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INTRODUCTION

A central postulate in biogeography is that climate exerts a

dominant control over the distribution of species, as evidenced

by fossil records (Davis & Shaw, 2001) and recent observed

trends (Walther et al., 2002; Parmesan & Yohe, 2003; Root

et al., 2003). Founded in the ecological niche theory (Hutch-

inson, 1957), climatic envelope models provide a suitable tool
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ABSTRACT

Aim To identify the bioclimatic niche of the endangered Andean cat (Leopardus

jacobita), one of the rarest and least known felids in the world, by developing a

species distribution model.

Location South America, High Andes and Patagonian steppe. Peru, Bolivia,

Chile, Argentina.

Methods We used 108 Andean cat records to build the models, and 27 to test

them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables

from global databases, including elevation. We based our biogeographical

interpretations on the examination of the predicted geographic range, the

modelled response curves and latitudinal variations in climatic variables

associated with the locality data.

Results Simple bioclimatic models for Andean cats were highly predictive with

only 3–4 explanatory variables. The climatic niche of the species was defined by

extreme diurnal variations in temperature, cold minimum and moderate

maximum temperatures, and aridity, characteristic not only of the Andean

highlands but also of the Patagonian steppe. Argentina had the highest

representation of suitable climates, and Chile the lowest. The most favourable

conditions were centrally located and spanned across international boundaries.

Discontinuities in suitable climatic conditions coincided with three

biogeographical barriers associated with climatic or topographic transitions.

Main conclusions Simple bioclimatic models can produce useful predictions of

suitable climatic conditions for rare species, including major biogeographical

constraints. In our study case, these constraints are also known to affect the

distribution of other Andean species and the genetic structure of Andean cat

populations. We recommend surveys of areas with suitable climates and no

Andean cat records, including the corridor connecting two core populations. The

inclusion of landscape variables at finer scales, crucially the distribution of

Andean cat prey, would contribute to refine our predictions for conservation

applications.

Keywords

Andes, biogeographical barriers, biogeography, climatic niche, species distribution

models.
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to test and advance the ecological and evolutionary theories

underpinning the fields of biogeography and biological con-

servation (Araújo et al., 2004; Munguı́a et al., 2008; Makowsky

et al., 2010). Indeed, various modelling techniques developed

over the last decades to study species’ responses to the

environment are now prominent in modern ecological theory

(Heegaard, 2002; Guisan & Thuiller, 2005; Sagarin et al., 2006;

Austin, 2007; Elith & Leathwick, 2009).

Models based on bioclimatic variables at macro-scales are

producing successful simulations of current distributions, and

refined algorithms perform well with presence-only data and

limited number of localities (Elith & Leathwick, 2009; Franklin

et al., 2009). These advances are particularly relevant for

poorly known, rare and endangered species, and cryptic or

nocturnal animals for which absence is difficult to define

(Engler et al., 2004; Papeş & Gaubert, 2007; Pearson et al.,

2007; Brito et al., 2009; Thorn et al., 2009; Wilting et al.,

2010). The Maxent algorithm, based on maximum entropy

theory (Phillips et al., 2006), is known to outperform alterna-

tive presence-only models when sample sizes are small

(Hernandez et al., 2006; Wisz et al., 2008); it is also less

sensible to the choice of calibration area for pseudo-absences

(Giovanelli et al., 2010) and performs particularly well for

range-restricted or specialized organisms (Elith et al., 2006;

Phillips et al., 2006).

We used Maxent to model the climatic niche of Andean cats

(Leopardus jacobita) at the continental scale of South America.

Andean cats are listed as endangered (Acosta et al., 2008) and

are considered one of the rarest and least known felids in the

world (Villalba et al., 2004; Brodie, 2009). Our poor under-

standing of the biology of Andean cats stems from their elusive

behaviour and seemingly low population densities (Lucherini

et al., 2008; Marino et al., 2010); and until recently there was

only a small set of confirmed locations for the species (Yensen

& Seymour, 2000; Villalba et al., 2004). Thanks to the

coordinated effort of members of the Andean Cat Alliance

over the last decade, the number of confirmed localities has

now increased to more than 200. The database compiled for

this study includes published and unpublished records from

Argentina, Bolivia, Chile and Peru (Sanderson, 1999; Perovic

et al., 2003; Barbry & Gallardo, 2006; Sorli et al., 2006; Cossios

et al., 2007; Napolitano et al., 2008; Viscarra, 2008; Torrico,

2009). Most records are confined to the Central Andes above

4000 m, but several recent findings also locate them at much

lower elevation in arid regions of west Argentina (Di Martino

et al., 2008).

The newly extended database opens up the possibility of

using statistical models with the following objectives: a) to

explore the key dimensions of the climatic component of the

Andean cat ecological niche (Pearson & Dawson, 2003), and b)

to identify regions with environmental conditions similar to

where the species is known to occur (Pearson et al., 2007).

While elevation clearly is a strong, albeit indirect, predictor of

habitat suitability for Andean cats, the barrier effect of the

Andes also creates asymmetric climatic conditions on each side

of the cordillera (Garreaud, 2009), known to affect the

distribution of species and their genetic variability (Chesser,

2000; Weigend, 2002; Marin et al., 2007; Cossios et al., 2009).

To include these complex climatic patterns, we considered

multiple climatic predictor variables at the level of South

America, benefiting from Maxent’s ability to handle complex

functions and to produce easily interpretable response curves

(Phillips et al., 2006). In this paper, we also describe the

process of variable selection, aimed at minimizing redundancy

and to include factors related to the physiology of animals in

harsh environments such as those of the High Andes. We

discuss the scope for improvements and applications of these

niche models, and elaborate on the implications of the species’

dietary specialization upon Chinchillidae rodents - the chin-

chillas and viscachas of South America (Walker et al., 2007;

Napolitano et al., 2008; Viscarra, 2008; Torrico, 2009).

METHODS

Location data

The authors compiled the Andean Cat Alliance database with

reliable records spanning the period 1988–2009. These com-

prise the localities of 39 skins, three skulls, 19 sightings, 25

camera-trap captures, 99 DNA identifications (94 faecal

samples, four hair samples and one skin sample), and 52

radio-tracking fixes from the only specimen ever trapped, an

adult female captured in Bolivia (Delgado et al., 2004).

To minimize the spatial dependences attributed to true

biological origin or differential searching intensities across

regions (Segurado et al., 2006), we subsampled the data at a

distance sufficient to reduce spatial autocorrelation. The spatial

autocorrelation detected among some pairs of variables of the

location data was dropped to levels depicted as insignificant by

the Moran’s I Test (Moran, 1950) after randomly selecting just

one locality point per each 3 · 3 km cell of an over-imposed

grid. As a result, the dataset was reduced from 237 to 135, of

which 108 were used to run the models and 27 (20%) to test

them.

Selection of variables

We selected predictor variables from the following: the

WorldClim database of bioclimatic interpolated climate sur-

faces at 1-km resolution (derived from monthly temperature

and rainfall values)(Hijmans et al., 2005); the Global Land

Cover GLC2000 at 1-km resolution (land cover types)

(Bartholome & Belward, 2005); Shuttle Radar Topographic

Mission (SRTM) at a resolution of 90 m (elevation, orientation

and topography index) (Rabus et al., 2003); and the Global

Inventory Modelling and Mapping Studies (NDVI = Normal-

ized Difference Vegetation Index at 250 m) (Tucker et al.,

2004). The latter two were resampled in ArcGIS 9.2 to a 1-km

resolution. For area measurements, the layers were projected

into UTM coordinates with the original datum WGS84.

We first summarized the climatic information associated

with the locality data using principal component analysis

J. Marino et al.
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(PCA). The PCA helped to identify the sets of variables more

strongly associated with the first and second axes of the

ordination (with highest positive or negative loading scores),

which together accounted for 79% of the variation among

localities (Table 1). Between any two redundant variables (i.e.

with Pearson correlation values > 0.70), those considered as

surrogates for cold tolerance and moisture stress were

preferred, because of the cold and dry climate of the High

Andes (for example, minimum temperature of the coldest

month rather than mean temperature of the cold quarter to

represent absolute minimum temperatures). Because of redun-

dancy in the climatic data, a few variables satisfied our

correlation threshold. For this study, we ran models with all

combinations of minimally correlated variables, both with and

without elevation (Table 2).

Statistical model and validation

Maxent is a machine learning algorithm that estimates the

most uniform distribution (maximum entropy) across the

study area given the constraint that the expected value of each

environmental predictor variable under this estimated distri-

bution matches its empirical average (Phillips et al., 2006). The

modelled probability is a ‘Gibbs’ distribution (i.e. exponential

in a weighted sum of the features) and the model logistic

outputs have a natural probabilistic interpretation representing

degrees of habitat suitability (0 = unsuitable to 0.99 = best

habitat) (Pearson et al., 2007). For a detailed explanation of

modelling methodology using Maxent, refer the studies by

Phillips et al. (2006) and Phillips & Dudik (2008). We applied

version 3.2.19 of the Maxent software with default values, up to

1000 iterations and implementing linear, quadratic and

product features types (Phillips & Dudik, 2008).

We partitioned the occurrence locations randomly into two

subsamples, using 80% of the locations as the training dataset

and the remaining 20% for testing the resulting (partitioned)

models. The measure of fit implemented by Maxent is the area

under the curve (AUC) of a receiver operating characteristic

(ROC) plot (ranging from 0.5 = random to 1 = perfect

discrimination). Some studies have pointed to some limita-

tions in the use of AUC as a measure of performance in

presence-only models (Lobo et al., 2010), but this is often used

as a single threshold-independent measure of choice for model

performance; it has been shown to be independent of

prevalence and a highly effective measure of the performance

of ordinal score models (Manel et al., 2001; McPherson et al.,

2004; Thuiller et al., 2005).

Variable contribution and response curves

We considered Maxent’s heuristic estimates of the relative

contribution of environmental variables to the models and the

results of jackknife analyses for each environmental layer

(Phillips & Dudik, 2008). For the variables with highest

predictive value, we examined the response curves showing

how each of these environmental variables affects the Maxent

prediction (Phillips & Dudik, 2008). The curves illustrate how

the logistic prediction changes as each environmental variable

is varied, while keeping all other environmental variables at

their average sample value. The curves thus represent the

marginal effect of changing exactly one variable.

RESULTS

Explanatory variables and model performance

The exploratory analyses of bioclimatic variables led to four

combinations of minimally correlated variables, including

elevation and various measures of temperature and precipita-

tion (Table 2). Two combinations retained elevation as an

explanatory variable plus measures of temperature variation,

either the annual range (model A) or the mean diurnal range

(model B) (themselves highly inter-correlated); all other

temperature descriptors were closely correlated with elevation.

The two other combinations were formed by the minimum

and maximum temperatures of the coldest and warmest

months (models C and D) as explanatory variables, or the

Table 1 Results of a principal component analysis (PCA) of

bioclimatic and elevation variables associated with the Andean cat

presence localities (n = 135).

Variables

PCA loadings

PC1 PC2 PC3 PC4

Elevation 0.28 0.17 0.05 0.01

Precipitation seasonality 0.28 )0.06 0.21 0.01

Temperature mean diurnal range 0.24 )0.13 0.02 0.64

Temperature annual range 0.13 )0.31 )0.15 0.42

Temperature seasonality 0.06 )0.35 )0.22 0.04

Precipitation of wettest month 0.04 0.34 0.24 0.12

Precipitation of warmest quarter )0.10 0.32 0.14 0.29

Mean temperature of wettest quarter )0.12 )0.25 0.38 0.06

Precipitation of wettest quarter )0.16 0.31 0.11 0.31

Maximum temperature of

warmest month

)0.18 )0.31 0.06 0.22

Annual precipitation )0.20 0.29 0.04 0.26

Mean temperature of warmest quarter )0.22 )0.29 0.10 0.06

Temperature annual mean )0.26 )0.22 0.25 0.10

Precipitation of coldest quarter )0.26 0.04 )0.43 0.08

Precipitation of driest month )0.28 0.07 )0.37 0.10

Precipitation of driest quarter )0.28 0.12 )0.30 0.12

Mean temperature of driest quarter )0.29 )0.13 0.01 )0.12

Mean temperature of coldest quarter )0.31 )0.01 0.33 0.06

Minimum temperature of

coldest month

)0.33 )0.02 0.21 )0.19

Proportion of variance 0.43 0.36 0.10 0.05

Cumulative proportion 0.43 0.79 0.88 0.93

The columns show loading factors associated with the first four prin-

cipal component factors or axes (PC), with the percentage of the

variance explained by each of these factors at the bottom. In bold are

highlighted the highest loading scores showing the two groups of

variables associated with the first and second principal components.

Bioclimatic constraints to Andean cat distribution
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annual mean temperature and mean diurnal range (models C

and D). Minimally correlated variables describing precipitation

contributed little to the models; among them, the amount of

rainfall during the dry season was the more useful variable. The

other environmental layers depicting productivity (NDVI),

topography, orientation and land use type showed no predic-

tive value (results not shown).

All four models based on these sets of uncorrelated variables

provided good fit to the data and were successfully validated by

the test dataset (Table 2). Model D provided the best fit,

combining as predictor variables the annual mean and mean

diurnal range temperature, with the amount of rainfall in the

dry season (winter) and throughout the year. The variables that

contributed the most information not present in other

variables (from jackknife tests of each environmental layer,

not shown) were elevation and a measure of temperature:

mean diurnal range of temperature in model B; minimum

temperature of the coldest month in model C; and mean

annual and mean diurnal range temperature in model D.

Predicted range of suitable climates for Andean cats

We focused on model D - that with the highest AUC - to

describe the geography of the areas climatically suitable for

Andean cats (Fig. 1). All four models provided similar

geographic predictions, with the main difference being the

amount of area climatically suitable, albeit of low probability

value, in Argentine Patagonia - the prediction from model D

was intermediate in this regard. We chose the lowest predicted

value associated with any one of the presence records to

distinguish suitable from unsuitable conditions; this ‘lowest

presence threshold’ identifies pixels predicted as being at least

as suitable as those where a species’ presence has been recorded

(Hernandez et al., 2006; Pearson et al., 2007; Raxworthy et al.,

2007). The lowest predicted probability associated with a

record was 0.028, corresponding to the southernmost locality

(38.3� S, 69.9� W) and lowest elevation (650 m) (Di Martino

et al., 2008).

The areas predicted as suitable by the model covered

1,172,320 km2, including: 326,720 km2 (28%) in Perú,

233,270 km2 (20%) in Bolivia, 127,560 km2 (11%) in Chile,

and 466, 260 km2 (40%) in Argentina. Suitable climatic

conditions for Andean cats were found along the High Andes

and at lower elevations in the eastern slopes of the cordillera,

towards the Argentine Patagonian steppes (Fig. 1). The most

favourable climatic conditions were in the central portion of

the predicted latitudinal range. The pixels with highest

probabilities are concentrated around the region of the triple

frontiers between Bolivia, Chile and Peru (18� S 69� W) and

Argentina, Bolivia and Chile (23� S 67� W). These are

connected by a band of highly suitable climates along the

highest peaks. This bottleneck in optimal climatic conditions

coincides with a climatic boundary at around 20� S in Bolivia,

known as the ‘Andean Knee’, where the cordillera takes a sharp

bend south (Fig. 1). The northern extreme of the climatically

suitable range was predicted to be around 6.5� S and coincided

with a climatic and biogeographic feature known as the

‘Peruvian Low’ or Huancabamba Depression; further north

only small patches with suitable climatic conditions were

predicted, in the highest peaks of the Ecuadorian Andes.

Table 2 Four complementary models of

Andean cat habitat suitability, with and

without elevation as explanatory variable.

Variables

Complementary models

Percentage contribution of variables

Model A Model B Model C Model D

Elevation 49.7 47.4

Temperature

Annual mean temperature 62.4

Mean diurnal range temperature 50.0 35.8

Temperature annual range 49.4

Minimum temperature of coldest month 57.3

Maximum temperature of warmest month 37.1

Precipitation

Annual precipitation 1.2 0.8

Precipitation of driest quarter 0.8 5.6

Precipitation of coldest quarter 1.5 1.8

Models’ performance

Training AUC 0.988 0.989 0.988 0.990

Test AUC 0.984 0.989 0.985 0.993

The values are Maxent’s heuristic estimates of the relative contribution of environmental variables

to the models (Phillips & Dudik, 2008). In grey are highlighted the variable/s in each model that

contained the most useful information alone, and/or the most information that is not present in

other variables (according to Jackknife tests of each environmental layer, not shown).

AUC, area under the curve.

J. Marino et al.
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Southwards, climatically suitable conditions narrowed mark-

edly between 24� and 29� S along the Andes, where the ‘Arid

Diagonal’ traverses the cordillera between Chile and Argentina

(Fig. 1). While conditions improved further south, as latitude

decreases below around 40� S the greater humidity and colder

climate result in wet forests and glaciers seemingly unsuitable

for Andean cats. A ‘tail’ of climatically suitable area, albeit of

low suitability, descends into the Argentine Patagonia at the

southern extreme of the predicted range, from where only a

few records exist.

Climatic niche and response curves

The response curves in Fig. 2 illustrate how Maxent predic-

tions of climatic suitability vary with elevation and key climatic

variables across South America (only shown for those variables

with highest predictive value, as shown in Table 2). Climatic

suitability peaked around 4 �C of mean annual temperature,

decreasing rapidly towards warmer climates (Fig. 2a); the

empirical average from location data was 5.4 �C (SD 2.5,

n = 135). With regard to the maximum temperature of the

hottest month, the best climatic conditions were predicted

around 20 �C, with an empirical average of 17.3 �C (SD 3.3)

(Fig. 2b). All other curves showed more skewed responses,

with optimal climatic conditions close to environmental

extremes: around )13 �C of minimum temperature of the

coldest month, and decreasing rapidly towards values just

above zero (empirical average )9.0 �C, SD 3.2) (Fig. 2c); and

around 12–20 �C of mean difference between the daily

maximum and minimum temperatures (empirical average

17.6 �C, SD 1.6) (Fig. 2d). Most temperature-related aspects of

the climatic niche of Andean cats were associated with

variations in elevation. Suitable climatic conditions were

mostly restricted to areas above 2000–3000 m, and incrementing

Figure 1 Andean cat suitability map

(model D in Table 2). The lowest thresh-

old for suitability (0.028) corresponds to

the lowest probability of a known location

and 0.93 to the highest.

Bioclimatic constraints to Andean cat distribution
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rapidly up to elevations above the empirical average of 4160 m

(SD 620) (Fig. 2e). All Andean cat locations were in arid lands,

with an empirical average of 268 mm of rainfall per year (SD

242), of which on average 185 mm (SD 139) fall in a relatively

wet summer, and very little during winter. Climatic suitability

decreased abruptly from areas with little or no rainfall during

the dry season, towards areas with 50 mm or more (dry season

empirical average 6.7 mm, SD 13.1) (Fig. 2f).

Three climatic variables were used to represent the envi-

ronmental space of the Andean cat records along a north–

south axis (Fig. 3). These environmental relationships notably

change direction at around the latitude of the Andean Knee

(20� S), where the Maxent model predicted a discontinuity in

highly suitable climates. This is a region of extreme aridity,

with cold weather and large diurnal temperature fluctuations

(Fig. 3), conditions that become less harsh south and north-

wards, and seemingly less suitable for Andean cats towards the

edges of the range. There is an apparent climatic gap that

coincides with the latitudinal range of the Arid Diagonal, and

the climatic conditions further south in the much lower lying

Patagonian steppe tend to resemble those of the High Andes at

the northern edge of the species range.

DISCUSSION

This study contributes relatively simple bioclimatic models for

a rare species, which, despite a considerable increase in

research and conservation efforts over the last 10 years, is still

considered among 14 threatened and severely understudied

felid species requiring more attention by conservation biolo-

gists (Brodie, 2009). The models provide valuable information

on the climatic dimension of the Andean cat niche and on the

effect of biogeographic barriers on its distribution, evidence of

some bioclimatic constraints. We also discuss this fundamental

source of uncertainty in climatic niche models, which is the

assumption that climate limits species distributions (Parmesan

& Yohe, 2003). Factors other than climate can prevent species

from occupying areas that would otherwise be climatically

Figure 2 Marginal response curves showing how environmental variables affected the Maxent prediction of suitability (i.e. how the logistic

prediction changes as each environmental predictor is varied, while keeping all others at their average sample value).

J. Marino et al.

316 Diversity and Distributions, 17, 311–322, ª 2011 Blackwell Publishing Ltd



suitable (Gaston, 2003) and in this case study these include

the following: biotic interactions such as competition for prey

and refuge with the Pampas cat and other carnivores; dis-

persal limitations created by geographic barriers (which

the model successfully identified); and the distribution of the

rodent prey.

The climatic characteristic associated with known Andean

cat records – cold, dry, and with extreme diurnal variations in

temperature – were present along the Andes in areas of

montane grasslands, shrublands and steppes. These formations

range from the Wet Puna ecoregion in Peru – with extensions

into the Cordillera Central Paramo, through the Central

Andean and Dry Punas, and descending into the Patagonian

Steppe (Olson et al., 2001). One of the strengths of the model

was its ability to identify areas with environmental conditions

similar to those where the species is known to occur. We

acknowledge that caution should be exerted in the interpre-

tation of these results, because of the possibility of models

‘overpredicting’. On the one hand, the choice of the South

American continent as calibration area for the pseudo-absences

could lead to over-predictions (Lobo et al., 2010); on the

other, the Maxent algorithm tends to over-fit to the data and it

performs well in species with restricted distributions (Phillips

& Dudik, 2008). We therefore suggest prioritizing surveys of

regions with suitable climatic conditions and no records of

Andean cats to explore a highly suitable corridor connecting

the two core areas, the possibility of unrecorded populations

(for example in Patagonia), and to refine the models. It is

possible that new records influence the shape of these

predictions as more field studies are undertaken, particularly

if data are provided from areas with environmental conditions

poorly represented in this dataset such as the Patagonian

steppe.

Within the predicted geographical range of the species, areas

of relatively low suitability coincided with absences of, or few,

Andean cat records, and major biogeographical barriers. The

same climatic barriers are well-recognized boundaries for other

plants and animals in South America (Chesser, 2000; Weigend,

2002; Marin et al., 2007; Cossios et al., 2009; Rex et al., 2009),

supporting our hypothesis of bioclimatic constraints on the

distribution of Andean cats in present or past climatic

conditions. These biogeographical barriers were: (1) marking

the northern limit of the range, the Peruvian Low or

Huancabamba Depression, an arid east–west valley dropping

to about 500 m where the Marañón river, source of the

Amazon River, originates (Weigend, 2002; Weigend et al.,

2010); (2) the Andean Knee in Bolivia, an hyper-arid transition

zone between the Wet Puna with summer precipitations and

the Dry Puna of extreme aridity (Cossios et al., 2009), where

suitable climates narrow at the core of the species’ range – no

Andean cat records exist for this region; and (3) the South

American Arid Diagonal, another hyper-arid zone where

precipitation patterns change on each side of the cordillera

between Chile and Argentina (Garreaud, 2009), predicted as

suboptimal for Andean cats and with a single record. The study

by Cossios (2009) found out that these same biogeographic

Figure 3 Variations in the climatic space determined by climatic

variables associated with Andean cat records, along the latitudinal

axis of its range. Notably, climatic relationships change direction

in areas of climatic inversions along the Andes such as the Andean

Knee around 20� S and the Arid Diagonal around 30� S, where the

Maxent models predict lower climatic suitability.

Bioclimatic constraints to Andean cat distribution
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barriers explain the observed genetic structure of Andean cat

populations, with two northern haplotype groups separated at

the location of the climatic transition in the Andean Knee, and

the two main lineages separated at the Arid Diagonal some

200,000–300,000 years ago. It is apparent that limiting climatic

conditions may have existed at least since then and that

dispersal by Andean cats still is strongly constrained by post-

glacial expansion (Cossios, 2009).

The bioclimatic envelope describing the Andean cat niche is

amenable to interpretations of physiological limits to the

species’ climatic tolerance, although biotic interactions should

also be considered (discussed further below). The shape of the

relationship between predicted suitability and temperature is

characteristic of species with a single optimum, where the

species is most likely to occur, and decreasing likelihood of

occurrence with distance from this optimum (Mueller-Dom-

bois & Ellenberg, 1974). In contrast, the skewed relationships

with minimum temperature and diurnal thermal amplitude

indicate that the optimum for the species is near the extreme of

a gradient (Oksanen & Minchin, 2002; Austin, 2007). The

narrow environmental ranges of the Andean cat climatic niche

indicate a stress-tolerant species (Thuiller et al., 2004). Mor-

phological and physiological adaptations to the extreme

aridity, increased wind speeds, severe cold temperatures and

decreased partial pressures of oxygen, that characterize the

High Andes climate, could give Andean cats an adaptive

advantage over their potential competitors. Examples are the

Andean cat’s large auditory bullae (a distinctive taxonomic

character (Garcia-Perea, 2002; also apparent in sand cats Felis

margarita; Huang et al., 2002), and short legs and long hair

with dense woolly under fur (as in snow leopards Panthera

uncial) (McCarthy & Chapron, 2003). Physiological adapta-

tions to life at high altitudes such as high blood oxygen

affinities in chinchillas Chinchilla brevicaudata (Ostojic et al.,
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Figure 4 Map showing the overlying

distributions of four Chinchillidae species

(Patterson et al., 2003; and updated from

Parera, 2002 with unpublished data) and

of suitable climates for Andean cats, as

predicted by this paper’s model. Chinchilla

lanigera and C. brevicaudata are extinct

and nearly extinct in the wild respectively

(Iriarte & Jaksic, 1986 and Jiménez, 1996).
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2002) and vicuñas Vicugna vicugna (Chiodi, 1970) have not

been studied in Andean cats.

The habitat specificity of Andean cats also contrasts

markedly with the generalized habits and ample distributions

of sympatric carnivores in the Andes, such as, pumas (Puma

concolor), culpeo foxes (Pseudalopex culpaeus) and Pampas cats

(Leopardus colocolo) (Redford & Einsenberg, 1992; Nowell &

Jackson, 1996; Rau et al., 1998). Where they coexist in the

High Andes, however, they share a limited pool of rodent prey

(Marino et al., 2010) and Andean cats depend more heavily on

the mountain viscacha (Walker et al., 2007; Napolitano et al.,

2008; Marino et al., 2010). A likely explanation is that Andean

cats are more efficient exploiters of the rock-specialist visca-

chas and chinchillas, conferring them a competitive advantage

over sympatric carnivores. Notably, the areas predicted as

suitable for Andean cats overlap closely with the approximate

distributions of these Chinchillidae species (Fig. 4). These

matching distributions, both present and historical, indicate

similar climatic niches and potentially linked evolutionary

histories. These Chinchillidae are large, rock-dwelling rodents,

weighing 0.8–3 kg, and highly adapted to an extreme climate.

The Chinchilla spp. have been driven to the edge of extinction

owing to the demand for their thick, soft fur (Iriarte & Jaksic,

1986), and it is particularly important to explore the impacts of

this extirpation of wild chinchillas Chinchilla lanigera and

C. brevicaudata (Jiménez, 1996) on the current distribution of

Andean cats.

Our recommendations to further improve the fit of Andean

cat distribution models (Heikkinen et al., 2006; Araújo &

Luoto, 2007) are as follows: including landscape variables at

finer spatial scales to account for more directly explanatory

variables and resources (Hirzel & Le Lay, 2008) - crucially, the

distribution of rocky outcrops used by the cat and its prey for

refuge (Walker et al., 2003) - and taking into account the

spatial variations in the abundance of other carnivores. Very

detailed data are also required to capture the characteristically

patchy distribution of strong anthropogenic effects (Sagarin

et al., 2006), in our study case mining operations, hunting of

prey species by people and killing of Andean cats for

traditional ceremonies or by domestic dogs (Villalba et al.,

2004; Cossios et al., 2007; Lucherini & Merino, 2008).

Nevertheless, given serious concerns about species’ responses

to climate warming, the difficulty in detecting rare species and

the speed of degradation of natural habitats, simple, large-scale

bioclimatic models can be used to evaluate potential impacts of

climate change on distribution, and identify populations,

habitats and regions most at risk from climate change (Hannah

et al., 2007; Heller & Zavaleta, 2009; Mawdsley et al., 2009).
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