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Abstract

A general analytical–numerical approach developed for the dynamical analysis of unsymmetrically laminated plates of general quad-
rilateral planforms is presented in this work. An arbitrary quadrilateral thin flat laminate is mapped onto a square basic one, so that a
unique macro-element is constructed for the whole plate. The Ritz method is applied to evaluate the governing equation in which the
coupling effects of bending and stretching are contained. All possible transverse boundary conditions combining with the different in-
plane constraints are considered in the analysis. The resulting algorithm possesses great flexibility, it is easy to program and it needs
minimal input information. For these reasons, the proposed methodology results convenient for large scale structural design and analysis
where repeated calculations are often required.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fibre-reinforced composite laminates are very impor-
tant in many engineering applications. In addition to their
high strength/light-weight, another important advantage of
composite laminates is that structural properties can be tai-
lored through changing the fibre angle and/or the number
and sequence of plies. Particularly, laminated plates of dif-
ferent shapes made of advanced fibre-reinforced composite
materials have many excellent advantages and are widely
used as high-performance structural components. The
accurate and efficient determination of the natural vibra-
tion frequencies and mode shapes of laminated plates com-
ponents are essentials to the design and performance
evaluation of a mechanical system. Moreover, the plate res-
onant frequencies and vibration mode shapes are often
0263-8223/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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used to establish the dynamic response of complex engi-
neering systems.

General angle-ply laminated plates exhibit various cou-
pling effects, such as stretching–bending, stretching–shear
and bending–twisting couplings, due to the anisotropy of
the individual lamina and unsymmetrical layering [1]. Exis-
tence of these couplings and the general quadrilateral plate
formulation are the source of analytical difficulties and of
complicated mathematical structures for the boundary con-
ditions making difficult the exact analysis for even the sim-
plest cases. Consequently, most studies on these laminates
employ approximate analytical or numerical methods.

A deep revision among the references about free vibra-
tion of thin unsymmetrically laminated composite plates
reveals that most papers are concerned with rectangular
plates (see e.g. [2–7]). Only limited literature can be found
for unsymmetrically laminated plates of general quadrilat-
eral shapes. In this topic, for instance, Liew and Lim [8]
and Lim et al. [9] investigated the free vibration of trapezoi-
dal multi-layered laminates with different combinations of
boundary conditions using two-dimensional orthogonal
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polynomials as the trial functions in the Ritz method. For
the study of free vibration of skew laminates Wang [10]
used B-spline Rayleigh–Ritz method, while Krishna Reddy
and Palaninathan [11] used a general high precision trian-
gular plate bending finite element.

In general, it is observed that the Rayleigh–Ritz method
has had a frequent application because of its high accuracy
and relatively small computational cost, mainly related
with the use of only one single super element in the whole
process. The fundamental difficulty associated with the
Ritz method in complex laminates is the choice of suitable
functions to approximate the deflected shape. In a previous
paper [12] the authors developed a general algorithm based
on the Ritz method in conjunction with natural coordi-
nates to express the geometry of laminated plates of general
quadrilateral shapes in a simple form. That methodology
was limited to the analysis of symmetrically laminated
composite plates, where only the bending–twisting cou-
pling needed to be included. In view of the aforementioned
limitation, the present work has been undertaken to extend
the mentioned algorithm to embrace laminates with
unsymmetrical layering. The procedure involves the refor-
mulation of the use of the geometric natural-to-Cartesian
mapping concept in the Rayleigh–Ritz method including
the effect of the bending–stretching coupling and the differ-
ent transverse boundary conditions combining with four
kinds of in-plane constraints. The general algorithm
obtained offers much simplicity and automation in dealing
with general laminated plates of several quadrilateral
geometries and boundary conditions. It does not require
any mesh discretization and it needs only very minimal
input data for computations. Besides, the value of the ana-
lytical solution obtained here is that it allows getting
insight into the behaviour on complex laminated plates.

To show the accuracy and the correctness of the pre-
sented method, convergence tests are carried out for several
selected plate problems and, when it is possible, some
results are compared with those published by other
authors.

The algorithm developed can be applied to the analysis
of a wide range of laminates with different shapes, aspect
ratios, boundary conditions, number of layers, stacking
sequences and angles of fibre orientation. The number of
parameters is too high and the possibility of combination
among them is infinite. For these reasons natural frequen-
cies and nodal patterns of free vibration are presented for
selected representative cases which can also be useful as
benchmark comparison for future investigations in this
topic.

2. Formulation

2.1. Energy functional components

Consider a flat, thin arbitrary-shaped quadrilateral fibre
reinforced composite laminated plate of uniform thickness
h as shown in Fig. 1a. The plane x–y is placed at the middle
surface of the plate thickness, while z remains normal to it.
In each layer of the laminate b denotes the angle of fibre
orientation and the major and minor principal material
axes are denoted by L and T, respectively. In consequence,
the material constants are denoted by EL, ET, mLT and GLT.

The fundamental displacements are the three mid-sur-
face translational displacements u, v and w along the x, y

and z directions, respectively. It is necessary that the two
in-plane mid-surface translational displacements u and v

are included in the analysis due to the coupling between
in-plane and out-of-plane behaviour in laminates with
unsymmetrical layup. Assuming that the Kirchhoff hypoth-
esis holds, the translational displacements �u;�v; �w, at a gen-
eral point in the laminate are given by:

�uðx; y; z; tÞ ¼ uðx; y; tÞ � z
owðx; y; tÞ

ox
;

�vðx; y; z; tÞ ¼ vðx; y; tÞ � z
owðx; y; tÞ

oy
;

�wðx; y; z; tÞ ¼ wðx; y; tÞ;

ð1Þ

where t is the time dimension.
During free vibration, the displacements are assumed

split in the spatial and temporal parts, being the last one
periodic in time; i.e.,

uðx; y; tÞ ¼ Uðx; yÞ sin xt;
vðx; y; tÞ ¼ V ðx; yÞ sin xt; wðx; y; tÞ ¼ W ðx; yÞ sin xt;

ð2Þ

where x is the radian natural frequency.
Taking into account Eq. (2), the maximum strain energy

of the unsymmetrically laminated plate can be written as
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1
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Fig. 1. (a) Geometry of a quadrilateral laminated plate in Cartesian coordinate system and (b) square parent domain in natural coordinate system.
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where Aij, Bij and Dij (i, j = 1, 2, 6) denote the stretching,
stretching–bending coupling and bending stiffness coeffi-
cients, respectively [1,13] and R is the mid-surface area
(Fig. 1a).

The maximum kinetic energy for free vibrations of the
plate is given by

T max ¼
qhx2

2

ZZ
R

ðU 2 þ V 2 þ W 2Þdxdy; ð4Þ

where q is the material density which is considered here to
be uniform through the volume of the laminate.
2.2. Mapping technique and energy functional

Some authors have used the mapping technique, as
commonly employed in finite element analysis, in con-
junction with other methods to study the dynamical
behaviour of plates of various geometrical shapes, see
for instance Ref. [14–19]. In all of these cases isotropic
plates were considered. More recently, Nallim et al. [12]
combined the mapping technique and the Ritz method
to derive the eigenfrequency equation of symmetrically
laminated plates. This methodology is extended and gen-
eralized here to be applied to unsymmetrically laminated
plates.

The geometric mapping of a curvilinear quadrilateral
region in the Cartesian x–y plane (Fig. 1a) is accomplished
from a square parent domain �1 6 n 6 1 and �1 6 g 6 1
in the natural n–g plane (Fig. 1b), using the coordinate
transformation:

x ¼
Xnp

i¼1

Niðn; gÞxi; y ¼
Xnp

i¼1

N iðn; gÞyi; ð5Þ

where (xi,yi), i = 1, . . . ,np are the coordinates of np points
on the boundary of the quadrilateral region R and Ni(n,g)
are the interpolation functions [20].

Applying the chain rule of differentiation it can be
shown that the first and the second derivatives of a func-
tion are related by
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where J is the Jacobian o(x,y)/o(n,g), |J| is the determinant
of this Jacobian matrix and the elements of the matrices
[Op(1)] and [Op(2)] are given in Appendix A.

The elemental area dx dy in the Cartesian domain R is
transformed into |J|ndg. Consequently, the maximum
kinetic energy expression given by Eq. (4) reduce to:

T max ¼
hqx2

2

Z 1
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where now U = U(n,g), V = V(n,g) and W = W(n,g).
Finally, substitution of the derivatives given by Eq. (6)

into Eq. (3) leads to the following expressions for the max-
imum strain energy

Umax ¼ U ð1Þmax þ U ð2Þmax þ U ð3Þmax ð8Þ

where U ð1Þmax contains the terms that correspond to the in-
plane effects, U ð2Þmax those that correspond to the in-plane
and out-of-plane coupling effects and U ð3Þmax is the part of
the strain energy that involves the bending and the twisting
effects. Each one of these strain energies is given by the fol-
lowing expressions
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where A�i ¼A�i ðn;gÞ;ði¼1; . . . ;10Þ, B�j ¼ðn;gÞ;ðj¼1; . . . ;20Þ
and D�k¼ðn;gÞ;ðk¼1; . . . ;15Þ are functions that depend on
the problem parameters, i.e., plate geometry and material
properties, and are defined in Appendix B.

The energy functional for free vibration of the plate is
given by:

F ¼ U max � T max; ð10Þ

which is to be minimized according to the Ritz principle, as
will be discussed in Section 3.

2.3. Boundary conditions and approximating functions

The situation for unsymmetrically laminated plates is
more complex than for symmetric ones because the trans-
verse and in-plane vibrations are coupled. Actually, there
are four types of boundary conditions that can be called
simply supported (S), clamped (C) or free edges (F) [21].
The various combinations of these constraints are summa-
rized in Table 1.

In the application of the Ritz method only the essential
boundary conditions are required to be satisfied by the
assumed functions [22]. The fact that the natural boundary
conditions need not be satisfied by the chosen coordinate
functions is a very important characteristic of the Ritz
method, specially when dealing with problems for which
these satisfaction is very difficult to achieve [23,24].

The use of beam orthogonal polynomials to study aniso-
tropic plates is very satisfactory, as has been demonstrated
through some works [12,25,26] since the procedure has a
quick convergence to the solution and takes place practi-
cally without oscillations. For this reason, in the present
paper the three field displacement components are
expressed in terms of the natural coordinates system by sets
of beam characteristic orthogonal polynomials, fpðuÞi ðnÞg,
fqðuÞj ðgÞg, fp

ðvÞ
i ðnÞg, fq

ðvÞ
j ðgÞg, fp

ðwÞ
i ðnÞg and fqðwÞj ðgÞg, as

Uðn; gÞ � U MN ðn; gÞ ¼
XM

i¼1

XN

j¼1

cðuÞij pðuÞi ðnÞq
ðuÞ
j ðgÞ; ð11aÞ

V ðn; gÞ � V MN ðn; gÞ ¼
XM

i¼1

XN

j¼1

cðvÞij pðvÞi ðnÞq
ðvÞ
j ðgÞ; ð11bÞ

W ðn; gÞ � W MN ðn; gÞ ¼
XM

i¼1

XN

j¼1

cðwÞij pðwÞi ðnÞq
ðwÞ
j ðgÞ; ð11cÞ

where cðuÞij , cðvÞij and cðwÞij are the unknown coefficients, and M

and N are the numbers of polynomials in each natural
coordinate.

The procedure for the construction of the orthogonal
polynomials has been developed by Bhat [27,28]. The first
members of the sets, pð�Þ1 ðnÞ and qð�Þ1 ðgÞð�Þ ¼ u; v;w are
obtained as the simplest polynomials that satisfy all the
geometrical boundary conditions of the plate in their
respective n and g-directions. The higher members of each
set are constructed by employing the Gram–Schmidt
orthogonalization procedure. The coefficients of the poly-
nomials are chosen in such a way as to make the polynomi-
als orthonormal.

It is important to point out that working with the master
element in natural coordinates allows us to use the same
sets of orthogonal polynomials for plates of different
shapes. This fact makes possible a unified treatment.
3. Application of the Ritz method for the study of free

vibration

The Ritz method is applied to determine analytical
approximate solutions for general laminated plates of differ-
ent shapes. For the dynamical analysis the Ritz procedure
requires the minimization of the energy functional (Eq.
(10)) with respect to each of the cðuÞij , cðvÞij and cðwÞij coefficients

oF

ocðuÞij

¼ 0;
oF

ocðvÞij

¼ 0;
oF

ocðwÞij

¼ 0; ði; j ¼ 1; . . . ;M ;NÞ

ð12Þ

Substituting Eqs. (11a)–(11c) into the expressions for
Umax (Eq. (8)) and Tmax (Eq. (7)), and subsequently apply-
ing Eq. (12) result in the following governing eigenvalue
equation:



Table 1
Notations for various combinations of boundary conditions, in which n and s indicate the directions normal and tangential to the respective plate edges

Transverse boundary supports In-plane constraints

un = 0, us = 0 Nn = 0, us = 0 un = 0, Nns = 0 Nn = 0, Nns = 0

Clamped: w = 0; ow/on = 0 C1 C2 C3 C4

Simply supported: w = 0; Mn = 0 S1 S2 S3 S4

Free: Mn = 0; oMns/os + Qn = 0 F1 F2 F3 F4

L.G. Nallim, S. Oller / Composite Structures 85 (2008) 311–325 315
ðK� x2MÞfCg ¼ f0g: ð13Þ
In Eq. (13), K is the stiffness matrix, M is the mass matrix
and {C} is the unknown coefficient vector, and are respec-
tively given by

K ¼
½Kuu� ½Kuv� ½Kuw�

½Kvv� ½Kvw�
symm ½Kww�

24 35 ð14aÞ

M ¼
½Muu� ½0� ½0�

½Mvv� ½0�
symm ½Mww�

24 35 ð14bÞ

fCg ¼
fcðuÞg
fcðvÞg
fcðwÞg

8<:
9=; ð14cÞ

where the elements of these matrices are,
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im ¼ drpðuÞi

dnr
dspðwÞm

dns ; Quwrs
jn ¼

drqðuÞj

dgr

dsqðwÞn

dgs
;

P vvrs
im ¼

drpðvÞi

dnr
dspðvÞm

dns ; Qvvrs
jn ¼

drqðvÞj

dgr

dsqðvÞn

dgs
;

P vwrs
im ¼ drpðvÞi

dnr
dspðwÞm

dns ; Qvwrs
jn ¼

drqðvÞj

dgr

dsqðwÞn

dgs
;

P wwrs
im ¼ drpðwÞi

dnr
dspðwÞm

dns ; Qwwrs
jn ¼

drqðwÞj

dgr

dsqðwÞn

dgs
;

r; s ¼ 0; 1; 2



Fig. 2. Laminated plates of (a) general quadrilateral planform, (b) trapezoidal planform, (c) skew planform and (d) rhomboidal planform.
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Eq. (13) yields an eigenvalue determinant, whose zeros
give the natural frequencies of the plate. Back substitution
yields the coefficient vectors; and finally substitution of
these coefficient vectors into Eq. (11) gives the correspond-
ing free vibration mode shapes.

4. Verification of the formulation and its numerical

applications

4.1. General description

The variational algorithm developed in this paper was
programmed and used for the free vibration analysis of
unsymmetrically laminated thin plates having different
shapes, geometric parameters, stacking sequences, material
properties and boundary conditions. The examples consid-
ered in this study are confined to laminates with layers of
equal thickness, even though the procedure was formulated
for plies with arbitrary thickness.

Let us introduce the terminology to be used throughout
the remainder of the paper for describing the boundary
conditions of the considered plates. The designation CiSi-

FiSi, for example, identifies a plate with edges (1) clamped,
(2) simply supported, (3) free and (4) simply supported (see
Fig. 2), the subscript i (i = 1, . . . , 4) identifies the in-plane
constraints according to Table 1. The reference flexural
stiffness is Db = ELh3/12(1 � mLTmTL) and the results are
presented for a representative high modulus graphite/
epoxy material having each laminae elastic properties EL/
ET = 40; GLT/ET = 0.5 and mLT = 0.25.

The main purposes of the numerical applications pre-
sented in this section are twofold. One is to demonstrate
the accuracy, the flexibility and the efficiency of the pro-
posed method and the other is to produce some results
which may be regarded as benchmark solutions for other
academic research workers and design engineers.

4.2. Validation and convergence studies

In order to evaluate the accuracy and reliability of the
present method, comparison and convergence studies are
carried out in this section. Convergence studies have been
undertaken for simply supported (S2S2S2S2), fully clamped
(C1C1C1C1), cantilever (F4F4F4C1) and for C3S3C3S3 gen-
eral quadrilateral laminated plates with a/b = 2 (Fig. 2a).
Two layer laminates (in this case in-plane stretching effects
are more important) with a width-thickness a/h = 1000 are
considered. Results for antisymmetric angle-ply (30�/�30�)
laminated plates are given in Table 2. The number of poly-
nomials in each natural coordinate for u, v and w are
stepped steadily from 6 to 12 to demonstrate the downward
convergence of the first eight no dimensional frequency
parameters Xi ¼ xia2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
. It can be seen that the

eigenfrequencies converge monotonically from above as



Table 2
Convergence of frequency parameters X ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
for general quadrilateral angle-ply (30�/�30�) graphite/epoxy plates (a/b = 2, h/a = 0.001)

M � N X1 X2 X3 X4 X5 X6 X7 X8

S2S2S2S2

6 � 6 31.327 54.395 70.445 97.240 115.548 137.559 147.174 181.248
7 � 7 31.266 54.255 70.006 94.603 114.142 135.206 142.983 169.465
8 � 8 31.213 54.171 69.842 94.330 113.360 134.373 139.487 165.261
9 � 9 31.173 54.134 69.715 94.147 113.219 134.611 138.865 163.449
10 � 10 31.140 54.104 69.613 94.128 113.088 134.537 138.519 163.183
11 � 11 31.112 54.080 69.528 94.117 113.014 134.505 138.500 162.930
12 � 12 31.089 54.061 69.457 94.110 112.954 134.482 138.485 162.906

C1C1C1C1

6 � 6 45.505 79.021 97.883 124.339 146.878 171.814 184.440 217.912
7 � 7 45.392 79.490 97.121 123.365 145.582 171.265 178.549 209.197
8 � 8 45.344 79.397 97.951 123.252 145.948 170.587 177.495 206.356
9 � 9 45.320 79.369 97.880 123.945 145.182 170.082 176.846 205.641
10 � 10 45.305 79.353 97.844 123.911 145.995 170.953 176.044 204.852
11 � 11 45.297 79.344 97.826 123.903 145.924 170.910 176.849 204.236
12 � 12 45.292 79.338 97.815 123.901 145.886 170.892 176.822 204.076

F4F4F4C1

6 � 6 2.8963 9.1009 15.993 27.095 36.035 45.279 60.738 70.460
7 � 7 2.8857 8.9957 15.912 26.816 35.721 44.852 60.172 68.407
8 � 8 2.8770 8.9385 15.866 26.774 35.610 44.691 59.062 67.620
9 � 9 2.8709 8.9030 15.841 26.748 35.549 44.604 59.018 67.533
10 � 10 2.8661 8.8792 15.825 26.730 35.510 44.555 58.982 67.502
11 � 11 2.8623 8.8631 15.815 26.717 35.484 44.522 58.965 67.482
12 � 12 2.8591 8.8517 15.807 26.706 35.466 44.500 58.953 67.469

C3S3C3S3

6 � 6 38.701 64.461 91.873 104.481 134.183 166.778 168.978 207.459
7 � 7 38.627 64.252 91.006 102.484 130.632 155.746 166.459 189.537
8 � 8 38.577 64.150 90.961 101.703 129.835 152.688 163.003 181.470
9 � 9 38.541 64.089 90.924 101.592 129.367 150.685 162.879 179.664
10 � 10 38.515 64.046 90.908 101.570 129.228 150.424 162.722 178.213
11 � 11 38.496 64.014 90.896 101.562 129.128 150.315 162.709 178.067
12 � 12 38.481 63.990 90.887 101.558 129.056 150.299 162.703 177.940
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the increase of the number of terms of the trial functions.
In general, 10–12 terms of the trial functions can give suf-
ficiently satisfactory results for first eight eigenfrequencies.

The accuracy and reliability of the results obtained with
the present approach are next demonstrated by comparing
them with some selected values published by other
researchers for unsymmetrically laminated trapezoidal
and skew plates.

The comparison presented in Table 3, authenticates the
validity of the present method for antisymmetric laminated
plates with symmetric trapezoidal planform h1 = h2 (see
Fig. 2b). The first eight non-dimensional frequencies
xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
for F4F4F4C1 two-ply (30�/�30�) and four-

ply (30�/�30�/30�/�30�) antisymmetric laminated graph-
ite–epoxy plates are compared with those of Liew and
Lim [8], and very good agreement is obtained.

The second example verifies the accuracy of the eigen-
values for thin skew fibre reinforced antisymmetric angle-
ply (45�/�45�/45�/�45�) plates and cross-ply (90�/0�/90�/
0�) plates. The plate geometry is defined by means of a, b

and a as shown in Fig. 2c. The material properties of each
lamina correspond to graphite/epoxy and two skew angles,
i.e., a = 30�, 45� are used for the comparisons. The first
eight non-dimensional frequencies X̂i ¼ ðxia2=hp2Þ
ffiffiffiffiffiffiffiffiffiffiffi
q=ET

p
obtained with the present approach for fully clamped
(C1C1C1C1), are compared with the solutions of Wang
[10] in Table 4, and excellent agreement is achieved
between both solutions.

From the convergence analysis and the comparisons
performed it is clear that M, N = 10 produces no drastic
change in the solutions compared with M, N = 11 � 12.
Therefore, in the next section it was decided to use M,
N = 10 to generate results with sufficient accuracy from
an engineering viewpoint.

4.3. Numerical results and discussion

The developed Ritz formulation is applied in this section
to obtain the natural frequencies of free vibration and
modal shapes of general rhomboidal laminated plates as
shown in Fig. 2d. The planform geometries of these plates
are defined by means of the aspect ratio b/a, while bound-
aries having different combinations of in-plane and/or
transverse constraints are analyzed. The non-dimensional
frequency parameter is given by Xi ¼ xia2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
, and

results are presented for the representative high modulus



Table 3
Frequency parameters X ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
for cantilever (F4F4F4C1) trapezoidal laminated graphite/epoxy plates (a/b = 1, h1 = h2, h/a = 0.001)

c/b Sources X1 X2 X3 X4 X5 X6 X7 X8

(30�/�30�)
0.25 Present (10 � 10) 2.0616 8.5508 9.7945 22.189 23.319 25.712 40.875 44.525

Present (11 � 11) 2.0616 8.5507 9.7943 22.188 23.318 25.711 40.872 44.524
Ref. [8] 2.0616 8.5506 9.7942 22.187 23.318 25.710 40.870 44.523

0.50 Present (10 � 10) 1.7646 6.1301 9.2878 16.288 17.378 25.533 32.120 33.098
Present (11 � 11) 1.7646 6.1298 9.2873 16.288 17.377 25.529 32.118 33.098
Ref. [8] 1.7645 6.1297 9.2871 16.288 17.376 25.528 32.118 33.097

0.75 Present (10 � 10) 1.5955 4.6155 8.8041 11.516 14.701 22.791 24.550 26.828
Present (11 � 11) 1.5954 4.6151 8.8018 11.515 14.700 22.791 24.539 26.826
Ref. [8] 1.5954 4.6153 8.8028 11.516 14.701 22.791 24.543 26.827

1.0 Present (10 � 10) 1.4803 3.6343 7.4610 9.5804 12.898 15.907 21.513 25.532
Present (11 � 11) 1.4800 3.6339 7.4574 9.5792 12.897 15.907 21.507 25.520
Ref. [8] 1.4803 3.6351 7.4611 9.5805 12.901 15.907 21.513 25.524

(30�/�30�/30�/�30�)
0.25 Present (10 � 10) 3.2045 13.123 14.897 33.815 33.821 39.900 62.762 64.676

Present (11 � 11) 3.2044 13.123 14.896 33.815 33.819 39.897 62.757 64.676
Ref. [8] 3.2044 13.123 14.896 33.815 33.819 39.896 62.754 64.673

0.50 Present (10 � 10) 2.7513 9.4506 14.142 23.701 26.434 39.829 46.550 48.559
Present (11 � 11) 2.7512 9.4503 14.141 23.701 26.432 39.816 46.550 48.551
Ref. [8] 2.7512 9.4502 14.141 23.701 26.432 39.815 46.549 48.551

0.75 Present (10 � 10) 2.4896 7.1546 13.200 17.319 22.197 31.929 37.994 41.241
Present (11 � 11) 2.4895 7.1541 13.192 17.318 22.195 31.929 37.962 41.229
Ref. [8] 2.4895 7.1545 13.195 17.319 22.196 31.929 37.971 41.229

1.0 Present (10 � 10) 2.3083 5.6722 10.961 14.882 18.916 23.060 33.168 36.314
Present (11 � 11) 2.3077 5.6716 10.950 14.878 18.914 23.059 33.150 36.269
Ref. [8] 2.3083 5.6740 10.959 14.881 18.922 23.060 33.161 36.274

Table 4
Frequency parameters bX ¼ xa2=ðp2hÞ

ffiffiffiffiffiffiffiffiffiffiffi
q=ET

p
for fully clamped (C1C1C1C1) skew angle-ply and cross-ply graphite/epoxy plates (a/b = 1, h/a = 0.001)

a Sources bX1
bX2

bX3
bX4

bX5
bX6

bX7
bX8

(45�/�45�/45�/�45�)
30� Present (10 � 10) 4.8793 8.3836 11.123 12.563 16.341 17.469 20.082 22.503

Present (11 � 11) 4.8793 8.3836 11.123 12.563 16.341 17.469 20.081 22.502
Ref. [10] 4.8889 8.4053 11.1461 12.5901 16.3995 17.5057 20.1206 22.5803

45� Present (10 � 10) 6.9426 11.052 15.615 16.637 20.828 22.808 26.845 29.697
Present (11 � 11) 6.9424 11.052 15.615 16.636 20.828 22.807 26.084 29.686
Ref. [10] 6.9564 11.0782 15.6482 16.6786 20.8790 22.9147 26.9540 30.0230

(90�/0�/90�/0�)
30� Present (10 � 10) 4.8604 8.6618 11.102 12.512 17.091 17.290 20.270 22.656

Present (11 � 11) 4.8604 8.6618 11.102 12.511 17.091 17.290 20.270 22.656
Ref. [10] 4.8701 8.6801 11.1241 12.5388 17.1424 17.3294 20.2977 22.7235

45� Present (10 � 10) 6.9429 11.051 15.615 16.640 20.827 22.806 26.844 29.697
Present (11 � 11) 6.9427 11.051 15.615 16.638 20.827 22.805 26.842 29.686
Ref. [10] 6.9564 11.0782 15.6482 16.6786 20.8790 22.9147 26.9540 30.0230
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graphite/epoxy material. To have better insight about the
effect of different fibre orientation angle (b) and number
of layers (Nc) on the dynamic properties of these general
rhomboidal (b/a = 1) antisymmetric angle-ply laminated
plates, the variations of the first two free vibration coeffi-
cients (X1 and X2) are plotted in Figs. 3 and 4. Two bound-
ary conditions have been included, S3S3S3S3 in Fig. 3 and
F4F4F4C1 in Fig. 4. Many others aspect ratios and bound-
ary condition have been studied, but the corresponding
results are not included for brevity purposes. In general,
it is observed that for all analyzed boundary conditions
and aspect ratios, the first two frequency coefficients are
minimums for the number of layers (Nc) equal to 2. When
Nc P 4, the Xi (i = 1, 2) values are considerably different
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Fig. 3. Effect of fibre orientation and lamination sequence on the first two vibration frequency coefficients for S3S3S3S3 graphite/epoxy rhomboidal plates
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from those of Nc = 2. By keeping the total thickness con-
stant, if the number of layers is increased, the frequency
coefficients increase. This is due to the reduction in the cou-
pling stiffness terms B16 and B26. Results for Nc = 20
symmetric lamination were also included in Figs. 3 and 4
and it is observed that, even for many layers, the influence
of the stacking sequences is meaningful. Furthermore, it is
important to point out that the way of variation of the fun-
damental frequency is rather different from the way in
which varies the frequency that corresponds to the second
mode of vibration. This situation occurs for all analyzed
boundary conditions and should be specially kept in mind
when specific requirements of design that involve at the
first or the second vibration modes exist.
Finally, Figs. 5 and 6 show the first five nondimensional
free vibration frequencies xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qh=Db

p
of arbitrarily lami-

nated graphite/epoxy rhomboidal plates and their corre-
sponding nodal patterns (b/a = 0.5 in Fig. 5, b/a = 1 in
Fig. 6). Three boundary conditions i.e. S1S1S1S1,
C1F4F4F4, C2S2C2S2 and three stacking sequences i.e.
(45�/�45�), (30�/�30�), (0�/45�) are considered in each fig-
ure. It is shown that the variation in the frequency coeffi-
cients is noticeable for the different stacking sequences,
especially between (0�/45�) laminated plates and the anti-
symmetric angle-ply ones. In arbitrarily laminated plates
all the stretching–bending couplings Bij(i, j = 1, 2, 6) are
different from zero and it is observed that the frequency
parameters are higher in these cases.
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5. Concluding remarks

A simple, computationally efficient and accurate formu-
lation has been developed for the study of the free vibra-
tion of arbitrarily laminated composite plates. The
methodology is based on the Ritz method and on the clas-
sical laminated plate theory, and uses natural coordinates
to express the geometry of different laminates in a simple
form. The transverse deflection and the in-plane stretching
deformation of the plate are approximated by sets of char-
acteristic orthogonal polynomials generated using the
Gram–Schmidt procedure. The algorithm developed is very
general and allows taking into account a great variety of
geometrical shapes, material properties and combinations
of boundary conditions.

From the convergence studies and the comparisons with
results available in the literature it is observed that the
approach presented is reliable and accurate. Sets of numer-
ical results are given in tabular and graphical form illustrat-
ing the influence of different number of layers, fibre



Fig. 5. First five non-dimensional frequency parameters Xi ¼ xia2
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ði ¼ 1; . . . ; 5Þ, modal shapes and nodal patterns for general rhomboidal two-

layered plates with b/a = 0.5.
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stacking sequences and edge conditions on the natural fre-
quencies and nodal patterns of a selection of laminated
plates. Besides, all applications demonstrate that the pres-
ent technique is accurate and efficient. Its flexibility offers
the clear possibility of varying the parameters involved in
the problem in a relatively simple way. Consequently it
constitutes an efficient tool for the determination of natural
frequencies so much in design problems as in optimization
problems. Finally, it is important to point out that the
method presented can be easily modified to be applied to
static deflection problems.

Appendix A

Matrices included in the second derivatives of displace-
ment field

The matrices [Op(1)] and [Op(2)] that appear in Eq. (6)
are as follow:



Fig. 6. First five non-dimensional frequency parameters Xi ¼ xia2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
ði ¼ 1; . . . ; 5Þ, modal shapes and nodal patterns for general rhomboidal two-

layered plates with b/a = 1.
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½Opð1Þ� ¼
a1 a2 �a3

b1 b2 �b3
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;

where

a1 ¼ J 2
22; a2 ¼ J 2

12; a3 ¼ 2J 12J 22

b1 ¼ J 2
21; b2 ¼ J 2

11; b3 ¼ 2J 11J 21

c1 ¼ J 21J 22; c2 ¼ J 11J 12; c3 ¼ J 11J 22 þ J 12J 21

a1 ¼ �J 11;nJ 22 þ J 12;nJ 21 a2 ¼ �J 21;gJ 22 þ J 22;gJ 21;

a3 ¼ J 11;gJ 22 � J 22;nJ 21

b1 ¼ J 11;nJ 12 � J 12;nJ 11; b2 ¼ J 21;gJ 12 � J 22;gJ 11;

b3 ¼ �J 11;gJ 12 þ J 22;nJ 11
Appendix B

Functions included in the strain energy
After substitution of Eq. (6) into Eq. (3) one obtains the

maximum strain energy as a function of the derivatives of
the displacements U, V and W with respect to the natural
coordinates n, g. The factors of these derivatives depend
on the geometrical and mechanical characteristics of the
plates, and are given by

A�1 ¼ A11a1 � 2A16c1 þ A66b1

A�2 ¼ A11a2 � 2A16c2 þ A66b2
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biai � 2B66

X3

i¼1

ciai

 !!

B�10 ¼ 2
ffiffiffiffiffi
a2

p �B11

X3

i¼1

aibi � B12

X3

i¼1

bibi þ 2B16

X3

i¼1

cibi

 ! 

þ
ffiffiffiffiffi
b2

p
B16

X3

i¼1

aibi þ B26

X3

i¼1

bibi � 2B66

X3

i¼1

cibi

 !!

B�11 ¼ 2
ffiffiffiffiffi
a1

p ðB16a1 þ B26b1 � 2B66c1Þ þ
ffiffiffiffiffi
b1

p
ð�B12a1 � B22b1

�
þ2B26c1Þ

�
B�12 ¼ 2

ffiffiffiffiffi
a1

p ðB16a2 þ B26b2 � 2B66c2Þ þ
ffiffiffiffiffi
b1

p
ð�B12a2 � B22b2

�
þ2B26c2Þ

�
B�13 ¼ 2

ffiffiffiffiffi
a2

p ð�B16a1 � B26b1 þ 2B66c1Þ þ
ffiffiffiffiffi
b2

p
ðB12a1 þ B22b1

�
�2B26c1Þ

�
B�14 ¼ 2

ffiffiffiffiffi
a1

p ð�B16a3 � B26b3 þ 2B66c3Þ þ
ffiffiffiffiffi
b1

p
ðB12a3 þ B22b3

�
�2B26c3Þ

�
B�15 ¼ 2

ffiffiffiffiffi
a2

p ð�B16a2 � B26b2 þ 2B66c2Þ þ
ffiffiffiffiffi
b2

p
ðB12a2 þ B22b2

�
�2B26c2Þ

�
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B�16 ¼ 2
ffiffiffiffiffi
a2

p ðB16a3 þ B26b3 � 2B66c3Þ þ
ffiffiffiffiffi
b2

p
ð�B12a3 � B22b3

�
þ2B26c3Þ

�
B�17 ¼ 2

ffiffiffiffiffi
a1

p
B16

X3

i¼1

aiai þ B26

X3

i¼1

biai � 2B66

X3

i¼1

ciai

 ! 

þ
ffiffiffiffiffi
b1

p
�B12

X3

i¼1

aiai � B22

X3

i¼1

biai þ 2B26

X3

i¼1

ciai

 !!

B�18 ¼ 2
ffiffiffiffiffi
a1

p
B16

X3

i¼1

aibi þ B26

X3

i¼1

bibi � 2B66

X3

i¼1

cibi

 ! 

þ
ffiffiffiffiffi
b1

p
�B12

X3

i¼1

aibi � B22

X3

i¼1

bibi þ 2B26

X3

i¼1

cibi

 !!

B�19 ¼ 2
ffiffiffiffiffi
a2

p �B16

X3

i¼1

aiai � B26

X3

i¼1

biai þ 2B66

X3

i¼1

ciai

 ! 

þ
ffiffiffiffiffi
b2

p
B12

X3

i¼1

aiai þ B22

X3

i¼1

biai � 2B26

X3

i¼1

ciai

 !!

B�20 ¼ 2
ffiffiffiffiffi
a2

p �B16

X3

i¼1

aibi � B26

X3

i¼1

bibi þ 2B66

X3

i¼1

cibi

 ! 

þ
ffiffiffiffiffi
b2

p
B12

X3

i¼1

aibi þ B22

X3

i¼1

bibi � 2B26

X3

i¼1

cibi

 !!
D�1 ¼ D11a2

1 þ D22b2
1 þ 2D12a1b1 � 4D16a1c1 � 4D26b1c1

þ 4D66c2
1

D�2 ¼ D11a2
2 þ D22b2

2 þ 2D12a2b2 � 4D16a2c2 � 4D26b2c2

þ 4D66c2
2

D�3 ¼ 2ðD11a1a2 þ D22b1b2 þ D12ðb1a2 þ b2a1Þ � 2D16ðc2a1

þ c1a2Þ � 2D26ðb2c1 þ b1c2Þ þ 4D66c1c2Þ

D�4 ¼ D11a2
3 þ D22b2

3 þ 2D12a3b3 � 4D16a3c3 � 4D26b3c3

þ 4D66c2
3

D�5 ¼ 2ð�D11a3a1 � D22b3b1 � D12ðb1a3 þ b3a1Þ þ 2D16ða1c3

þ c1a3Þ þ 2D26ðb3c1 þ b1c3Þ � 4D66c3c1Þ

D�6 ¼ 2ð�D11a2a3 � D22b3b2 � D12ðb3a2 þ b2a3Þ þ 2D16ðc3a2

þ c2a3Þ þ 2D26ðb3c2 þ b2c3Þ � 4D66c3c2Þ

D�7 ¼ 2 D11a1

X3

i¼1

aiai þ D22b1

X3

i¼1

biai

 

þD12 a1

X3

i¼1

biai þ b1

X3

i¼1

aiai

 !

�2D16 a1

X3

i¼1

ciai þ c1

X3

i¼1

aiai

 !

�2D26 b1

X3

i¼1

ciai þ c1

X3

i¼1

biai

 !
þ 4D66c1

X3

i¼1

ciai

!

D�8 ¼ 2 D11a2

X3

i¼1

aibi þ D22b2

X3

i¼1

bibi

 

þD12 a2

X3

i¼1

bibi þ b2

X3

i¼1

aibi

 !

�2D16 a2

X3

i¼1

cibi þ c2

X3

i¼1

aibi

 !

�2D26 c2

X3

i¼1

bibi þ b2

X3

i¼1

cibi

 !
þ 4D66c2

X3

i¼1

cibi

!

D�9 ¼ 2 D11a1

X3

i¼1

aibi þ D22b1

X3

i¼1

bibi

 

þD12 a1

X3

i¼1

bibi þ b1

X3

i¼1

aibi

 !

�2D16 a1

X3

i¼1

cibi þ c1

X3

i¼1

aibi

 !

�2D26 c1

X3

i¼1

bibi þ b1

X3

i¼1

cibi

 !
þ 4D66c1

X3

i¼1

cibi

!

D�10 ¼ 2 D11a2

X3

i¼1

aiai þ D22b2

X3

i¼1

biai

 

þD12 a2

X3

i¼1

biai þ b2

X3

i¼1

aiai

 !

�2D16 a2

X3

i¼1

ciai þ c2

X3

i¼1

aiai

 !

�2D26 c2

X3

i¼1

biai þ b2

X3

i¼1

ciai

 !
þ 4D66c2

X3

i¼1

ciai

!

D�11 ¼ 2 �D11a3

X3

i¼1

aiai � D22b3

X3

i¼1

biai

 

�D12 a3

X3

i¼1

biai þ b3

X3

i¼1

aiai

 !

þ2D16 a3

X3

i¼1

ciai þ c3

X3

i¼1

aiai

 !

þ2D26 c3

X3

i¼1

biai þ b3

X3

i¼1

ciai

 !
� 4D66c3

X3

i¼1

ciai

!

D�12 ¼ 2 �D11a3

X3

i¼1

aibi � D22b3

X3

i¼1

bibi

 

�D12 a3

X3

i¼1

bibi þ b3

X3

i¼1

aibi

 !

þ2D16 a3

X3

i¼1

cibi þ c3

X3

i¼1

aibi

 !

þ2D26 c3

X3

i¼1

bibi þ b3

X3

i¼1

cibi

 !
� 4D66c3

X3

i¼1

cibi

!
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D�13 ¼ D11

X3

i¼1

aiai

 !2

þ D22

X3

i¼1

biai

 !2

þ 2D12

X3

i¼1

biai

�
X3

i¼1

aiai � 4D16

X3

i¼1

ciai

X3

i¼1

aiai � 4D26

X3

i¼1

b0ia
0
i

�
X3

i¼1

c0ia
0
i þ 4D66

X3

i¼1

c0ia
0
i

 !2

D�14 ¼ D11

X3

i¼1

aibi

 !2

þ D22

X3

i¼1

bibi

 !2

þ 2D12

X3

i¼1

bibi

�
X3

i¼1

aibi � 4D16

X3

i¼1

cibi

X3

i¼1

aibi � 4D26

X3

i¼1

bibi

�
X3

i¼1

cibi þ 4D66

X3

i¼1

cibi

 !2

D�15 ¼ 2 D11

X3

i¼1

aiai

X3

i¼1

aibi þ D22

X3

i¼1

biai

X3

i¼1

bibi

 

þD12

X3

i¼1

bibi

X3

i¼1

aiai þ
X3

i¼1

biai

X3

i¼1

aibi

 !

�2D16

X3

i¼1

cibi

X3

i¼1

aiai þ
X3

i¼1

ciai

X3

i¼1

aibi

 !

�2D26

X3

i¼1

bibi

X3

i¼1

ciai þ
X3

i¼1

biai

X3

i¼1

cibi

 !

þ4D66

X3

i¼1

ciai

X3

i¼1

cibi

!
where Aij, Bij, Dij (i, j = 1, 2, 6) are the conventional lami-
nate stiffness coefficients and ai, bi, ci, ai, bi, (i = 1, . . . , 3)
are defined in Appendix A.
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