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bstract

A recently developed technique to estimate effectiveness factor in catalytic pellets [J.C. Gottifredi, E.E. Gonzo, On the effectiveness factor
alculation for a reaction-diffusion process in an immobilized biocatalyst pellet, Biochem. Eng. J. 24 (2005) 235–242] is used to greatly simplify
he simulation of membrane biocatalyst reactors. The whole problem is reduced to well-known plug flow packed bed reactor after an appropriate
efinition of an effectiveness factor (η) that takes into account chemical consumption in the catalytic region and mass transfer resistances of the
eactive component. A standard R–K routine can then be applied since, at each mesh point, η is calculated through a non-linear algebraic equation.

Results produced with this procedure compare fairly well with previous findings. Moreover some experimental results of kinetics studies related
ith enzyme immobilization are used to simulate membrane hollow fiber reactors and conversion, concentrations and η profiles along reactor axial

osition.

The procedure can be applied to any biocatalytic system provided a single chemical reaction takes place although the kinetic expression can be
rbitrary.

2007 Elsevier B.V. All rights reserved.
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. Introduction

An increasing interest related to the use of purified enzymes
s biocatalysts in laboratory and industrial scale is being devel-
ped as a new group of technologies suitable to fill the growing
eeds of more safe chemical processes [1–4]. Since 1971,
hen Rony [5,6], suggested “immobilizing” enzyme within the

pongy matrix of hollow fiber membranes, several techniques to
mmobilize the enzyme in the hollow fiber, as well as, suitable
eactor were presented [3,7,8].

Asymmetric hollow fiber membranes provide a suitable sup-
ort for enzyme immobilization. These reactors are usually
onformed by a bundle of tubes. The spongy matrix structure,
here enzymes are supported, is confined between tube imper-

eable walls and a very thin skin – around 5 �m thick – of dense

olymer or porous ceramic which allows reactive and products
ass transfer but being impermeable to enzyme large molecules.

∗ Corresponding author.
E-mail address: gottifre@unsa.edu.ar (J.C. Gottifredi).
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he resulting reaction region where conversion takes place by
atalytic action is usually 70 �m thick. Thus chemicals must
iffuse from the stream flow to the reaction zone and products
ack to the stream trough the dense polymer or ceramic barrier.
s a consequence several mass transfer series resistances must
e considered with simultaneous chemical reaction to simulate
eactor behavior.

In this type of reactors, although conversion increases along
he axial position under steady-state conditions, the reaction only
akes place in the spongy region causing a concentration radial
radient of the key reactive component that must be balanced
y the diffuse radial flux at the wall of the lumen region. As a
onsequence the simulation of reactor behavior requires, at each
xial position, the estimation of the key component consumption
n the spongy region. Thus a non-linear second order differen-
ial equation defined by boundary values must be solved at each
xial position of the reactor. This is not an easy task even with

odern numerical techniques specifically when steep concentra-

ion profiles arise due to fast specific reaction rates. Moreover
ince the actual lumen concentration at the end of each step
ust be estimated the resulting non-linear differential equation

mailto:gottifre@unsa.edu.ar
dx.doi.org/10.1016/j.bej.2007.03.011
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Nomenclature

a distance from center tube to lumen–membrane
interface (Fig. 1) (m)

b distance from center tube to spongy
region–membrane interface (Fig. 1) (m)

B parameter defined by Eq. (4) (mol/m s)
C concentration (mol/m3)
C0 mixed cup concentration in the lumen (mol/m3)
C* dimensionless concentration defined by Eq. (11b)
d tube radius (Fig. 1) (m)
Def effective diffusivity (m2/s)
Fo key component entrance molar feed rate (mol/s)
K partition coefficient
kL liquid phase mass transfer coefficient (m/s)
Km Michaelis–Menten kinetic parameter (Eq. (22))

(mol/m3)
L reactor length (m)
P dimensionless parameter defined by Eq. (17)
r radial coordinate (m)
R intrinsic reaction rate (mol/m3 s)
R* dimensionless rate of reaction (see Eq. (11))
RV spongy region to total reactor volume ratio
Vm maximum rate of Michaelis–Menten equation

(see Eq. (22)) (mol/m3 s)
x reactor radial coordinate (m)
X key component reaction conversion
z reactor axial coordinate (m)

Greek letters
α parameter given by (b/d)
δ parameter defined by Eq. (19)
η effectiveness factor defined by Eq. (13)
φ Thiele modulus defined by Eq. (12)
φ* modified Thiele modulus defined by Eq. (17)
ρ parameter defined by Eq. (18)
σ parameter defined by Eq. (19)
Ω bioreactor total cross section (m2)

Subscripts
a denotes concentration at r = a
am denotes concentration in equilibrium at r = a
b denotes concentration at r = b
bm denotes concentration in equilibrium at r = b
m denotes diffusivity in the skin membrane
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Superscript
0 denotes concentration at reactor entrance (z = 0)

ust be solved more than once at each point grid of the axial
osition.

A number of attempts have been reported in the literatures

9–14] to find a close solution of the resulting design equations.
owever, the intrinsic nonlinearity of the governing mass bal-

nce differential equation for the key species in the system does
ot permit an analytical solution. Therefore a numerical method

a
i
t
m
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ust be applied to solve the system, which cannot be easily
pplied, especially for the effectiveness factor calculation in the
pongy biocatalyst region where the reaction rate takes place.

Waterland et al. [13] obtained the exact analytical expres-
ion for substrate concentration profile through an idealized fiber
ssuming first order biocatalytic kinetic reaction. The resulting
xpression, however, is not suitable for straightforward calcula-
ions; therefore a numerical technique, based on finite difference,
as also been used in their contribution to account for non-linear
inetic expressions. Kim and Cooney [21] presented a close solu-
ion strictly valid when the reaction kinetics is well described
y a first order irreversible expression. In the last years several
ontributions have been presented among which Jayaraman and
ulkarni [11] can be cited. After defining an effectiveness factor
ased on lumen concentration at the wall, the authors solved the
roblem as a linear Graetz model but where one of the boundary
ondition (at the wall) is function of reactor position. Thus a
olterra type integro differential equation was generated by the
uperposition principle which was solved numerically step by
tep along the reactor. However, in each step the flux at the wall
ue to reaction must be evaluated which requires the numeri-
al solution of the diffusion reaction differential equation. More
ecently, Cabrera et al. [9] used Green’s functions to obtain the
eneral solution of the mass balance differential equations. The
erived integral equations had to be numerically solved on an
pproximately transformed coordinate system. Uniform rect-
ngular grids on the original coordinate system were used to
olve the equations. Sousa and Mendes [12] presented a new
umerical scheme using orthogonal collocation together with an
ndependent variable transformation (spatial coordinate) to solve
he model equations associated with catalytic membrane reac-
ors. The new scheme is claimed to avoid the imprecise results
btained when traditional numerical methods such as finite dif-
erences with equispaced intervals or orthogonal collocation are
sed.

The purpose of this contribution is to show that a previous
rocedure recently presented by the authors [15], is a power-
ul and appropriate tool to overcome all numerical problems
ssociated with instabilities and stiffness of the non-linear dif-
usion reaction differential equation. Instead a truly algebraic
pproach is used at each point of the axial coordinate of a
lug flow steady-state reactor to simulate the performance of
n actual biocatalytic reactor as shown below. Numerical con-
ersion values are compared with previous findings showing
xcellent agreement. Finally the reactor performances of real
ystems, with potential industrial interest, are simulated to show
eactor behavior through concentration profiles in each region
nd the resulting effectiveness factor evolution along the axial
oordinate.

. Hollow fiber bioreactor model

A conventional hollow fiber bioreactor is considered in this

nalysis. A schematic representation of the reactor is shown
n Fig. 1. Reactants are fed through the inner tube (known as
he lumen) from where they can diffuse through the thin skin

embrane to the outer annular region (spongy matrix) where
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Fig. 1. Schematic representation of the hollow fiber reactor.

he reaction occurs with the enzyme biocatalyst therein. The
hin skin membrane being permeable to reactants and products
ut impermeable to the high molecular weight enzyme. Products
iffuse back through the membrane to the lumen and flows with
he bulk stream.

The model under steady-state and isothermal regime is based
n the following assumptions:

1) Reactor geometry is cylindrical.
2) No radial convection in the thin membrane and the spongy

matrix.
3) Single catalytic reaction occurs in the spongy matrix

(A + B ↔ Products).
4) Skin membrane is inert and the reaction occurs only in the

spongy matrix.
5) Constant effective diffusion coefficients in the membrane

and spongy region.
6) When dense membrane (non-porous polymer) is consid-

ered, partition coefficients at both membrane faces are
constant.

7) At r = d, an impermeable wall exist.

Thus, the governing equation for the inert membrane (see
ig. 1) can be written as:

Defm

r

d

dr
r

dC

dr
= 0, a ≤ r ≤ b (1)

here Defm and C denote effective diffusion coefficient and con-
entration of the key component in the membrane, respectively.
q. (1) must be integrated with boundary conditions:

= Ca r = a, C = Cb r = b (2)

Solving differential equation (1), the mass balance can be
onveniently written in the following fashion:

L(C0 − Ca)2πa dz = Defm(Ca − Cb)

a ln(b/a)
2πa dz

= ηR(b)π(d2 − b2) dz (3)

here η is the effectiveness factor for the spongy matrix region,
(b) the intrinsic reaction rate per unit spongy matrix volume,
valuated at r = b, (C = Cb) and kL is the mass transfer coefficient

n the lumen, that will depend upon fluidynamic conditions.

By introducing:

= ηR(b)(d2 − b2) (4)

H

x
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nd taking into account Eq. (3), the unknown concentrations Ca

nd Cb can be calculated as

a = C0 − B

2kLa
(5)

b = C0 − B

2

[
1

kLa
+ ln(b/a)

Defm

]
(6)

The procedure can also be applied when the thin mem-
rane is a dense (non-porous) polymer. The concentration profile
s a function of the fiber radius will be discontinuous at the
umen–membrane and membrane–spongy region interfaces. The
quilibrium partition coefficients:

a = Cam

Ca

and Kb = Cbm

Cb

(7)

rovide the relation between interface concentration membrane
ide and lumen or spongy matrix side, respectively. In this case
he equation to estimate Ca (Eq. (5)) will be the same but:

am = KaCa and Cb = Ka C0 − B

2

[
Ka

kLa
+ ln(b/a)

Defm

]
(8)

Eqs. (5) and (6) or (5) and (8) must be used to simulate reac-
or performance and concentration profile calculation along the
eactor coordinate (z). Usually at each point along z, the non-
inear second order differential mass balance within the spongy

atrix must be numerically solved to estimate the flux and hence
arameter B. In this contribution an approximate procedure
ecently presented by the authors will be used.

To obtain η the dimensionless mass balance differential equa-
ion in the spongy matrix region:

1

x

d

dx
x

dC∗

dx
= φ2R∗(C∗) (9)

hould be solved subject to the following dimensionless bound-
ry conditions:

∗ = 1 at x = α and
dC∗

dx
= 0 at x = 1 (10)

here the following dimensionless variables were defined:

= r

d
, C∗ = C

Cb

, R∗(C∗) = R(C)

R(Cb)
(11)

nd

2 = d2R(Cb)

DefCb

(12)

enotes Thiele modulus while α = b/d
By definition:

=
∫ 1
α

R∗(C∗)x dx∫ 1
α

x dx
= 2

∫ 1
α

R∗(C∗)x dx

1 − α2 (13)
owever, from Eq. (9):

dC∗

dx

∣∣∣∣
1

α

= φ2
∫ 1

α

R∗(C∗)x dx (14)
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Now, taking into account conditions (10) and Eq. (14):

= − 2α

(1 − α2)φ2

dC∗

dx

∣∣∣∣
α

(15)

The matching expression proposed by Gottifredi et al. [16] is
sed to fit asymptotic expressions for large and small φ values:

= [φ∗2 + exp(−δ φ∗2)]
−1/2

(16)

here

∗ = φ

P
, P = 2α

1 − α2 ρ (17)

=
[

2
∫ 1

0
R∗(C∗)dC∗

]1/2

(18)

nd

= 1 − 2σ∗, σ∗ = −2R∗′
(1)α2

(1 − α2)3 ρ2
[

3

4
+ α4

4
− α2 + ln α

]
(19)

∗′
(1) denotes R*(C*) derivative evaluated at C* = 1. Effective-

ess factor calculation along reactor axial position can now be
arried out through a very simple and accurate algebraic routine
voiding the numerical solution of Eq. (9). It must be stressed
hat R*(C*) describes any arbitrary kinetic expression [15].

. Hollow fiber bioreactor simulation (design equation)

Using the heterogeneous one-dimensional model [17],
ccounting for interfacial, intra-membrane and intra-spongy
hase gradients, the key component conversion (X) over an
lementary bioreactor volume may now be written as

dX

dz
= Ωη(Cb)R(Cb)

RV

F◦ (20)

here Ω, RV and F◦ are the bioreactor total cross section, the
pongy region to total reactor volume ratio and the key compo-
ent entrance molar feed rate, respectively. It must be noticed
hat the appropriate definition of η allows dealing with a plug
ow homogeneous reactor. Since in η calculation the interphase
ass transfer coefficient kL and the driven force, difference

etween the mixing cup concentration C0 in the fluid phase
nd the concentration on the inert membrane Ca, is taken into
ccount.

This equation must be solved subject to the following condi-
ions:

0 = C0
0(X = 0) at z = 0 (21)
here

0 = C0
0(1 − X)

C0
0 denotes key component mixing cup concentration at the

eactor entrance. It should be stressed that Cb can only be found
hrough an algebraic trial and error procedure. So

t
t
c
p
i
a
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. Start at the reactor entrance. At this position it is assumed
Cb = C0

0.
. With Eq. (16), the effectiveness factor η is calculated since

all the parameters are known.
. With Eqs. (4)–(6), B, Ca and Cb are calculated (or either with

Eqs. (5) and (8)).
. With this value of Cb a correction is made with Eqs. (16),

(4), (5) and (6) (or Eqs. (5) and (8)).
. The whole procedure is repeated until two successive cal-

culations of Cb indicate the desired convergence has been
achieved.

. The next step of the Runge-Kutta procedure on Eq. (20) is
speeded up using the values of η, C◦, Ca and Cb found in the
previous step as first guess.

Therefore, the values of C0, Ca, Cb, η and X along the reactor
re obtained and the complete simulation of bioreactor done. As
an clearly be seen the numerical solution of the second order
on-linear differential mass balance (Eq. (9)), is avoided and
eplaced by an algebraic rapidly convergent method.

. Results and discussion

It must be stressed that the method developed in this contribu-
ion reduces the prediction of the membrane reactor performance
o a well-known plug flow reactor in which an algebraic equation

ust be solved in each step of the integration interval.
The usual problems associated with the numerical integration

f a non-linear second order differential equation, with boundary
alues, are completely overcome with an early procedure of the
uthors [15] applied to the specific geometry of a hollow fiber
ioreactor.

Jayaraman and Kulkarni [11] presented a numerical proce-
ure to predict the performance of a hollow fiber membrane
eactor assuming fully developed laminar flow in the core and

ichaelis–Menten expression to describe the catalytic kinetics
nto the spongy region. The final expression implies the numeri-
al solution of an integro differential equation (Volterra type)
ogether with the numerical integration, in each step, of the
ifferential mass balance equation (9). They claim that numeri-
al integration can be easily performed with standard shooting
ethod routines. This is only true when mild concentration pro-
les in the spongy region are met (i.e. φ is small). But even

n such a case the procedure of solving the reaction diffusion
quation at each step is quite time consuming. With our proce-
ure, instead, a non-linear algebraic equation must be solved at
ach step where, in all cases, the initial guess is nearby the true
olution.

Conversion profiles estimated with our simple procedure
re presented in Fig. 2 as continuous lines. Michaelis–Menten
inetic expression (see Eq. (22)) was used in this simulation with
wo values of Vm. Both curves reflect the influence of increasing
he rate of reaction while keeping the other parameter fixed. As

an be seen conversion increases as Vm increases at each axial
osition along the reactor although the slope clearly shows the
nfluence of the decaying driving force as reactive consumption
pproaches 90%. In the same Fig. 2, for comparison purposes,
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Fig. 2. Substrate concentration axial profiles. Conditions: (Km/C0
0) = 1;
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Fig. 3. Concentration profiles along the membrane reactor axial coordinate.
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/b = 1.5; Def/Defm = 10; kL = 10−4 m/s; F◦ = 7.85 × 10−10 mol/s. Upper curve:

m = 0.655 mol/m3 s (open symbols). Underneath Curve: Vm = 0.295 mol/m3 s
close symbols).

alues predicted by Jayaraman and Kulkarni [11] (circles) and
ith finite difference method (squares) are also shown. As can be

een our simple procedure is very accurate since no noticeable
ifferences are observed.

. Application

The procedure was also applied to simulate the behavior of
relevant industrial process performed in membrane reactors.
rioli and Giorno [2] mentioned this type of reactor in the case
f industrial production of lactic acid using biocatalysts.

Hooijmans et al. [18] carried out experiments for determining
he intrinsic kinetic parameters of an agarose-gel immobi-
ized oxygen consuming enzyme: l-lactate 2-monooxygenase.
he reaction rate on the enzyme is well described by
ichaelis–Menten kinetics since oxygen is the sole rate limiting

ubstrate:

(C) = Vm C

Km + C
(22)

The kinetic parameters values obtained at 37 ◦C for the reac-
ion:

H3–CHOH–COOH + O2→ CH3–COOH + CO2+H2O

re Vm = 6 × 10−2 mol/m3 s, Km = 0.05 mol/m3

Authors [18] also reported oxygen effective diffusivity
n the agarose support (Def = 2.3 × 10−9 m2/s). To perform
he reactor performance simulation a number of assump-
ions have been introduced: oxygen effective diffusivity in
he skin (Defm = 3 × 10−10 m2/s), geometry reactor param-
ters (a = 1 × 10−4 m; b = 1.05 × 10−4 m; d = 1.75 × 10−4 m,
= 0.2 m), liquid flow rate (Q = 1.57 × 10−9 m3/s). Thus a

eynolds number of around 10 results with a pressure drop of
0 kPa. A film mass transfers coefficient (kL) of 4.4 × 10−5 m/s
as assumed, after Hooijmans et al. [19]. The initial oxygen

oncentration was 0.7 mol/m3.

l
t
t
c

ig. 4. Effectiveness factor and conversion along the membrane bioreactor.

Bulk oxygen concentration profiles in the lumen (C0), at the
kin–lumen interface (Ca) and skin–spongy interface (Cb) as
redicted with our procedure are presented in Fig. 3. It is clearly
een that concentration ratios (C0/Ca, C0/Cb) increases along
he reactor axial position to sustain oxygen consumption in the
pongy region although Cb is also decaying. As a consequence
hile conversion increases η, as a global effectiveness reac-

ion factor, decreases along the reactor flow coordinate. This
s clearly shown in Fig. 4 where η and conversion results are
lotted as function of z. In this particular case the reaction rate is
mall in comparison with rate of oxygen diffusion in the spongy
egion. Nevertheless η decreases as driving force for the whole
rocess decreases because it was defined as a global coefficient
aking into account concentration depletion between bulk and
pongy interfaces.

. Conclusions

A simple, rigorous and accurate procedure to simulate a hol-

ow fiber membrane biocatalytic reactor has been proposed. With
he introduction of an appropriate definition of an overall effec-
iveness factor, that takes into account the effect of the chemical
onsumption as well as mass transfer resistances, mass balance
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f key component in the reactor is reduced to the well-known
lug flow packed bed catalytic reactor [17].

It can be applied to any biocatalytic system provided the
inetic behavior can be described by a single chemical reac-
ion although there is no limitation regarding the complexity of
he resulting kinetic expression. The usual instabilities and stiff-
ess associated with the numerical solution of the non-linear
econd order, boundary values, differential equation [20] are
ompletely overcome with the proposed procedure since η is
stimated through an algebraic equation.

The outcoming results expressed in terms of conversion pro-
les along the reactor show a fair agreement with previous
ndings obtained by numerical solution of the reaction diffusion
quation in the spongy region where the catalyst is immobilized.

A biocatalytic reaction system previously investigated to
tudy enzyme immobilization were used to simulate a hollow
ber reactor assuming some geometrical parameters but with
inetic parameters reported in the contribution [18]. Membrane
eactor simulation takes a few seconds and conversion profiles
an be easily generated as function of reactor axial coordinate.

The effect of mass transfer resistances can also be seen by
lotting the concentration profiles at each boundary of the hollow
ber and also the corresponding effectiveness factor values. It
hows that radial mass transfer rates decrease along the reactor
hich causes a similar effect on the overall effectiveness factor.
his behavior does not match with the usual plug flow packed
ed reactor where η increases with conversion along the reactor.

It is expected that the present contribution will be useful to
nalyze and simulate membrane biocatalytic reaction both for
esearch and scale up purposes even in those cases where the
atalyst is not uniformly distributed in the spongy region [15].
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