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From a Lie algebra g satisfying Z(g) = 0 and Λ2(g)g = 0 (in
particular, for g semisimple) we describe explicitly all Lie bialgebra
structures on extensions of the form L = g × K in terms of Lie
bialgebra structures on g (not necessarily factorizable nor quasi-
triangular) and its biderivations, for any field K of characteristic
different form 2, 3. If moreover, [g,g] = g, then we describe also
all Lie bialgebra structures on extensions L= g×K

n . In interesting
cases we characterize the Lie algebra of biderivations.
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1. Introduction and preliminaries

For an arbitrary K-vector space W we will identify Λ2 V as the subspace of V ⊗ V and similarly
Λ3W ⊂ W ⊗ W ⊗ W , so we ask 1

2 , 1
3 ∈ K. Even though one might consider the full exterior algebra

Λ•W , our computations only involve Λk W for k = 2,3, so all general results in this paper hold for
an arbitrary field K of characteristic different from 2 and 3.

Recall [4,5] that a Lie bialgebra over a field K is a triple (g, [−,−], δ) where (g, [−,−]) is a Lie
algebra over K and δ :g → Λ2g is such that

• δ :g → Λ2g satisfies co-Jacobi identity, namely Alt((δ ⊗ Id) ◦ δ) = 0,
• δ :g → Λ2g is a 1-cocycle in the Chevalley–Eilenberg complex of the Lie algebra (g, [−,−]) with

coefficients in Λ2g.

In the finite-dimensional case, δ :g → Λ2g satisfies co-Jacobi identity if and only if the bracket defined
by δ∗ :Λ2g∗ → g∗ satisfies Jacobi identity. In general, co-Jacobi identity for δ is equivalent to the fact
that the unique derivation of degree one ∂δ :Λ•g → Λ•g, whose restriction to g agrees with δ, satisfies
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∂2
δ = 0. We will usually denote a Lie bialgebra, with underlying Lie algebra g = (g, [−,−]), by (g, δ).

A Lie bialgebra (g, δ) is called a coboundary Lie bialgebra if there exists r ∈ Λ2g such that δ(x) =
adx(r) ∀x ∈ g; i.e. δ = ∂r is a 1-coboundary in the Chevalley–Eilenberg complex with coefficients in
Λ2g. Coboundary Lie bialgebras are denoted by (g, r), although r is in general not unique. We have
that r and r′ give rise to the same cobracket if and only if r − r′ ∈ (Λ2g)g, so r is uniquely determined
by δ in the semisimple case, since (Λ2g)g = 0 for g semisimple.

Recall that r ∈ g⊗ g satisfies the classical Yang–Baxter equation, CYBE for short, if

[
r12, r13] + [

r12, r23] + [
r13, r23] = 0,

where the Lie bracket is taken in the repeated index; for example, if r = ∑
i ri ⊗ ri then r12 := r ⊗ 1,

r13 := ∑
i ri ⊗1⊗ri and r23 := 1⊗r ∈ U(g)⊗3, so [r12, r13] = ∑

i, j[ri, r j]⊗ri ⊗r j ∈ g⊗g⊗g ↪→ U(g)⊗3,
and so on for the other terms of CYBE. We denote the left-hand side of CYBE by CYB(r).

If r ∈ Λ2g, then δ = ∂r satisfies co-Jacobi if and only if CYB(r) ∈ Λ3g is g-invariant. If (g, r) is
a coboundary Lie bialgebra and r satisfies CYBE, (g, r) is called triangular. A Lie bialgebra is quasi-
triangular if there exists r ∈ g⊗ g, not necessarily skew symmetric, such that δ(x) = adx(r) ∀x ∈ g and
r satisfies CYBE; if, moreover, the symmetric component of r induces a non-degenerate inner product
on g∗ , then (g, δ) is called factorizable [12]. Quasi-triangular Lie bialgebras are also denoted by (g, r),
although r is in general not unique. Nevertheless, in the semisimple case the skew symmetric com-
ponent rΛ of r is uniquely determined by δ. A quasi-triangular Lie bialgebra (g, r) is, in particular,
a coboundary Lie bialgebra, with the coboundary chosen as the skew symmetric component of r.

If (g, δ) is a real Lie bialgebra, then g⊗RC is a complex Lie bialgebra with cobracket δ⊗R IdC :g⊗R

C→ (Λ2
R
g) ⊗R C∼= Λ2

C
(g⊗R C). A real Lie bialgebra is coboundary if and only if its complexification

is coboundary. On the other hand, it may happen that (g⊗R C, δ ⊗R IdC) is factorizable but (g, δ) is
not; in this case we call it almost factorizable.

1.1. The theorem of Belavin and Drinfeld

Let g be a complex simple Lie algebra, Ω ∈ (S2g)g the Casimir element corresponding to a fixed
non-degenerate, symmetric, invariant, bilinear form (−,−) on g, and let h⊂ g be a Cartan subalgebra.
Let � be a choice of a set of simple roots. A Belavin–Drinfeld triple (BD-triple for short) is a triple
(Γ1,Γ2, τ ), where Γ1,Γ2 are subsets of �, and τ :Γ1 → Γ2 is a bijection that preserves the inner
product and satisfies the nilpotency condition: for any α ∈ Γ1, there exists a positive integer n for
which τn(α) belongs to Γ2 but not to Γ1. Let (Γ1,Γ2, τ ) be a BD-triple. Let Γ̃i be the set of positive
roots lying in the subgroup generated by Γi , for i = 1,2. There is an associated partial order on Φ+
given by α ≺ β if α ∈ Γ̃1, β ∈ Γ̃2 and β = τn(α) for a positive integer n. A continuous parameter for
the BD-triple (Γ1,Γ2, τ ) is an element r0 ∈ h ⊗ h such that (τ (α) ⊗ Id + Id ⊗ α)r0 = 0 ∀α ∈ Γ1, and
r0 + r21

0 = Ω0, the h⊗ h-component of Ω .

Theorem 1.1 (Belavin–Drinfeld). (See [2].) Let (g, δ) be a factorizable complex simple Lie bialgebra. Then there
exists a non-degenerate, symmetric, invariant, bilinear form on g with corresponding Casimir element Ω , a Car-
tan subalgebra h, a system of simple roots �, a BD-triple (Γ1,Γ2, τ ) and continuous parameter r0 ∈ h⊗h such
that δ(x) = adx(r) for all x ∈ g, with r given by

r = r0 +
∑

α∈Φ+
x−α ⊗ xα +

∑
α∈Φ+: α≺β

x−α ∧ xβ (1)

where x±α ∈ g±α , ±α ∈ ±Φ+ are root vectors normalized by (xα, x−α) = 1, ∀±α ∈ ±Φ+ , clearly,
r + r21 = Ω .

Reciprocally, any r of the form given above satisfies CYBE and endows the Lie algebra g of a factorizable Lie
bialgebra structure.
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The component
∑

α∈Φ+ x−α ∧ xα + Ω is called the standard part and it is denoted by rst , so r =
rst + ∑

α≺β x−α ∧ xβ + λ, if we decompose r0 = λ + Ω0, λ ∈ Λ2h.

Remark 1.2. Some authors have considered more general versions of the previous theorem (see [10]
and [3] for the semisimple and reductive versions). In this work, we give a new description for the
reductive Lie bialgebras without using the previous works but starting from a given Lie bialgebra
structure on the semisimple factor g.

Our point of view is the following: From a Lie algebra g over a field K with char K = 0 satisfying
Z(g) = 0 and Λ2(g)g = 0 we describe explicitly all the Lie bialgebra structures on extensions of the
form L = g×K in terms of Lie bialgebra structures on g and its biderivations. If moreover, [g,g] = g,
then we describe also all the Lie bialgebra structures on extensions L = g × K

d for any d. In the
semisimple factorizable case, the Lie bialgebra structures on g are known [2,1,3]; we make a detailed
analysis of the biderivations in this case and give an alternative description of the extensions to
reductive Lie bialgebras. This characterization includes the reductive factorizable case, but actually
we obtain all Lie bialgebra structures on L = g × K

d that restrict to a given Lie bialgebra structure
on g, which include non-factorizable and even non-coboundary ones. The latter were not considered
in previous works.

1.2. The center and the derived ideal [g,g]

The next statement is straightforward but useful:

Proposition 1.3. Let L be a Lie algebra and δ :L → Λ2L a 1-cocycle, then

1. [L,L] is a coideal, i.e. δ[L,L] ⊆ [L,L]∧L. As a consequence, if (L, δ) is a Lie bialgebra then the quotient
L/[L,L] admits a unique Lie bialgebra structure such that the canonical projection is a Lie bialgebra map.
Moreover, if (L, δ1) ∼= (L, δ2) as Lie bialgebras, then (L/[L,L], δ1) ∼= (L/[L,L], δ2).

2. If Z(L) denotes the center of the Lie algebra L, then δ(Z(L)) ⊆ Λ2(L)L .

Proof. 1. It is enough to notice that for any x, y ∈ L, δ[x, y] = adx δy − ady δx ∈ [L,L] ∧L.
2. If z is central, then [z, x] = 0 for all x ∈ L, so for a 1-cocycle δ we get

0 = δ
([z, x]) = [

z, δ(x)
] + [

δ(z), x
] = [

δ(z), x
]
,

and hence, adx δ(z) = 0 for all x ∈ L. �
Corollary 1.4. If L is a Lie bialgebra such that (Λ2L)L = 0 then Z(L) is a coideal.

1.3. 1-cocycles in product algebras

Let L = g × V , where g is a Lie algebra over a field K and V is a K-vector space, considered as
abelian Lie algebra. The second exterior power of L can be computed as

Λ2L = Λ2(g× V ) ∼= (
Λ2g⊗ Λ0 V

) ⊕ (
Λ1g⊗ Λ1 V

) ⊕ (
Λ0g⊗ Λ2 V

)
∼= Λ2g⊕ g⊗ V ⊕ Λ2 V .

Notice that this is an L-module decomposition, so

H1(L,Λ2L
) ∼= H1(L,Λ2g

) ⊕ H1(L,g⊗ V ) ⊕ H1(L,Λ2 V
)
.
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Now we recall the Künneth formula

H1(g× V , M1 ⊗ M2) ∼= H1(g, M1) ⊗ H0(V , M2) ⊕ H0(g, M1) ⊗ H1(V , M2)

∼= H1(g, M1) ⊗ M2 ⊕ Mg

1 ⊗ Hom(V , M2)

where we use the equality H0(g, M) = Mg for any g-module M . We assume that M2 is a trivial
representation of V (e.g. M2 = K, V ad, or Λ2 V ), so M V

2 = M2 and H1(V , M2) = Hom(V , M2). If we
apply the Künneth formula in our case, we get

H1(L,Λ2L
) = H1(g,Λ2g

) ⊕ (
Λ2g

)g ⊗ V ∗ ⊕ H1(g,g) ⊗ V ⊕ (g)g ⊗ Hom(V , V )

⊕ H1(g,K) ⊗ Λ2 V ⊕ Hom
(

V ,Λ2 V
)
.

Recalling that H1(g, M) = Der(g, M)/ InnDer(g, M) and, in particular,

H1(g,K) = Der(g,K) ∼= (
g/[g,g])∗

,

we get the final formula:

H1(L,Λ2L
) = H1(g,Λ2g

) ⊕ (
Λ2g

)g ⊗ V ∗ ⊕ Der(g,g)/ InnDer(g,g) ⊗ V

⊕Z(g) ⊗ End(V ) ⊕ (
g/[g,g])∗ ⊗ Λ2 V ⊕ Hom

(
V ,Λ2 V

)
.

We have the following special, favorable cases:

Lemma 1.5. Let L= g× V as before.

1. If dim V = 1 then

H1(L,Λ2L
) ∼= H1(g,Λ2g

) ⊕ (
Λ2g

)g ⊕ Der(g,g)/ InnDer(g,g) ⊕Z(g).

2. If g is semisimple, then H1(L,Λ2L) ∼= Hom(V ,Λ2 V ).
3. If dim V = 1 and g is semisimple, then H1(L,ΛL) = 0, in particular, every Lie bialgebra structure on L is

coboundary.

Example 1.6. If g = su(2) or g = sl(2,R), then every 1-cocycle in g×R is coboundary. But this prop-
erty does not hold for instance in sl(2,R) ×R

2, or gl(2,R) × gl(2,R).

1.4. Extensions of scalars

Let K ⊂ E be a field extension, if g is a Lie (bi)algebra over K, then g ⊗K E is naturally a Lie
(bi)algebra over E and Λ2

E
(g⊗K E) ∼= (Λ2

K
g)⊗K E. Let us denote by H•

K
(g,−) and H•

E
(g⊗K E,−) the

Lie algebra cohomology of g as K-Lie algebra and of g ⊗K E as E-Lie algebra, respectively. Since Lie
cohomology extends scalars, i.e. if M is a g-module and we consider M ⊗K E as (g ⊗K E)-module
then H•

E
(g⊗K E, M ⊗K E) = H•

K
(g, M) ⊗K E, we have H•

E
(g⊗K E, M ⊗K E) = 0 ⇔ H•

K
(g, M) = 0 and

H•
K
(g, M) identifies with a K-vector subspace of H•

E
(g ⊗K E, M ⊗K E). In particular, if (g, δ) is an

R-Lie bialgebra, then it is coboundary if and only if its complexification is coboundary.
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2. Biderivations

For a Lie bialgebra (g, δ), a map D :g → g which is at the same time a derivation and a coderiva-
tion is called a biderivation. The set of all biderivations of (g, δ) is denoted by BiDer(g). For an inner
biderivation we understand a biderivation which is inner as a derivation.

Definition 2.1. Let (g, δ) be a Lie bialgebra; we consider the characteristic map Dg :g → g defined by
Dg(x) := [ , ](δx) = [x1, x2] for any x ∈ g, where we denote δx = x1 ∧ x2 in Sweedler-type notation.

This map contains much information of the Lie bialgebra and it will be useful along this work.
When it is clear from the context, Dg will be denoted by D. Due to the next proposition, we will call
Dg the characteristic biderivation of g.

Proposition 2.2. If (g, δ) is a Lie bialgebra then its characteristic map D is both a derivation and a coderivation.

Proof. Let us see that D is a derivation. If x, y ∈ g, then

D
([x, y]) = [ , ](δ[x, y]) = [ , ](adx δy − ady δx)

= [ , ]([x, y1] ∧ y2 + y1 ∧ [x, y2] + [x1, y] ∧ x2 + x1 ∧ [x2, y])
= [[x, y1], y2

] + [
y1, [x, y2]

] + [[x1, y], x2
] + [

x1, [x2, y]] = [
x, [y1, y2]

] + [[x1, x2], y
]

= [x,Dy] + [Dx, y].

Notice that for a finite-dimensional Lie bialgebra (g, [ , ], δ), once we know that Dg is a derivation
in (g, [ , ]), Dg∗ is a derivation in (g∗, δ∗), thus Dg is a coderivation in (g, δ), since Dg∗ = (Dg)∗ .
Alternatively, one may prove it directly:

δ
(
D(x)

) = δ
([x1, x2]

) = [δx1, x2] + [x1, δx2] = [x11 ∧ x12, x2] + [x1, x21 ∧ x22]
= [x11, x2] ∧ x12 + x11 ∧ [x12, x2] + [x1, x21] ∧ x22 + x21 ∧ [x1, x22]. (2)

On the other hand, co-Jacobi identity for δ implies

0 = (δ ⊗ 1 − 1 ⊗ δ)δ(x) = x11 ∧ x12 ∧ x2 − x1 ∧ x21 ∧ x22

then x11 ∧ x12 ∧ x2 = x1 ∧ x21 ∧ x22 and x11 ∧ x2 ∧ x12 = x1 ∧ x22 ∧ x21; hence

[x11, x2] ∧ x12 = [x1, x22] ∧ x21.

So, the first and the last terms of the four terms in formula (2) cancel and we get

δ
(
D(x)

) = δ
([x1, x2]

) = x11 ∧ [x12, x2] + [x1, x21] ∧ x22;

using co-Jacobi identity again, the last formula equals

= x1 ∧ [x21, x22] + [x11, x12] ∧ x2 = x1 ∧D(x2) +D(x1) ∧ x2 = (1 ⊗D +D ⊗ 1)δ(x). �
Proposition 2.3. Let g be a coboundary Lie bialgebra and r ∈ Λ2g such that δ(x) = adx(r); consider Hr :=
[−,−](r) ∈ g and Dg the characteristic biderivation of g, then Dg = −adHr .
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Proof. Write r = r1 ⊗ r2 in Sweedler-type notation, so for any x ∈ g

Dg(x) = [−,−] ◦ δ(x) = [−,−](adx(r1 ⊗ r2)
) = [[x, r1], r2

] + [
r1, [x, r2]

]
= [

x, [r1, r2]
] = [x, Hr]

= −adHr (x). �
Proposition 2.4. Let g be a Lie bialgebra and Dg its characteristic biderivation. If E ∈ BiDer(g) then
[D, E] = 0.

Proof. The definition of coderivation says that E satisfies (E ⊗ Id + Id ⊗ E)δ = δE; on the other hand,
since E is a derivation, E[x, y] = [Ex, y] + [x, E y], in other words,

[−,−](E ⊗ Id + Id ⊗ E) = E[−,−].
Both properties together imply

DgE = [−,−]δE = [−,−](E ⊗ Id + Id ⊗ E)δ = E[−,−]δ = EDg. �
Corollary 2.5. Let g be a Lie bialgebra such that Dg is an inner biderivation; write Dg = adH0 for some H0 ∈ g.

1. If E is a biderivation, then E(H0) ∈Zg.
2. If E = adx ∈ BiDer then [x, H0] ∈Zg; if also Zg = 0 then x commutes with H0 .

Proof. 1. We know [E,Dg] = 0, then for any x ∈ g,

0 = [E,Dg](x) = [E,adH0 ](x) = E
(
adH0(x)

) − adH0

(
E(x)

)
= E

([H0, x]) − [
H0, E(x)

]
= [

E(H0), x
] + [

H0, E(x)
] − [

H0, E(x)
]

= [
E(H0), x

] = adE(H0)(x)

hence E(H0) ∈ Ker(ad) =Zg. The second statement is a direct consequence of the first. �
Remark 2.6. Because of the interesting properties and applications of Dg, one may wander for an
analogous map in the associative case. For a Hopf algebra H with multiplication m : H ⊗ H → H and
comultiplication � : H → H ⊗ H one may define m ◦ � : H → H . This map has some similarities but
also many differences with the Lie case. First, it is clear that it commutes with any Hopf algebra
map f : H → H (in analogy with Proposition 2.4), but in contrast, if H is not commutative, m is not
an algebra map, and if H is not cocommutative, � is not a coalgebra map, so it is not expected
for m ◦ � to be a Hopf algebra map, and in fact it is not, except for a very small family of Hopf
algebras. Nevertheless, maps similar to this one were considered by Etingof and Gelaki (see [6]) with
very useful applications. On the other hand, for a Lie algebra g, the obvious Hopf algebra to look at
is U (g), the universal enveloping algebra, with comultiplication determined by �x = x ⊗ 1 + 1 ⊗ x.
If in addition (g, δ) is a Lie bialgebra, one may consider the ring A = K[t]/t2 and define a Hopf
algebra structure on H := U (g) ⊗K K[t]/t2 over A declaring �δ(x) = x ⊗ 1 + 1 ⊗ x + tδ(x) (x ∈ g). It
is well known that the cocycle condition says that �δ is well defined and gives an A-algebra map
�δ : H → H ⊗A H , and co-Jacobi for δ gives coassociativity for �δ . In this case, the antipode S is given
by S(x) = −x + 1

2 tDg(x), and S2(x) = x − tDg(x). We conclude that S2 = Id if and only if Dg = 0, and
that is the reason why a Lie bialgebra with Dg = 0 is called involutive. Also, this example shows that
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S2 is a possible candidate for an analogue to the “exponential” of −Dg in the abstract setting of Hopf
algebras. Notice that S2 also commutes with any Hopf algebra map f : H → H (since S does) but in
addition S2 is also a Hopf algebra map itself, in analogy with Proposition 2.2.

Going back to Lie bialgebras, we quote a result from [1], which together with Corollary 2.5 implies
a very interesting fact.

Proposition 2.7. If g is real or complex semisimple and (g, r) is an (almost) factorizable Lie bialgebra, then
Hr := [−,−](r) is a regular element and so h :=Zg(Hr), the centralizer of Hr , is a Cartan subalgebra of g.

Proof. This statement is proved for both, real and complex, simple cases in [1], but the proof remains
valid mutatis mutandis for the semisimple case. �
Corollary 2.8. Any biderivation of a factorizable semisimple Lie bialgebra (g, r) is of the form adH with H ∈
h =Zg(Hr). In particular, BiDer(g, δ) is an abelian Lie algebra.

Proof. If g is semisimple then every derivation is inner and Zg = 0, so E = adx0 and x0 commutes
with Hr . In particular, x0 belongs to the centralizer of Hr . �

Another characterization of inner biderivations is the following.

Proposition 2.9. Let (g, δ) be a Lie bialgebra and D = adx0 an inner derivation, then D is a coderivation if
and only if δx0 ∈ (Λ2g)g. In particular, if (Λ2g)g = 0, then the map x0 �→ adx0 induces an isomorphism of Lie
algebras Ker δ/(Z(g) ∩ Ker δ) ∼= InnDer(g) ∩ CoDer(g).

Proof. By definition, D is a coderivation if and only if (D ⊗ Id + Id ⊗ D) ◦ δ = δ ◦ D . Since D = adx0 ,
we have (D ⊗ Id + Id ⊗ D)(x ⊗ y) = adx0 (x ⊗ y). So, the coderivation condition reads

δ[x0, z] = adx0 δ(z)

for all z ∈ g. On the other hand, δ is a 1-cocycle, namely

δ[x0, z] = adx0 δ(z) − adz δ(x0).

Hence, D is a coderivation if and only if adz δ(x0) = 0 for all z ∈ g. �
Corollary 2.10. Let (g, δ) be a Lie bialgebra such that every derivation is inner, Zg = 0 and (Λ2g)g = 0, then
BiDer(g, δ) ∼= Ker δ. In particular, if g is semisimple then the result holds.

Example 2.11. The non-commutative two-dimensional Lie algebra g = aff2(K), verifies Der(g) =
InnDer(g), Z(g) = 0 and (Λ2g)g = 0 but it is not semisimple. In fact, this is the “sl2-case” of the
general and classical result (see for instance [9]) that a Borel subalgebra b of a semisimple Lie algebra
satisfies Der(b) = InnDer(b), Z(b) = 0 and (Λ2b)b = 0.

2.1. Biderivations in the real or complex semisimple case

Let (g, r) be an (almost) factorizable semisimple Lie bialgebra, with r a BD classical r-matrix, i.e.
r of the form as in Eq. (1) of Theorem 1.1, that is, for a fixed non-degenerate, symmetric, invariant,
bilinear form on g, a certain Cartan subalgebra h, an election of positive and simple roots Φ+ ⊂
Φ(h) and � = {α1, . . . ,α�}, respectively, a pair of discrete and continuous parameters (Γ1,Γ2, τ ) and
r0 ∈ h ⊗ h, respectively, with r0 = λ + Ω0, λ ∈ Λ2h, λ = ∑

1�i< j�� λi jhi ∧ h j , where hi := hαi , the
antisymmetric component rΛ of such an r-matrix is of the form
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rΛ =
∑

α∈Φ+
x−α ∧ xα +

∑
α≺β

x−α ∧ xβ + λ. (3)

Here � = dimh is the rank of the Lie algebra g. Notice that adx r = adx rΛ since the symmetric compo-
nent of r is g-invariant. If we are in the real almost factorizable case (g, δ), namely (g⊗R C, δ ⊗R C)

is factorizable, so there exists r ∈ (g⊗R C) ⊗C (g⊗R C) = (g⊗R g)⊗R C with δ ⊗R IdC(x) = adx(r) for
all x ∈ g⊗R C; suppose that r is of the form as above, then necessarily δ(x) = adx(r) = adx(rΛ), for all
x ∈ g. In particular rΛ ∈ Λ2

R
g.

The goal of this section is to prove the result given in the following theorem. In fact, we exhibit
two different proofs of it, namely, one is the application of Corollary 2.8, which gives Proposition 2.16.
The second is longer but direct and follows in this section, being Proposition 2.16 the most subtle part
of the proof.

Theorem 2.12. Let (g, r) be an (almost) factorizable semisimple Lie bialgebra, with r as in the previous para-
graph. If D :g → g is a biderivation, then D = adH for a (unique) H ∈ h satisfying

α(H) = (τα)(H), for all α ∈ Γ1.

In particular, if there are no discrete parameters, then any H ∈ h determines a biderivation and all biderivations
are of this type.

It is useful to recall the notion of level or height of a root; if α = ∑�
i=1 niαi define the height of α

as the integer

height(α) =
�∑

i=1

ni .

The same definition can be extended for any weight μ ∈ h∗ , namely, if μ = ∑�
i=1 μiαi , define

height(μ) := ∑�
i=1 μi ∈ C. The adjoint representation of g decomposes in height spaces, explicitly

given by

g(n) :=
⊕

α∈Φ∪{0}: height(α)=n

gα

where we include g(0) = g0 = h, so g = ⊕
n∈Z g(n) . Analogously, the representation Λ2g decomposes

in weight spaces (Λ2g)μ , with weights of integer levels. For each μ in the Z-span of Φ , we have

(
Λ2g

)
μ

=
⊕

α,β∈Φ∪{0}: α+β=μ

(gα ∧ gβ).

This decomposition can be rearranged as a decomposition in height spaces as follows:

Λ2g =
⊕
μ∈h∗

(
Λ2g

)
μ

=
⊕
n∈Z

( ⊕
μ∈h∗: height(μ)=n

(
Λ2g

)
μ

)
=

⊕
n∈Z

(
Λ2g

)
(n)

where (Λ2g)(n) := ⊕
μ∈h∗: height(μ)=n(Λ2g)μ is said to be the component of height n. Notice that Λ2h⊂

(Λ2g)(0) but also x−α ∧ xα ∈ (Λ2g)(0); moreover, conditions on the BD-triple (see [2] and [1]) force
that α ≺ β implies height(α) = height(β) and so, x−α ∧xβ ∈ (Λ2g)(0) , then, all the terms which appear
in rΛ are in (Λ2g)(0) . Hence,
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rΛ ∈ (
Λ2g

)
(0)

Also, from [gμ,Λ2gν ] ⊆ Λ2gμ+ν , it is clear that [g(n), (Λ
2g)(k)] ⊆ (Λ2g)(n+k) . This discussion im-

plies the following lemma.

Lemma 2.13. Let g = n+ ⊕ h ⊕ n− be the triangular decomposition related to h and a to an election of
positive roots; if we write x = x+ + xh + x− then adx(r) = 0 if and only if adx± (r) = adxh (r) = 0. Moreover,
if x = ∑

n x(n) with x(n) ∈ g(n) corresponding to the decomposition of g in height spaces, then δx = adx(r) = 0
if and only if δx(n) = adx(n)

(r) = 0 for all n ∈ Z.

The proof of the theorem relies in a close observation of the adjoint action, explicitly stated in the
following lemma.

Lemma 2.14. Let xγ ∈ gγ with γ ∈ Φ+ , then

adxγ r = hγ ∧ xγ +
∑

γ �=α∈Φ+
(cγ ,−αx−α+γ ∧ xα + cγ ,αx−α ∧ xγ +α)

+
∑

α≺β: γ �=α,β

(cγ ,αx−α+γ ∧ xβ + cγ ,β x−α ∧ xβ+γ ) +
∑

β: γ ≺β

(hγ ∧ xβ + cγ ,β x−γ ∧ xβ+γ )

+
∑

α: α≺γ

cγ ,−αx−α+γ ∧ xγ + [xγ ,λ]

where cγ ,±α ∈ C are the structure constants such that [xγ , x±α] = cγ ,±αxγ ±α . In addition, if we write λ =∑
1�i< j�� λi jhi ∧ h j = 1

2

∑�
i, j=1 λi jhi ∧ h j with λ ji = −λi j then

[xγ ,λ] = −
∑

1�i< j��

λi j
(
γ (hi)xγ ∧ h j + γ (h j)hi ∧ xγ

) =
( ∑

1�i< j��

λi j
(
γ (hi)h j − γ (h j)hi

)) ∧ xγ

= 1

2

�∑
i, j=1

λi j
(
γ (hi)h j − γ (h j)hi

) ∧ xγ =
�∑

i, j=1

λi jγ (hi)h j ∧ xγ .

Proof. Straightforward. �
In order to deal with this formula, we simplify it by considering the following decomposition of

Λ2g induced by the triangular decomposition g = h⊕ (n+ ⊕ n−), namely

Λ2g = Λ2h⊕ (
h∧ (n+ ⊕ n−)

) ⊕ Λ2(n+ ⊕ n−).

Define p :Λ2g → Λ2h⊕ (h∧ (n+ ⊕ n−)), the canonical projection associated to the above decomposi-
tion. The formula of Lemma 2.14 implies the following:

p(adxγ r) = hγ ∧
(

xγ +
∑

β: γ ≺β

xβ

)
+

( ∑
1�i< j��

λi j
(
γ (hi)h j − γ (h j)hi

)) ∧ xγ .

It is convenient to introduce the element Hγ
λ := hγ + ∑�

i, j=1 λi jγ (hi)h j . Write γ = ∑�
i=1 niαi then
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Hγ
λ =

�∑
j=1

(
n j +

�∑
i=1

λi jγ (hi)

)
h j =

�∑
j=1

(
n j +

∑
i,k

λi jnkαk(hi)

)
h j,

under this notation we have

p(adxγ r) = Hγ
λ ∧ xγ + hγ ∧

( ∑
β: γ ≺β

xβ

)
.

Lemma 2.15. For any γ ∈ Φ and any λ ∈ Λ2h, the element Hγ
λ ∈ h is nonzero.

Proof. Recall we write γ = ∑�
i=1 niαi ; if Hγ

λ = 0 then, in particular, α(Hγ
λ ) = 0 for all α ∈ h∗ , so

0 =
�∑

m=1

αm
(

Hγ
λ

)
nm =

�∑
j,m=1

nmαm(h j)n j +
�∑

j,k,m=1

nkαk(hi)λi jαm(h j)nm.

It is convenient to use matrix notation. Let us denote by K the matrix with entries κi j = αi(h j),
Λ the matrix with coefficients λi j and n = (n1, . . . ,n�). Notice that K is the matrix of the Killing form
restricted to h. The formula above can be written as

0 = n · K · nt + n · K · Λ · K · nt .

The second term is easily seen to be zero since

n · K · Λ · K · nt = (
n · K · Λ · K · nt)t = n · K t · Λt · K t · nt = −n · K · Λ · K · nt

where the first equality holds because we are transposing a complex number, the second is valid
for any product of matrices, and the last uses the fact that K is symmetric and Λ antisymmetric.
Besides, in the basis {h1, . . . ,h�}, the matrix K is real symmetric and positive defined (see for instance
[11, Corollary 2.38]), hence∑

m

αm(H)nm =
∑
j,m

nmκmjn j = n · K · nt > 0 ∀n ∈R
n \ 0;

in particular, it gives a nonzero real number for any 0 �= (n1, . . . ,n�) ∈ Z
n . �

Proposition 2.16. Let x ∈ n+ ⊕ n− , then adx(r) = 0 ⇔ x = 0.

Proof. Let x = ∑
γ ∈Φ cγ xγ with cγ arbitrary, and suppose adx r = 0. Since ad−(r) preserves the height

(see Lemma 2.13), we can consider different heights separately. Since we will not need such refine-
ment in all its strength, we will only consider separately the cases height(γ ) > 0 or height(γ ) < 0,
namely γ a positive or negative root.

So let us consider an element x = ∑
γ ∈Φ+ cγ xγ , the case in Φ− is analogous. We have

0 = p(adx r) =
∑

γ ∈Φ+
cγ Hγ

λ ∧ xγ +
∑

γ ∈Φ+
cγ hγ ∧

( ∑
β: γ ≺β

xβ

)
.

Denote Γ̃ the Z-span of the discrete parameter; we claim that if γ ∈ Γ̃ ∩Φ+ , then cγ = 0. To see this,
consider Γ0 ⊂ Φ+ the set of minimal elements γ ∈ Γ̃ such that cγ �= 0 (minimal with respect to ≺).
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Notice that the terms with xβ where γ ≺ β cannot cancel any term with xγ for γ ∈ Γ0, because if
cβ �= 0 then γ could not be minimal. Hence, if we consider only elements in Γ0, necessarily

0 =
∑
γ ∈Γ0

cγ Hγ
λ ∧ xγ

since the {xγ }γ ∈Γ0 are linearly independent, then

0 = cγ Hγ
λ ∀γ ∈ Γ0.

But Hγ �= 0 implies cγ = 0, which is absurd because γ ∈ Γ0. We conclude that cγ = 0 for all γ in Γ̃ .
Hence the equality adx(r) = 0 implies

0 = p(adx r) =
∑

γ ∈Φ+
cγ Hγ

λ ∧ xγ .

Now we can repeat word by word the same argument as in case γ ∈ Γ0, namely the linear indepen-
dence of the xγ implies cγ Hγ

λ = 0 ∀γ ∈ Φ+ , but Hγ
λ �= 0 implies cγ = 0 ∀γ ∈ Φ+ . �

Proof of Theorem 2.12. In order to conclude the proof, almost all work is done. We know that if
adx(r) = 0 then x ∈ g(0) = g0 = h. Notice that the standard component and the continuous parameter
have total weight equal to zero, i.e. adH (rst +λ) = 0 for H ∈ h, then the only terms surviving in adH (r)
are

adH (r) =
∑
α≺β

adH (x−α ∧ xβ) =
∑
α≺β

(
β(H) − α(H)

)
x−α ∧ xβ

so α(H) = β(H) for all α ≺ β , and that is equivalent to α(H) = (τα)(H) for all α ∈ Γ1. At this stage,
we have finished the description of Ker(δ), but in virtue of Corollary 2.10, this implies as well a
description of the biderivations in (g, δ). Notice that in the real case, even if r ∈ (g⊗RC)⊗C (g⊗RC)\
g ⊗R g, we know that rΛ ∈ Λ2

R
g, so the proof of the complexified Lie algebra descends to the real

form g. �
Remark 2.17. Corollary 2.8 says that if adx ∈ BiDer(g, r) then x ∈ h, so Corollary 2.8 together with the
very last argument above gives an alternative proof of Theorem 2.12.

2.2. Extension of scalars

For a given Lie bialgebra, it is possible to define a (double) complex of the form C p,qg =
Λpg∗ ⊗ Λqg, where the vertical differentials are the Chevalley–Eilenberg differential of g with co-
efficients in Λqg, and horizontal differentials are the dual of the Chevalley–Eilenberg differential
corresponding to the Lie coalgebra structure. This complex was first described in [8]. In particular,
for p = q = 1, if one identifies g∗ ⊗ g = Hom(g,g) = End(g), we get that the kernel of the vertical
differential consists of derivations (the image of the preceding differential are the inner ones), and
the kernel of horizontal differential consists of coderivations, so the kernel of both differentials is pre-
cisely the set of biderivations. As a consequence, the set of biderivations extends scalars in the sense
that if K ⊂ E is a field extension, then BiDerE(g⊗K E) = BiDerK(g) ⊗K E, and a given biderivation D
of a K-Lie algebra g is inner if and only if D ⊗K IdE is inner as biderivation of g⊗K E.
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3. Main construction for trivial abelian extensions

Along this section, we denote by V a d-dimensional vector space over a field K, {t1, . . . , td} a basis
of V and {t∗

1, . . . , t∗
d} the associated dual basis of V ∗ .

Theorem 3.1. Let (g, δg) be a Lie bialgebra, (V , δV ) a d-dimensional Lie coalgebra, V ∗ the dual Lie algebra and
D : V ∗ → BiDer(g) a Lie algebra map, then the following map defines a Lie bialgebra structure on L = g× V ,
for all x ∈ g and v ∈ V :

δ(x + v) = δg(x) + 2
d∑

i=1

Di(x) ∧ ti + δV (v)

where {t1, . . . , td} is a basis of V , {t∗
1, . . . , t∗

d} the dual basis of V ∗ and Di = D(t∗
i ), 1 � i � d.

Proof. We need to prove co-Jacobi and the 1-cocycle condition. In order to prove co-Jacobi for δ,
for any linear function f :g → Λ2(g), denote by ∂ f :Λ2(g) → Λ3(g) the map given by ∂ f (x ∧ y) =
f (x) ∧ y − x ∧ f (y). So, under this notation, δ satisfies co-Jacobi if and only if ∂δ ◦ δ = 0. Notice that
∂ f +g = ∂ f + ∂g , so

∂δ = ∂δg + 2
d∑

i=1

∂Di(−)∧ti + ∂δV .

Let us prove first that ∂δ ◦ δ(x) = 0 for any x ∈ g,

∂δ

(
δ(x)

) = ∂δ

(
δg(x)

) + 2
d∑

i=1

∂δ(Di x ∧ t)

= ∂δg

(
δg(x)

) + 2
d∑

i=1

∂Di∧ti

(
δg(x)

) + 2
d∑

i=1

(
δ(Di x) ∧ ti − Di x ∧ δ(ti)

)
= A + B + C

where these three terms are computed separately as follows. The first term, A = ∂δg (δg(x)) has to be
zero since δg satisfies co-Jacobi. For the second term,

1

2
B =

d∑
i=1

∂Di∧ti

(
δg(x)

) =
d∑

i=1

(
Di x

g

1 ∧ ti ∧ xg2 − xg1 ∧ Dix
g

2 ∧ ti
)

= −
d∑

i=1

(
(Di ⊗ Id + Id ⊗ Di)

(
xg1 ∧ xg2

) ∧ ti
)

= −
d∑

i=1

(
(Di ⊗ Id + Id ⊗ Di)(δgx) ∧ ti

) ∈ Λ2g∧ V

where we used the Sweedler-type notation δgx = xg1 ∧ xg2 . Half of the third term equals
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1

2
C =

d∑
i=1

(
δ(Di x) ∧ ti − Di x ∧ δ(ti)

)

=
d∑

i=1

δg(Di x) ∧ ti + 2
d∑

i, j=1

D j(Di x) ∧ t j ∧ ti −
d∑

i=1

Dix ∧ δV (ti).

Notice that, in C , only the first sum belongs to Λ2g ∧ V , and it cancels with B because Di are
coderivations. It only remains to verify that the second and third terms of C cancel each other, or,
equivalently, that the following identity holds

2
d∑

i, j=1

D j(Dix) ∧ t j ∧ ti =
d∑

i=1

Di x ∧ δV (ti). (4)

Observe that in the left-hand side we have

2
d∑

i, j=1

D j(Di x) ∧ t j ∧ ti =
d∑

i, j=1

[D j, Di](x) ∧ t j ∧ ti

because t j ∧ ti is antisymmetric in the indexes i, j. On the right-hand side of (4), we may write

δV (tk) as a linear combination of the t j ∧ ti , explicitly δV (tk) = ∑d
i, j=1 c j,i

k t j ∧ ti . So, identity (4) is also
equivalent to

[D j, Di] =
d∑

k=1

c j,i
k Dk

which holds because the map D : V ∗ → BiDer(g), t∗
i �→ Di , is a Lie algebra map.

Finally, δ|V = δV and δV (V ) ⊆ Λ2 V since by construction (V , δV ) is a Lie subcoalgebra. Hence,
∂δδ(v) = ∂δδV (v) = ∂δV δV (v) = 0 for any v ∈ V . �
Example 3.2. As a toy example, consider g = aff2(K) the non-abelian 2-dimensional Lie algebra, with
basis {h, x} and bracket [h, x] = x, and V = Kt . All possible cobrackets in aff2(K) up to isomorphism
of Lie bialgebras are (see [7]) as follows:

1. δ0(h) = h ∧ x, δ0(x) = 0, in this case D = −adx and BiDer(aff2, δ
0) = Kadx; or

2. the 1-parameter family δμ(h) = 0, δμ(x) = μh ∧ x, μ ∈ K, so D = μadh . In this case,
BiDer(aff2, δμ) = Kadh if μ �= 0 and BiDer(aff2, δμ) = Der(aff2) if μ = 0. Notice that Der(aff2) =
InnDer(aff2).

The biderivations given above were easily obtained by means of Corollary 2.10. The procedure de-
scribed in Theorem 3.1 says that if D ∈ BiDer(aff2(K), δaff2 ),

δ(t) = 0, δ(u) = δaff2(u) + D(u) ∧ t, ∀u ∈ aff2(K)

is a Lie cobracket on aff2(K)×K. We obtain the whole list of possible such choices (see table below).
Notice that the Lie bialgebra of the case (i) is isomorphic to the one of case (ii) by means of the

map x �→ x; h �→ h + t; t �→ t . Analogously, the Lie bialgebra of the case (iii) with parameter μ is
isomorphic to the one of case (iv) with parameter −μ, by means of the map x �→ x; h �→ h + 1

μ t;
t �→ t . In case (v) if the derivation D = adαx+βh then D : x �→ βx, h �→ −αx, so the cobracket has the
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Possible Lie cobrackets on aff2(K) ×K.

(i) δ(x) = 0 δ(h) = h ∧ x + x ∧ t δ(t) = 0
(ii) δ(x) = 0 δ(h) = h ∧ x δ(t) = 0

(iii) δ(x) = μh ∧ x + x ∧ t δ(h) = 0 δ(t) = 0 μ �= 0
(iv) δ(x) = μh ∧ x δ(h) = 0 δ(t) = 0 μ �= 0
(v) δ(x) = D(x) ∧ t δ(h) = D(h) ∧ t, D ∈ Der(aff2) δ(t) = 0

form δx = βx∧ t , δt = 0 and δh = −αx∧ t . In matrix notation, choosing basis {x, t,h} of the Lie algebra
L = aff2 ×Kt , and basis {x ∧ t, t ∧h,h ∧ x} of Λ2L, the cobrackets given by the above construction are

(ii)

(0 0 0
0 0 0
0 0 1

)
; (iv)

( 0 0 0
0 0 0
μ 0 0

)
; (v)

(
β 0 −α
0 0 0
0 0 0

)
.

Case (v) is isomorphic to
( 0 0 1

0 0 0
0 0 0

)
if α �= 0, β = 0, simply by considering the transformation x ↔ 1

α x.

If β �= 0, then (v) is isomorphic to
( 1 0 0

0 0 0
0 0 0

)
by the transformation x �→ x, h �→ h + α

β
x, t �→ βt . If one

compares all this possibilities with the classification result in [7] for the Lie algebra r3,λ=0 one sees
that we have covered all possibilities. This is not surprising due to the following result.

Next theorem says that with some extra hypothesis, Theorem 3.1 has its converse. See the table in
Example 3.5 for non-semisimple examples where next theorem applies.

Theorem 3.3. Let g be a Lie algebra such that (Λ2g)g = 0 and Z(g) = 0; let V be a vector space considered
as abelian Lie algebra; assume that either dim V > 1 and [g,g] = g, or dim V = 1. If L = g × V then all Lie
cobrackets on L are as in Theorem 3.1. Explicitly, if δ defines a Lie bialgebra structure on L, then

1. δ(V ) ⊆ Λ2(V ), so, V is a Lie subcoalgebra with δV = δ|V . In particular, V is an ideal and a coideal, hence,
L/V inherits a unique Lie bialgebra structure such that π :L → L/V is a Lie bialgebra map.

2. Let πg :L → g be the canonical projection associated to the decomposition L = g× V , then δg := (πg ∧
πg) ◦ δ|g :g → Λ2g is a Lie bialgebra structure on g and L/V ∼= g canonically as Lie bialgebras.

3. δ(g) ⊆ Λ2g⊕ g∧ V . If {ti}d
i=1 is a basis of V , then for any x ∈ g, δ(x) is of the form

δx = δgx + 2
d∑

i=1

Di x ∧ ti

where Di :g → g, i = 1, . . . ,d, are derivations and coderivations of (g, δg). The linear subspace generated
by {D1, . . . , Dd} is a Lie subalgebra of BiDer(g); moreover, the map D : (V ∗, δ∗

V ) → BiDer(g) defined by
D(t∗

i ) = Di , is a Lie algebra map.
4. Let (L, δ) be the Lie bialgebra associated to a data (L, δg, δV , D1, . . . , Dd). Let Φ = (φg, φV ) be a linear

automorphism of L, with φg a Lie algebra automorphism of g and φV ∈ GL(V ). If we denote by δ̃g = (φg∧
φg) ◦ δg ◦ φ−1

g , δ̃V = (φV ∧ φV ) ◦ δV ◦ φ−1
V , D̃i := ∑d

j=1 Aijφg ◦ D j ◦ φ−1
g , where φV (t j) = ∑d

i=1 Aijti ,

1 � j � d, and (L, δ̃) the Lie bialgebra associated to the data (L, δ̃g, δ̃V , D̃1, . . . , D̃d), then Φ : (L, δ)
∼−→

(L, δ̃) is a Lie bialgebra isomorphism. If, moreover, [g,g] = g then any Lie bialgebra isomorphism from
(L, δ) to (L, δ̃) is of this form.

Proof. Consider the decomposition Λ2(L) = Λ2(g) ⊕ g∧ V ⊕ Λ2(V ). It is straightforward to see that
if δ(g) ⊆ Λ2g ⊕ g ∧ V and δ(V ) ⊆ Λ2 V then the implications in the proof of Theorem 3.1 can be
reversed. This will prove items 1, 2, 3. So, let us see δ(V ) ⊆ Λ2 V first:
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By Proposition 1.3 together with Z(g) = 0, we have

δ(V ) = δ
(
Z(L)

) ⊆ (
Λ2L

)L = (
Λ2g

)g ⊕Z(g) ∧ V ⊕ Λ2 V = Λ2 V .

On the other hand, δ(g) ⊆ Λ2g ⊕ g ∧ V is trivial in case dim V = 1 since in this case, Λ2 V = 0. If
dim V > 1, assuming g = [g,g] then also g = [L,L], so by Proposition 1.3

δ(g) = δ
([g,g]) = δ

([L,L]) ⊂ [L,L] ∧L= g∧L= Λ2g⊕ g⊗ V .

4. Notice that δ̃L = (Φ ∧ Φ) ◦ δL ◦ Φ−1 if and only if δ̃g = (φg ∧ φg) ◦ δg ◦ φ−1
g , δ̃V = (φV ∧ φV ) ◦

δV ◦ φ−1
V and

(Φ ∧ Φ)

(∑
i

Di
(
φ−1
g x

) ∧ ti

)
=

∑
i

D̃ i(x) ∧ ti .

The identities concerning δ̃g and δ̃V are true by hypothesis. For the last, notice that

(Φ ∧ Φ)
(

Di
(
φ−1
g x

) ∧ ti
) = (

φgDiφ
−1
g (x)

) ∧ φV (ti);

write φV (ti) = ∑
j Ai jt j , then

(Φ ∧ Φ)
(

Di
(
φ−1
g x

) ∧ ti
) =

∑
j

Ai jφg

(
Di

(
φ−1
g x

)) ∧ t j.

For the converse, if (L, δL) and (L, δ̃L) are Lie bialgebras, then we have the corresponding
(δg, δV , D1, . . . , Dd) and (̃δg, δ̃V , D̃1, . . . , D̃d). If they are isomorphic Lie bialgebras, then there exists a
Lie algebra isomorphism Φ :L → L such that δ̃L = (Φ ∧ Φ) ◦ δL ◦ Φ−1. It is necessary to prove that it
induces the existence of φg :g → g and φV : V → V , or, in other words, that Φ(g) ⊆ g and Φ(V ) ⊆ V .
This holds because [g,g] = g and Z(g) = 0 imply Φ(g) = Φ([g,g]) = Φ([L,L]) = [L,L] = [g,g] = g

and Φ(V ) = Φ(Z(L)) = Z(L) = V . �
Specializing the main theorem to the case of dim V = 1, we obtain the following.

Corollary 3.4. Let L = g × K be a Lie bialgebra where the underlying Lie algebra is the product of the Lie
algebra g and the field K = 〈t〉 considered as trivial one-dimensional Lie algebra; suppose that Z(g) = 0 and
(Λ2g)g = 0; then the Lie bialgebra structures on L are determined by pairs (δg, D), where δg is a Lie bialgebra
structure on g and D ∈ BiDer(g, δg). The Lie cobracket on L is explicitly given by δ(x) = δg(x) + D(x) ∧ t, for
any x ∈ g, and δ(t) = 0.

Example 3.5. The table below exhibits some properties of the non-abelian, real 3-dimensional Lie
algebras. We see that there are non-semisimple examples of g where Z(g) = 0 and (Λ2g)g = 0; so,
the previous result applies in order to describe Lie bialgebra structures on 4-dimensional real Lie
algebras of type g×R.

The hypothesis Z(g) = 0 and (Λ2g)g = 0 hold in the semisimple case.

Corollary 3.6. Let g be a semisimple Lie algebra (so all cocycles on g are coboundary and every derivation on
g is inner), then
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Invariants of 3-dimensional real Lie algebras.

g Zg (Λ2g)g [g,g]
h3 : [x, y] = z Rz Rx ∧ z ⊕Ry ∧ z Rz
r3

[h, x] = x, [h, y] = x + y, [x, y] = 0 0 0 Rx ⊕Ry
r3,λ

[h, x] = x, [h, y] = λy, [x, y] = 0:
λ ∈ (−1,1], λ �= 0 0 0 Rx ⊕Ry
λ = −1 0 Rx ∧ y Rx ⊕Ry
λ = 0 Ry 0 Rx
r′

3,λ , λ� 0
[h, x] = λx − y, [h, y] = x + λ, [x, y] = 0 0 0 Rx ⊕Ry
su(2) 0 0 su(2)

sl(2,R) 0 0 sl(2,R)

1. All Lie bialgebra structures on L = g × Kt are coboundary and determined by a Lie bialgebra structure
on g, denoted by δg(x) = adx(r), with r ∈ Λ2g satisfying [r, r] ∈ (Λ3g)g, and a biderivation D : (g, δg) →
(g, δg), which is necessarily of the form adH with H ∈ Ker δg . The cobracket on L is given by

δ(x) = adx(r) + [H, x] ∧ t = adx(r − H ∧ t)

for any x ∈ g and δ(t) = 0. Since we may choose t up to scalar multiple, the element H may be modified
by a nonzero scalar without changing the isomorphism class of the Lie bialgebra.

2. Assume in addition that (g, δg) is (almost) factorizable, δg(x) = adx(r) with r given by a BD-data, i.e.
a Cartan subalgebra h, simple roots �, a BD-triple (Γ1,Γ2, τ ) and a continuous parameter with skew
symmetric component λ ∈ Λ2h, with rΛ as in Eq. (3). Then H ∈ Ker δg if and only if H ∈ h and τα(H) =
α(H) for all α ∈ Γ1 .

Example 3.7. Lie bialgebra structures on gl(2,R) = sl(2,R) ×Rt . Let δ be any Lie bialgebra structure on
sl(2,R), which is a simple Lie algebra, δ = ∂r. From [7], we know that there are factorizable, almost
factorizable and triangular structures on sl(2,R). Let {x,h, y} be the usual basis of sl(2,R).

Case 1. If r = h ∧ x, then Hr = 2x (which is not a regular, but a nilpotent element). We get that
ah +bx+ cy commutes with x if and only if a = c = 0, so BiDer(sl(2,R)) = Radx . In particular,
(sl(2,R), r) is a triangular Lie bialgebra.

Case 2. If r = x ∧ y then Hr = h, then every biderivation is a multiple of adh in this case. In particular,
(sl(2,R), r) is a factorizable Lie bialgebra.

Case 3. If r = h ∧ (x + y) then Hr = x − y is semisimple non-diagonalizable. One can easily check that
every biderivation is a multiple of adx−y . In particular, (sl(2,R), r) is an almost factorizable
(non-factorizable) Lie bialgebra.

Hence, we obtain the following description.

Corollary 3.8. An exhaustive list of isomorphism classes of Lie bialgebra structures on gl(2,R) = sl(2,R)×Rt
is given as follows.

(a) With nonzero cobracket on sl(2,R):
1. Let r = ±h ∧ x if D = 0, or r = ±(h ∧ x + x ∧ t) if D �= 0; in particular, (gl(2,R), r) is a triangular Lie

bialgebra.
2. Let r = βx ∧ y if D = 0, or r = β(x ∧ y + h ∧ t) if D �= 0, β ∈ R+; in particular, (gl(2,R), r) is a

factorizable Lie bialgebra.
3. Let r = αh ∧ (x + y) if D = 0, or r = α(h ∧ (x + y) + (x − y) ∧ t) if D �= 0, α ∈ R \ {0}; in particular,

(gl(2,R), r) is an almost factorizable Lie bialgebra.
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(b) With zero cobracket on sl(2,R) we have BiDer(sl(2,R)) = Der(g), then there are three nontrivial iso-
morphism classes and, in each of them, there is a unique derivation up to the action of sl(2,R). In each
case, (gl(2,R), r) is a triangular Lie bialgebra.

1. If D = ad X̃ with X̃ nonzero nilpotent, conjugated to x, then r = x ∧ t.
2. If D = adH̃ with H̃ semisimple diagonalizable, conjugated to any non-negative multiple of h, then

r = h ∧ t or zero.
3. If D = adŨ with Ũ semisimple non-diagonalizable, conjugated to any multiple of x − y, then r =

(x − y) ∧ t.

Remark 3.9. If g is a simple Lie algebra, then any Lie bialgebra structure on g is either triangular or
(almost) factorizable. If g is a semisimple Lie algebra, then any Lie bialgebra structure on it may be
triangular, (almost) factorizable or none on them, depending on the situation in each component.

Remark 3.10 (Dimension of the space of solutions). Let L = g×K · t , with g a semisimple Lie algebra, and
suppose that (g, δg) is (almost) factorizable such that δg = ∂rΛ , with rΛ of BD-form, then Corollary 3.6
applies. For each BD-triple (Γ1,Γ2, τ ), [2] gives the dimension of the space of solutions of the skew
symmetric component of all possible continuous parameters λ ∈ Λ2h, namely k(k−1)

2 if k = |� \ Γ1|.
Besides, there are |Γ1| amount of equations for the possible H ∈ h such that τα(H) = α(H) for all
α ∈ Γ1; this gives in addition |� \ Γ1|; hence, the set of pairs (λ, H) is an affine space of dimension
k(k−1)

2 + k = k(k+1)
2 for each BD-triple. Since we may choose t up to scalar multiple, this dimension is,

indeed, one unit less.

Example 3.11. The r-matrices corresponding to all the (almost) factorizable Lie bialgebra structures
on real forms of complex simple Lie algebras are given in [1]. This, together with the techniques
explained in this section, gives an exhaustive list of Lie bialgebra isomorphism classes on real Lie
algebras of the form s× V , with s a real form of a complex simple Lie algebra with a given (almost)
factorizable structure. For instance, u(n) = su(n) ×R, u(p,q) = su(p,q) ×R.

Example 3.12. The classification of the Lie bialgebra structures on three-dimensional real Lie algebras,
both in the (almost) factorizable and in the triangular case, is given in [7]. This, combined with the
results of this section, provides all the Lie bialgebra isomorphism classes on real Lie algebras of shape
g× V , with g any three-dimensional real Lie algebra such that Zg = 0 and (Λ2g)g = 0. For instance,
su(2), sl(2,R), r3, r3,λ , with 0 �= λ ∈ (−1,1], and r′3,λ satisfy the hypothesis, so Theorem 3.3 applies
for L= g×R. However, among them there may be some repetitions, since in general we do not have
[g,g] = g if g is solvable.

3.1. Abelian extensions with dim V > 1

If dim V > 1, there are more possibilities than D = 0 or D �= 0; we can stratify them by the
dimension of the image of D. If the image of a linear map D : V ∗ → BiDer(g) is d0-dimensional,
0 � d0 � d, consider a basis {t1, . . . , td} of V and the corresponding dual basis {t∗

1, . . . , t∗
d} of

V ∗ such that {t∗
d0+1, . . . , t∗

d} is a basis of KerD, namely, D1, . . . , Dd0 are linearly independent and

Dd0+1 = · · · = Dd = 0. The condition [Di, D j] = ∑d
k=1 ci j

k Dk = ∑d0
k=1 ci j

k Dk determines uniquely ci j
k for

k = 1, . . . ,d0 in terms of the constant structures of the Lie algebra Im(D) ⊆ BiDer. In the case (g, δg)

semisimple and factorizable, we know that BiDer(g, δg) ⊆ h (Theorem 2.12), which is abelian, so the
general Theorem 3.3 specializes in the following result:

Proposition 3.13. Let g be a semisimple Lie algebra over K, V = K
d, the abelian Lie algebra of dimension d.

Consider L = g × V the trivial abelian extension of the Lie algebra g by V . If δ :L → Λ2L is a Lie bialgebra
structure on L such that (g, δg) is an (almost) factorizable Lie bialgebra, δg(x) = adx(r) for all x ∈ g, with r
given by a BD-data h, �, (Γ1,Γ2, τ ), λ ∈ Λ2h, then, there exists a basis {t1, . . . , td} of V and H1, . . . , Hd0 ∈ h

linearly independent elements (d0 � d) satisfying
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α(Hi) = τα(Hi) ∀α ∈ Γ1, i = 1, . . . ,d0,

such that for all x ∈ g

δ(x) = δg(x) +
d0∑

i=1

[Hi, x] ∧ ti = adx

(
r −

d0∑
i=1

Hi ∧ ti

)

and a Lie coalgebra structure δV : V → Λ2 V satisfying

δV t1 = · · · = δV td0 = 0.

Remark 3.14. In the notation of the above theorem, if d0 = d then δV ≡ 0. Notice that if dim V > 1,
the structure on L is coboundary if and only if δV ≡ 0, which was already predicted in item 2
of Lemma 1.5. The examples with δV �= 0 were not covered in [3], since this work considers only
coboundary structures.

Notice that the election of the Hi appearing in the theorem above depends on a choice of a basis
for the complement of Ker(D) ⊂ V ∗ . If one fixes a complement (of dimension d0 in the notations
of the theorem), then the action of GL(d0,K) acts on the set of basis of this complement, so we
see that GL(d0,K) acts on the set of d0-uples (H1, . . . , Hd0) in the obvious way, without changing
the isomorphism class of the Lie bialgebra L. The case d0 = 1 is Corollary 3.6. The following is an
example for dim V = 2.

Example 3.15. Suppose that L = g × V is a product of a semisimple Lie algebra g and an abelian
Lie algebra V with dim V = 2; write V = 〈t1, t2〉; then the Lie bialgebra structures on L are of three
possible types:

1. If D= 0 then L = g× V is a product Lie bialgebra, i.e.

δ(x + v) = δg(x) + δV (v)

for any x ∈ g, v ∈ V . For any fixed Lie bialgebra structure δg on g, there are two isomorphism
classes, namely, δV = 0, or δV �= 0, which is the unique non-coabelian two-dimensional Lie coal-
gebra.

2. If ImD= KD �= 0, then

δ(x) = δg(x) + [H, x] ∧ t1, δt1 = 0, δt2 = at1 ∧ t2

with δg a Lie cobracket on g and H ∈ Ker(δg). Changing H by a nonzero scalar multiple, the
isomorphism class of the Lie bialgebra does not change. We may also assume a = 0 or 1. Notice
that if a = 1 then the cobracket is not coboundary.

3. If ImD= KD1 ⊕KD2 of dimension two, Di = adHi , i = 1,2, then

δ(x + v) = δg(x) + [H1, x] ∧ t1 + [H2, x] ∧ t2 + δV (v)

for any x ∈ g, v ∈ V , with the following restrictions: there exists c = 0,1 such that [H1, H2] = cH1
and the Lie coalgebra structure δV is given by δV t1 = ct1 ∧ t2, δV t2 = 0. Notice that if the Lie
bialgebra structure δg on g is factorizable, then c = 0 and hence δ is coboundary.
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Example 3.16 (Cremmer–Gervais). Consider L = gl(n,K) = sl(n,K) ×K with K = R or C. Fix the Car-
tan subalgebra h of traceless diagonal matrices and the factorizable Lie bialgebra structure on sl(n,C)

given by an r-matrix r with r + r21 = Ω and skew symmetric component obtained from the discrete
parameter Γ1 = {α1, . . . ,αn−2}, Γ2 = {α2, . . . ,αn−1} and τ (αi) = αi+1, 1 � i � n − 2, and any corre-
sponding λ ∈ Λ2h. As it was proved in [1], this BD-data on sl(n,C) gives place to a factorizable Lie
bialgebra structure on sl(n,R), considered as its split form via the usual sesquilinear involution, if
and only if λ ∈ Λ2

C
(h) ∩ Λ2

R
sl(n,R) = Λ2

R
(hR), if we denote by hR the Cartan subalgebra of sl(n,R)

consisting of traceless real diagonal matrices.
The equations

α(H) = (τα)(H)

for all α ∈ Γ1, H ∈ h, form a system of n −2 equations in the n −1 variables which are the coefficients
of H in the basis {Hα1 , . . . , Hαn−1} of h; hence the space of solutions has dimension one. In fact, we
knew by other means that the regular element

Hr := [ , ](rΛ) =
∑

α∈Φ+
Hα

lies in Ker(δ), since D = [ , ] ◦ δ = adHr is a biderivation, in virtue of Propositions 2.2 and 2.9. As
a consequence, all biderivations of (g, r) are scalar multiples of adHr . On the other hand, analogous
result holds in the real case, if we consider the subspace of hR of real solutions. Notice that Hr =
[ , ](rΛ) ∈ sl(n,R).

Both in the complex and in the real case, we conclude that there are exactly two isomorphism
classes of Lie bialgebra on L such that L/V = (g, r), given explicitly by

δ1(x + v) = δg(x) + D(x) ∧ t = adx(r) + [Hr, x] ∧ t

and

δ2(x + v) = δg(x) = adx(r).

Example 3.17. Let L = gl(4,C) = sl(4,C)×C and L0 = gl(4,R) = sl(4,R)×R, denote also g = sl(4,C)

and g0 = sl(4,R). Let � = {α,β,γ } be a choice of simple roots with respect to a root system for a
given Cartan subalgebra h of g. Recall that a basis of root vectors of g is

B = {xα, xβ, xγ , xα+β, xβ+γ , xα+β+γ , x−α, x−β, x−α−β, x−β−γ , x−α−β−γ } ∪ {hα,hβ,hγ },

the Cartan matrix is A =
( 2 −1 0

−1 2 −1
0 −1 2

)
and the Dynkin diagram is .

In case of the empty BD-triple, all H ∈ h are solutions of τα(H) = α(H). In the following table, we
list (up to isomorphism of the Dynkin diagram) all possible nontrivial discrete parameters for sl(4,C)

and generators of the space of solutions {H ∈ h: α(H) = (τα)(H) ∀α ∈ Γ1}. Notice that h = Zg(H0)

(see Proposition 2.7), i.e. the initial Cartan subalgebra coincides with the centralizer of the regular
element H0 = [ , ](rΛ) explicitly given by

H0 = 3hα + 4hβ + 3hγ =
∑

α∈Φ+
Hα.
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Γ1 and Γ2 are subsets of � represented by the black roots.

H0, H1 = hα + hγ H0, H2 = hα + hβ H0

Indeed, we knew that the regular element H0 lies in Ker(δ) for δ coming from any choice of BD-
triple, because D = [ , ] ◦ δ = −adH0 is a biderivation, in virtue of Propositions 2.2 and 2.9, and it is
independent of the BD-triple by inspection.

On the other hand, for the real case, H0 = [ , ](rΛ) ∈ sl(4,R), then in particular, h0 := Zg0 (H0) is
a (real) Cartan subalgebra of g0. For each data, it is only left to find the generators of the real space
of solutions of τα(H) = α(H) for all H ∈ h0. Notice

dimR

{
H ∈ h0: α(H) = (τα)(H) ∀α ∈ Γ1

} = dimC

{
H ∈ h: α(H) = (τα)(H) ∀α ∈ Γ1

}
,

i.e. this real space is a real form of the complex space of solutions of the same equations viewed in h.

Example 3.18 (A non-triangular, non-factorizable and not coboundary example). Consider g = su(2) ×
sl(2,R), L = g × R

2, {u1, u2, u3} a basis of su(2) with brackets [ui, u j] = ∑
k εi jkuk , where ε is the

totally antisymmetric symbol, and {h, x, y} the standard basis of sl(2,R). There are no nontrivial
triangular structures in su(2) (see [7]); moreover, all Lie bialgebra structures on su(2) are almost fac-
torizable and isomorphic to some positive multiple of the coboundary associated to u1 ∧ u2. On the
other hand, there are nontrivial triangular structures in sl(2,R), all of them isomorphic to the cor-
responding to ±h ∧ x. So, let us fix r = u1 ∧ u2 + h ∧ x ∈ Λ2g and δg(w) = adw(r), for all w ∈ g. In
order to list all isomorphism classes of Lie bialgebra structures on L = g × R

2, we need to compute
BiDer(g, δg). Let

Hr = [−,−](r) = [u1, u2] + [h, x] = u3 + 2x

thus, by Corollaries 2.10 and 2.5, we know that

BiDer(g, δg) ∼= Ker δg ⊆ {
w ∈ g: [w, Hr] = 0

}
.

For any w = u + s ∈ su(2)× sl(2,R), we get [w, Hr] = 0 ⇔ [u, u3] = 0 and [s, x] = 0. We conclude that
BiDer(g, δg) is 2-dimensional, with basis {adu3 ,adx}. In order to determine all possible Lie bialgebra
structures on L one may proceed as in Example 3.15. We illustrate it showing only one possibility.
Choose {t1, t2} a basis of R2; if one defines

δ(w) = adw(r) + [w, c1u3 + c2x] ∧ t1, δt1 = 0, δt2 = t1 ∧ t2

for any c1, c2 ∈ R, then this structure is not coboundary, since δ|R2 �= 0. We remark also that all
non-coboundary structures on L, such that induce δg on g, are of this form.
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