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The aim of this paper is to propose a new way to measure the efficiency of the proper

orthogonal decomposition (POD) to construct a reduced-order model in Structural

Dynamics. It investigates the efficiency of three reduced-order models for a vibroimpact

problem: (1) PODdir-basis, which is the basis constructed using the direct method of the

the snapshot method of the POD; and (3) LIN-basis, which is the basis composed by the

normal modes of the associated linear (LIN) conservative system. The efficiency is

measured in terms of (1) number of elements to represent the dynamics with a given

precision and (2) computational cost to simulate the time response within a given

precision.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we deal with a problem of infinite-dimension and we want to construct appropriate finite dimension
subspaces to capture the essential features of the dynamics, in the following when we use the word basis it refers to the basis
of the approximation subspace. The strategy is to fix the error of the approximation and to look for bases that will give
approximations of the solution within the error previously fixed.

The proper orthogonal decomposition (POD), also called Karhunen–Lo�eve decomposition (KLD) [1,2], is increasingly used
to construct reduced-order models in Structural Dynamics [3–6]. It is able to capture the coherent structures of a linear or
nonlinear dynamics, and the POD-basis is the best basis in the sense that if one fixes the dimension of approximation
subspace it gives the minimal error, considering all subspaces of same dimension, to represent the dynamical response of a
mechanical system [1,2]. Note that this condition of optimality does not assure that the reduced-order model constructed
with the POD-basis will run the simulation (time integration) faster than another reduced-order model. It is only assured that
the error, among all the subspaces of same dimension, will be the smallest. This is a point that is not usually remarked and will
be further depicted in this paper.

For linear dynamical systems, the normal modes of the associated linear (LIN) conservative system have information
about the dynamics; LIN-basis is the basis generated by a set of normal modes. It should be noticed that the approximation
can be very inefficient if the wrong modes are chosen. The modes that are important for the dynamics in analysis should be
carefully chosen, so that the LIN-basis can be efficient. For nonlinear dynamical systems the LIN-basis computed from some
linearization might not be so effective.
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On the other hand, POD-basis is able to capture, in a compact form, most of the phenomenon of interest (linear or nonlinear
dynamics, for example). One characteristic of the POD-basis is its sensitivity to load conditions. In other words, if the POD-
basis is computed for a given level of excitation in a nonlinear problem, and then it is used to represent the dynamics of the
same system for a higher level of excitation, probably the results will not be satisfactory since the characteristics of the
dynamics change.

There are few works that compare the efficiency between LIN-basis and POD-basis for nonlinear dynamical systems [7,8].
In none of these works the analysis took into account the time needed to perform the time-integration procedure. In [7] a
comparison among LIN-basis, Lanczos-basis, and POD-basis is made for the nonlinear dynamics of a wind turbine; POD-basis
has performed better. In [8] it has been shown that POD-basis and LIN-basis present similar results, for the six nonlinear
problems analyzed. To focus the attention on the results of the reduced-order models, a very simple mechanical system is
considered in the numerical analysis. Nevertheless, this system has impacts, which induces local discontinuities. An analysis
of model reduction using POD-basis for the dynamics of a vibroimpact system is done in [9,10].

This paper is organized as follows. The model obtained using the finite element method is presented in Section 2, then, in
Section 3, the reduced-order models are introduced. The convergence criterion is given in Section 4, and the numerical results
are discussed in Section 5. Finally, the concluding remarks are made in Section 6.
2. Finite element approximation

Consider the system of a bar with axial displacement field, u, sketched in Fig. 1.
The dynamics of the bar used in the analysis is given by the following equation:

rA
q2uðx,tÞ

qt2
þc1

quðx,tÞ

qt
þc2

q3uðx,tÞ

qtqx2
�EA

q2uðx,tÞ

qx2

¼ dðx�LÞf ðtÞþdðx�LÞfimpðuðL,tÞÞ, (1)

with boundary conditions uðx,tÞjx ¼ 0 ¼ 0 and EAquðx,tÞ=qxjx ¼ L ¼ 0 (the bar is fixed at x=0 and free at x=L). Where A is the
cross-sectional area, E is the elasticity modulus, r is the density, c1 and c2 are the damping coefficients, f is the applied force
per unit length, and fimp is the impact force. The Dirac-delta function dðx�LÞ, for our propose here, can be defined as being
equal to zero everywhere except at x=L and is constrained to satisfy

R L
0 dðx�LÞ ¼ 1; a rigorous definition needs distribution

theory. The external forces are applied on the boundary x=L and are written as

f ðtÞ ¼ Af sinð2pof tÞ, (2)

where Af is the amplitude of the excitation force, of is the excitation frequency (in Hertz). And

fimpðuðL,tÞÞ ¼�g½kðuðL,tÞ�gapÞ�
g¼ 0 if uðL,tÞogap,

g¼ 1 if uðL,tÞ4gap,

(
(3)

where k is the stiffness related to the obstacle and gap is the distance from the bar to the obstacle.
Eq. (1) is discretized by means of the finite element method [11]. The elemental displacement field is written as

uðeÞðx,tÞ ¼NðxÞuðeÞðtÞ, where the linear shape functions used are NðxÞ ¼ ½ð1�xÞ=2 ð1þxÞ=2�, �1rxr1, and the elemental
displacements are u(e)(t)=[u(e)

1 (t) u(e)
2 (t)]T. The final discretized system, after matrix assembling, is the following:

M €uðtÞþC _uðtÞþKuðtÞ ¼ fðtÞþfimpðuðtÞÞ, (4)

with zero initial conditions, u0=0 and v0=0, where M, C, and K are the mass, proportional damping, and stiffness matrices, u is
the response of the system, f is the excitation force, and fimp is the impact force. A distinction should be made between u(x,t)
and u(t). The displacement field u : ½0,L� � ½0,T�-R is the solution of the continuous problem and the displacement vector
uðtÞ 2 Rm contains the values of the displacements at the nodes of the mesh.

A proportional damping is used, i.e., the damping matrix is written as a linear combination of the mass and the stiffness
matrices, C¼ aMþbK, where a and b are positive constants. These constants can be deduced by observing Eq. (1), a¼ c1=ðrAÞ

and b¼ c2=ðEAÞ, in which c1 and c2 are the damping coefficients, both positive.
Fig. 1. Scheme of a bar impacting an obstacle.
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3. Reduced-order models

The matrices M, C, and K of Eq. (4) are in Rm�m. To construct the reduced-order model, let U in Rm�n (nom), which has
columns formed by independent vectors, the basis of the approximation subspace. Taking the approximation uðtÞ ¼UqðtÞ and
projecting the equations in the subspace generated by the columns of U, the reduced-order system is written as

Mr €qðtÞþCr _qðtÞþKrqðtÞ ¼UT
½fðtÞþfimpðUqðtÞÞ�, (5)

with initial conditions q0=0 and m0 ¼ 0, where the reduced matrices are given by

Mr ¼UTMU, Cr ¼UTCU, Kr ¼UTKU, (6)

and q is the reduced-order system response.
Three different reduction bases are used in the analysis as columns of U. The first one is the LIN-basis, which is composed

by the chosen normal modes of the associated linear conservative system. It is computed solving the following generalized
eigenvalue problem:

ð�o2
i MþKÞ/i ¼ 0, (7)

whereoi is the i-th natural frequency and /i is the i-th normal mode. Therefore, U¼ ½/1 /2 /3 . . .�. This is the best basis for a
linear dynamical system if the modes are chosen properly. However, the system under analysis is nonlinear due to the
impacts. It should be noted that, in this case, the reduced matrices are diagonal: Mr ij ¼ dij, Kr ij ¼ dijo2

i and Cr ij ¼ dijoixi, where
xi is the i-th damping rate and dij is the Kronecker delta (dij is equal to one if i= j and is equal to zero if iaj).

The second basis is the PODdir-basis, for which the elements are called proper orthogonal modes (POMs). In this case, the
system response is modeled as a second-order stochastic process, with the assumptions that the process is stationary in time
and ergodic [2,3]. The dimensions of the matrix of interest is m�m, which is related to the spatial mesh. This basis should be
used when measurements from experiments are available, since there will be few points in the spatial mesh.

The third basis is the PODsnap-basis, which is similar to PODdir-basis. However, the construction is very different. The
dimensions of the matrix of interest is nt�nt, which is related to the temporal mesh. This basis should be used to analyze a fast
phenomenon, since the dynamics will be well represented from the snapshots of few instants.

For details about the construction of PODdir-basis and PODsnap-basis see [9,12].

4. Convergence criterion

The convergence analysis is made using the following norm in H1ðOÞ (Sobolev space, where O¼ ½0,L�) [13]:

Juð�,tÞJ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
juðx,tÞj2 dxþ

Z
juuðx,tÞj2 dx

s
, (8)

where uu is the derivative with respect to x. As the number of elements N of the basis used in the approximation increases, the
approximation uNð�,tÞ approaches uð�,tÞ. The approximation uNð�,tÞ is obtained after interpolating uN(t). As uð�,tÞ is not known,
the error in the approximation is pursue using the following error measure:

eN ¼
100

t1�t0

Z t1

t0

JuNðtÞ�uN�1ðtÞJ

JuNðtÞJ

� �
dt, (9)

where [t0,t1] is the duration analyzed, uN(t) is the approximation of the response of the step N of the computation, and uN�1(t)
is the approximation of the previous step; N is related to the number of elements of the basis. The analysis is done fixing an
error e and searching for N, such that eN oe.

5. Numerical results

For the numerical analysis, it was used a bar with cross-sectional area A=7.9�10�3 m2, length L=1 m, and
gap=0.1�10�3 m. The bar is made of steel with elasticity modulus E=210 MPa, density r¼ 7850 kg=m3. The excitation
parameters are Af=5000 N andof ¼ 260 Hz. The obstacle stiffness is k=1�1011 N/m. The time integration was done using an
explicit Runge–Kutta method of fourth and fifth orders with adaptive time-step and the duration was t=[0;0.02]. The
computer used to run the simulation was a Pentium(R), 2 GB RAM and 3,2 GHz, 32 bits.

5.1. Influence of damping

An analysis of the influence of the damping in the dynamical response is done. Table 1 shows the values of the damping
rates related to the first five normal modes of the system for different values of (a,b). If a or b is too big, there are some modes
that are overdamped (x41). See, for instance, the cases of (a¼ 106,b¼ 0) and (a¼ 0,b¼ 105).

Now we analyze the dynamics of the system, first for (a¼ 104, b¼ 0). Fig. 2(a) shows the displacement of the endpoint
(x=L) and Fig. 2(b) shows how the impact force changes with time, where the dashed line represents the location of the



Table 1

Damping rates related to the first five normal modes of the system for different values of a and b.

a¼ 104, b¼ 0 a¼ 106, b¼ 0

x1 0.0102 1.0234

x2 0.0034 0.3411

x3 0.0020 0.2047

x4 0.0015 0.1462

x5 0.0011 0.1137

a¼ 0, b¼ 104 a¼ 0, b¼ 105 a¼ 105, b¼ 104

x1 0.0252 0.2522 0.1276

x2 0.0757 0.7567 0.1098

x3 0.1261 1.2612 0.1466

x4 0.1766 1.7657 0.1912

x5 0.2270 2.2702 0.2384
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Fig. 2. (a) Displacement of the bar at x=L as a function of time (the dashed line represents the obstacle locations), and (b) impact force as a function of time.
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Fig. 3. (a) Displacement of the bar at x=L as a function of time for two damping conditions: a¼ 104, b¼ 0 (continuous line) and a¼ 106, b¼ 0 (dotted line),

and (b) detail of the impact region.
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obstacle. When the bar hits the obstacle there is a reaction force (impact force) forcing the bar to move back. Of course, the
impact force is zero when the bar does not touch the obstacle; see Fig. 2(b).

Fig. 3 shows the displacement of the endpoint (x=L) for different damping conditions: (1) ða¼ 104,b¼ 0Þ and (2)
ða¼ 106,b¼ 0Þ. Fig. 3(b) shows the same response in the impact region, where we can note less oscillations for the
overdamped system (a¼ 106). As damping increases there are less oscillations of the structure, hence, the analysis is
simplified in the sense that less elements of the reduced-order model will be able to capture the nonlinear dynamics in
analysis. This is why the damping is kept small in the analysis of the next subsection; it is taken as (a¼ 104,b¼ 0).

5.2. Comparing the different approximations

The convergence curves for the different models are shown in Fig. 4. The precision increases with the increasing of the
number of elements; for illustration of the dimension of the reduced-order model, we fix the error as e¼ 2 percent. Using the
finite element method (Fig. 4(a)), it is necessary 150 elements to represent the problem; using the LIN-basis (Fig. 4(b)), it is
necessary 80 normal modes; using the PODdir-basis (Fig. 4(c)), it is necessary 40 empirical modes; and using the PODsnap-basis
(Fig. 4(d)), it is necessary 50 empirical modes. Beware that it does not mean that PODsnap-basis is always worse than PODdir-
basis. Comparing Fig. 4(c) with Fig. 4(d) one can notice that for an error of 1 percent it is necessary 50 empirical modes from
both PODdir-basis and PODsnap-basis. For the construction of the POD-basis, the response was computed for different force
amplitudes Af, and 1000 points were considered for both spatial and temporal meshes.
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Fig. 4. Convergence for the different bases: (a) FEM, number of finite elements versus percent error, (b) LIN-basis, number of normal modes versus percent

error, (c) POD-direct, number of POMs versus percent error, and (d) POD-snapshots, number of POMs versus percent error.
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Up to this point, there is nothing new, the novelty comes now. Although POD-basis is the best basis in a certain sense (given
a fixed number of elements, no other linear decomposition represents better the problem) it is not assured that the time-
integration problem will be solved faster using the POD-basis. Fig. 5(a) shows that, for the problem analyzed, if the precision is
fixed, POD-basis needs less elements to represent the problem. However, if the number of elements is fixed, POD-basis needs
more time to compute the time response; see Fig. 5(b). Appendix A elucidates this point analyzing the condition number of
the matrices used in the time-integration scheme.

Thus, one needs to check the efficiency of a basis to construct a reduced-order model taking into account the precision
wanted and also the time required for the time-integration process; see Fig. 6. This figure shows that, for the problem in
analysis, POD-basis is the most efficient one: besides making the greater reduction of the model, the time-integration process
is faster, fixing the precision.

Fig. 7 shows a comparison between PODdir-basis and PODsnap-basis. It shows that, for the problem in analysis, the basis
constructed by the snapshots method is more complicated than the one constructed by the direct method. The time required
for the time integration (for 50 POMs) is 28.6 min using the PODsnap-basis, and it is 15.9 min using POD dir-basis. In Figs. 5 and
6, POD-basis refers to PODdir-basis.
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6. Conclusions

A new way to measure the efficiency between LIN-basis and POD-basis to construct a reduced-order model in
Structural Dynamics has been proposed. One should take into account the precision wanted and also the time required
for the time-integration simulation (see Fig. 6). A vibroimpact system has been used to show this new idea. For the
problem analyzed, POD-basis has performed better than LIN-basis in the sense that (1) the size of the resulting reduced
matrices are smaller (fixing the precision), and (2) the time required for the time-integration simulation is lower (fixing the
precision).
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Appendix A. Condition number

The time-integration scheme might be written as

_q

€q

" #ðtþ1Þ

¼
0 I

�M�1
r Kr �M�1

r Cr

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

q

_q

" #ðtÞ
þ

0

M�1
r UT

ðfþfimpðUqÞÞ

" #ðtÞ
, (10)

where 0 is the zero matrix and I is the identity matrix. The condition number of A is higher for POD-basis, compared to
LIN-basis; see Fig. A1.

Note that if the system has geometric nonlinearity (e.g., Kr(q)), matrix A(q) should be computed for each instant. For this
reason and also to better compare the differences between LIN-basis and POD-basis, the algorithm is implemented in a way
that A is computed at each time step. Doing so, the effect of a bad condition matrix is amplified in the analysis; meaning that it
takes more time to do the time integration. It should be noticed that POD-basis has performed better than LIN-basis for the
problem analyzed, even considering this bad scenario where A is computed at each time step.

Fig. A2 shows that the condition number of Mr increases when the POD-basis is used, while the condition number of Mr is
always equal to one (identity matrix) when LIN-basis is used.
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