may be particularly useful in infertility due to
varicocele. Also, exposure of men to some environmental hazards as
manganese and phthalates has been shown to increase sperm apoptosis
[113,114]. The use of MACS may prove useful for these patients, and
the same may be thought for patients with extreme high sperm DNA
fragmentation. Another particular situation in which selection of high
quality sperm may be of use is cryopreservation. Sperm
cryopreservation is frequently used among young cancer patients
facing chemotherapy. Although sperm cryopreservation methods are
under constant study and improvement, higher efficacy is still needed.
The use of MACS to improve cryopreservation-thawing protocols has
been analyzed showing higher cryosurvival rates [115], a 3 times
increase in intact mitochondria (10 healthy donors) [116] and lower
caspase activation [117] for selected sperm. These results are
summarized in Table 1.
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Reference Selection procedure Semen Quality (n) Assessed parameters Result

[81]↑ Sperm binding to ANX V coupled
beads

Normal (n=68 from 15 donors and 25
patients)

Morphological evaluation by
electronic microscopy

Bead binding only to EPS
sperm

[117]↑ Cryopreservation-MACS Normal (n=40 from 10 donors) Caspase activation Decreased activated caspases
8, 9, 1 or 3

[80]↑ Cryopreservation-MACS Normal (n=15)
Membrane changes, CD95
(Fas, APO-1), caspases,
viability, objective motility

Non-apoptotic enrichment

[116]↑ MACS-Cryopreservation Normal (n=10) MMP Increased intact mitochondria

[101]↑ SU-MACS vs. SU Infertile men Morphological evaluation by
electronic microscopy

Reduced number of sperm,
presence of immature cells

[109]↑↓ MACS-DG vs. DG-MACS vs. DG
Infertile men

(n=15)

Morphology, DNA and
chromatin integrity, active
caspase

Decreased normal morphology,
intact DNA and chromatin
integrity, better caspase rates
for combined methods

[102]↑ DG-MACS vs. DG, wash, wash
+MACS Normal (n=15)

Motility, viability, morphology,
markers of apoptosis
(caspase-3, MMP, EPS)

Improved motility and viability,
increase of non-apoptotic
spermatozoa

[115]↑ Cryopreservation-MACS Normal (n=29) Cryosurvival rates Improved

[103]↑ DGC-MACS vs. DG or MACS Normal (n=29) DNA fragmentation, protamine Improved nuclear parameters

[104]↑ MACS-DG-SU vs. combinations
of MACS, DG and SU Semen samples (n=100)

DNA fragmentation

Vitality, membrane integrity and
progressive motility

MACS-DG-SU shows the
highest improvement for all the
measured characteristics

[105]↓
SU-MACS vs.

DG-MACS vs. SU vs. DG
Normal (n=10) and Oligozoospermic
(n=10)

Morphology, motility, DNA
integrity, levels of Izumo-1 and
PLCZ proteins

Non-significant results

[106]↑ DG-MACS vs. DG
Normal (n=13),
asthenoteratozoospermic (n=17),
teratozoospermic (n=12)

Chromatin quality (DNA
fragmentation, compactation)

Enriched chromatin quality for
all sperm categories

[107]↑ DG-MACS Infertile patients MMP and survival at 24 h
Improved long term viability,
motility and mitochondrial
membrane integrity

[108] MACS vs. DG Unexplained infertility and with
unsuccessful intrauterine insemination

Apoptotic markers, motility,
apoptosis, induced acrosome
reaction

Reduced apoptotic reduced
motility and apoptotic markers,
improved induced AR rates

[83]↓ DG-MACS vs. DG-SU Semen samples (n=25) DNA fragmentation, motility,
morphology

Lower motility, worst
morphology, higher DNA
fragmentation

[110]↑ MACS Normal with implantation failure (n=6) Aneuploidy, apoptotosis, DNA
fragmentation Significantly decreased

[111]↑ MACS Normal (n=35)

Motility, caspase 3 activation,
MMP, DNA fragmentation,
Hamster oocyte penetration
and hamster oocyte-
intracytoplasmic sperm injection

improved motility, caspase 3
level, MMP, DNA integrity,
oocyte penetration; comparable
sperm chromatin
decondensation following ICSI

[112]↑ DG-MACS Varicocele patients (n=36) Motility, DNA fragmentation,
ROS, apoptotic markers

No effects on motility,
decreased DNA fragmentation

[113,11↑ MACS Men exposed to environmental
hazards as manganese and phthalates Apoptosis, DNA damage Decreased unfavorable

parameters

Table 1: Results of in vitro analysis of sperm upon MACS selection, Arrows pointing up and down represent increased and decreased sperm
quality after MACS selection, respectively.
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Reproductive outcome of MACS use in ART
In vitro studies about sperm improvement after MACS seem to

encourage the use of this technique, at least for semen samples with
some particularities and keeping in mind possible diminution of the
number and motility of spermatozoa. Based on this, diverse

fertilization analyses (summarized in Table 2) have been made in order
to gain conclusive results about the use of MACS in ART. The reports
are composed of trials in which MACS is followed by ICSI, as the main
objective is to overcome severe male factor.

Reference Sperm selection method
(n) Population Parameters assessed Result

[118] MACS (n=1)
AT semen with high fragmentation index
and cleaved caspase 3 rates-
reproductively healthy mother

Live birth Born of a healthy baby

[119] MACS (n=1)
1-AT and high DNA fragmentation 2-
abnormal morphology and caspases-
donor oocytes

Pregnancy Advanced pregnancies achieved

[122] MACS (n=123) vs. wash
(n=114) Unselected men-donated oocytes Fertilizatio, implantation,

pregnancy, and live-birth rates No significant differences

[123] MACS (n=122) vs. DG
(n=74) OligoaAT Pregnancy and cleavage rates

sperm morphology
Improved sperm morphology, slightly
higher implantation rate

[124] DG-MACS (n=37) vs. DG
(n=37) Unexplained infertility

Fertilization (pro-nuclei),
cleavage rate, embryo quality,
pregnancy, birth

Higher fertilization rate and 8-cells,day
3 embryos/oocyte, non-significant
differences in pregnancy and birth
rates

[125] DG-MACS vs. DG-HA vs.
DG (total n=136) Normal semen, infertile couples

Embryo quantity and quality,
fertilization and pregnancy
rates

Higher clinical pregnancy rates

[126] MACS vs. SU vs. DG
(n=499)

Systematic review and meta-analysis of
prospective randomized trials

Pregnancy, implantation and
miscarriage rates Increased pregnancy rates

[127] Cryopreservation-MACS
(n=1)

Cryopreserved spermatozoa with high
DNA damage from a cancer patient Pregnancy Birth of healthy twins

[128] TESA-MACS (n=1) Apoptosis in testicles Pregnancy Birth and normal 4 years development

Table 2: Fertilization evidence of MACS use, In all the studies sperm selection was followed by ICSI. AT: asthenoteratozoospermic. Arrows
pointing up and down represent increased and decreased outcome in ART after MACS selection, respectively.

The initial information was mostly case reports, centered in
achieving a pregnancy and a healthy newborn. In this regard, in 2010
[118], the successful use of MACS-ICSI and the born of a healthy baby,
using semen from a asthenoteratozoospermic patient, with high
fragmentation index (30%, TUNEL) and high cleaved caspase 3 rate
(8%), and oocytes from the reproductively healthy mother was
informed. Also in 2010, two cases were reported of successful
advanced pregnancies achieved by MACS-ICSI with semen from a
patient with asthenoteratozoospermia and abnormal DNA
fragmentation (TUNEL 30%), and other with high rate of abnormal
morphology (5% normal forms according to Kruger) and abnormal
active caspase-3 (16%) [119]. It is to consider that in this last study
donated oocytes were used. Oocytes, particularly when provided by
young women, show the ability to repair DNA damage through the
expression of genes responsible for this activity in both parental
genomes, after fertilization [120]. Thus, although oocyte donation is
prescribed to avoid the bias related to oocyte quality; the ability of the
female gamete to repair moderate DNA damage in the sperm genome
[121], which correlates with the last stages of apoptosis, must be
considered when making conclusions about the results of sperm
selection based on apoptosis or DNA fragmentation.

Also using donated oocytes, an interesting analysis was performed
with unselected men semen samples (n=237 men) comparing the

results of ICSI (n=114) and MACS-ICSI (n=123) [122]. No significant
differences were found in the mean fertilization rates, or in
implantation, pregnancy, and live-birth rates. And slight but not
statistically significant differences were noted in the qualities observed
in the early embryos, favoring MACS treatment. These authors
concluded that MACS extensive use is not justified in oocyte donation
programs, as this method appears to bring benefits only for some
individual men. This is the largest randomized control trial with live
birth that has been informed.

The first prospective study was reported by Dirican et al. [123]. The
authors evaluated the outcome of ICSI in 196 couples with
oligoasthenozoospermic men, comparing MACS (122 couples) and
DG (74 couples) for sperm selection. They found that sperm with
higher morphological quality were selected by MACS, and their use
yielded improved pregnancy and cleavage rates, also, there was a
slightly higher implantation rate using this technology [123].

Sheikhi et al. [124] also showed significantly higher fertilization
rates, and also increased 8-cell embryo (day 3) with non-fragmented
blastomeres per oocyte, when comparing couples with unexplained
infertility treated with DG-ICSI (n=37) or DG-MACS-ICSI (n=37).
However, pregnancy and birth rates, although slightly improved in the
MACS group were not statistically significant [124].
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Troya et al. [125] studied 136 infertile couples which men showed
normal semen parameters according to WHO 2010 [10] and randomly
assigned them to ICSI (morphological selection of sperm), PICSI (HA
binding capacity) or MACS-ICSI, always after DG. In this report, they
found no differences in fertilization rates, number of embryos at day 3,
or number of freezing embryos in blastocyst stage; however clinical
pregnancy rates were significantly higher in the MACS group (58.1 vs.
40.4% for PICSI and 27.3% for ICSI).

Finally, a systematic review and meta-analysis of prospective
randomized trials was performed by Gil et al. [126]. The study
included 499 patients from five trials, for whom MACS selection was
performed upon ART. Sperm selection by MACS resulted in
statistically significant increases in pregnancy rates when compared
with DG and SU techniques. No difference was found between the
groups in the implantation and miscarriage rates. The authors
concluded that MACS appears to be a safe and efficient method for
sperm selection that may improve pregnancy rates in ART.

MACS has also been used after cryopreservation, obtaining
successful pregnancy results. A case report was presented in which
cryopreserved spermatozoa with high DNA damage (72.5%) from a
cancer patient (stage IV non-Hodgkin’s lymphoma) were selected by
MACS and used for ICSI, resulting in the birth of healthy twins [127].
Also, cryopreserved sperm were used in the study by Romany et al.
[122] in which they did not find improvement in pregnancy rates using
MACS.

A special situation was the use of MACS to select sperm obtained by
testicular sperm aspiration (TESA) before ICSI [128]. It is a case report
in which the born child was examined at the age of 4, finding normal
development. As apoptosis begins already in the testicles [129,130], it
would be important to further study the use of MACS in combination
with TESA.

Key Issues
• Although MACS is a novel and promising new technology for

sperm selection, the improvement in ART success is still under
debate. Most of studies have different experimental design,
inclusion criteria and also population size. To confirm or refute the
use of MACS in clinical practice, controlled and randomized
studies, will be required.

• Both germ cells quality (spermatozoa and oocyte) appears to be a
meaningful condition when selecting a particular subpopulation of
sperm for successful fertilization. Oocytes coming from young
women (i.e. oocyte donation program) show better capability for
repairing certain amount of sperm DNA damage, characteristic of
apoptosis. Thus, when the damage in sperm is not severe and
oocytes are of good quality, MACS use doesn`t seem to be justified.

• When sperm are severely affected with extreme DNA damage, such
as varicocele or environmental hazards, MACS seems to be an
option of choice.

• Although the procedure itself seems not to affect sperm function, a
decrease in the proportion of motile spermatozoa has been
described, and elimination of EPS sperm from samples also
removes capacitating sperm, with improved fertilizing ability, does
impairing ART results.

• The possible iatrogenic effects of sperm manipulation during the
selection procedure and/or incubation should be considered.
Although there are some case reports of healthy born children,
there is not enough information about the effects of applying

magnetic fields on human sperm themselves, or the possible
epigenetic impact on the offspring; this should be deeply
investigated.

• Future efforts should be made with the aim on identifying
individual patient’s susceptibility to MACS to guarantee a benefit
in this sperm selection procedure before ART.
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