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Presented is an integrated circuit dual-channel front-end preamplifier
that minimises the differential time delay (DTD) between two channels.
The circuit, which is based on a chopper architecture, works in the audio
range and is intended for applications in sound localisation based on
bearing estimation. The circuit was fabricated in a 1.5 × 1.5mm die,
in a 0.5 mm technology. Experimental results indicate a mean DTD of
0.125 ms, which is one order of magnitude smaller than the experimental
results reported in the literature so far.

Introduction: One of the alternatives to perform localisation based on
bearing estimation is the measurement of the difference in time of arrival
(TOA) of a signal source to two microphones. Several miniature systems
based on integrated circuits (ICs) have been proposed in the literature
[1–5]. As shown in [6], the parametric mismatch of the front-end filters
introduces a frequency dependent differential time delay (DTD) that
can mask the intrinsic DTD of the signals, introducing a frequency
dependent error to the spatial localisation accuracy. For instance, the data
used to evaluate three different architectures [1–3], with the physical
setup described in [7], was collected using a first-order lowpass filter
(fc ¼ 300Hz) preamplifier with off-the-shelf 5% tolerance components.
According to [6], this produces ideally a worst-case 26 ms DTD at low
frequencies. Further refinements using 1% tolerance resistors and 2%
tolerance capacitors, reduced the worst-case DTD to 7.9 ms. The mean
absolute error in TOA measured in [7] (for a 108 range of bearing angle)
in an open field test is 65.8 ms (this includes not only the DTD from the pre-
amplifiers, but also that of the microphones, the physical setup and the data
logger). On the other hand, [2] reports 2 ms accuracy using a generator with
synthetic signals (bypassing the microphones) with on-chip (switched
caps) amplifier channels. To give a relative idea of these numbers, one
degree of bearing angle translates into 5 to 8 ms (depending on the
bearing angle) for the physical setup in [7]. Owls can orient with 18 to 28
of accuracy, similar to humans [5]. These data evidence the significant
impact of DTD due to mismatch when accuracies below 18 of bearing
angle are needed. This Letter presents an IC front-end preamplifier with
a pair of matched filters for TOA measurements in the audio range, that
provides amplification and lowpass filtering with minimum spurious
DTD. The proposed circuit achieves a mean DTD of 0.125 ms, with a
maximum DTD of 0.18 ms, in the frequency range of interest.
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Fig. 1 Block diagram of proposed topology

Circuit description: The IC implements a two-channel differential
switched Gm-C filter based on [8]. As shown in Fig. 1, the input
signal of each microphone is routed through the Gm1-R1 amplifier
during the first half of the u2 cycle, and through Gm2-R2 during the
second half. In addition, the u2 cycle is divided in two phases of u1

clock. During one phase of u1, the amplifier output is connected to
C1/C3 while C2/C4 are on hold, and during the other phase the
amplifier output is connected to C2/C4 while C1/C3 are on hold. At
the end of one complete cycle of u2, each input signal will have
passed through both filters, averaging the mismatch among components,
which were carefully matched using layout techniques. The operational
transconductance amplifiers (OTAs) were designed to present a trans-
conductance of 4.5 mS and an input linear range of 1 Vpp by using
source degeneration. The value chosen for the resistors was 230 KV
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and they were matched using the interleaving technique and dummy
resistors; the output capacitors have a value of 100 pF and they were
implemented as the parallel connection of four 25 pF capacitors in a
common-centroid arrangement with dummy capacitors [9]. The
switches are minimum-size pass-gates with dummy switch compen-
sation [10] to reduce charge injection effects.

The circuit was designed to implement two matched first-order
lowpass filters with a gain of 2 and a 3 DB corner frequency of
3.5 KHz. Assuming C1 ¼ C2 ¼ C3 ¼ C4 ¼ C and unitary gain in the
reconstruction filters F1 and F2, the expression for each output is [8]:

V(1,2) =

2 × Gm(1,2) × R(1,2)

1 + 4pjfc × R(1,2)
M(1,2) when u2 = 1

2 × Gm(2,1) × R(2,1)

1 + 4pjfc × R(2,1)
M(1,2) when u2 = 0

⎧⎪⎪⎨
⎪⎪⎩

The circuit was integrated through MOSIS and occupies a 1.5 × 1.5 mm
area in a 0.5 mm technology. Fig. 2 shows the top view of the layout and
the chip photograph.

a b

Fig. 2 Top view of IC layout and die photograph

a Layout of chip
b Die photograph

Experimental results: The integrated circuit was biased with an Agilent
E5270B measurement mainframe, and tested using a Stanford Research
System (SRS) DS-360 ultra-low noise and distortion signal generator.
The clock signals (u1 ¼ 1/25 KHz; u2 ¼ 1/50 KHz) were generated
externally, with a Xilinx Spartan 3 FPGA, and the output signals from
the capacitors were acquired with a Lecroy Wavemaster 8 oscilloscope.
The output filters F1 and F2 were implemented in Matlab, after the
acquisition, to avoid adding phase delay to the measurements. The
power consumption of the IC is 2.5 mW.

Because the mismatch in the filters is very small, a direct measurement
is not possible. Following the developments in [6], the time domain
waveforms were acquired and the cross-correlation operation was
performed on them to estimate the DTD. For each frequency value, 20
cycles of the output waveforms were acquired with a time resolution of
1 × 106 points per cycle. This procedure was repeated 20 times and the
median and standard deviation for the DTD were evaluated.
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Fig. 3 DTD measured and expected for filters

Theoretical curves calculated for 0.4% mismatch in chopper filters cutoff
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∗ measurement DTD for SRS filters
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The DTD of the proposed circuit (fc ¼ 3.45 KHz) is shown in Fig. 3,
and shows a mean of 0.125 ms (0.18 ms maximum) for the frequency
range of interest.

For the sake of comparison, the same measurements were performed
using two SRS SIM-965 programmable analogue filters configured
to implement second-order lowpass Butterworth filters (also with fc ¼

3.45 KHz) (these filters could not be configured as first order; minimum
order was two). Fig. 3 shows the measured DTD for the two pairs of filters.

Conclusion: Experimental results of a front-end IC that minimises the
DTD between two channels have been presented. The circuit achieves
a mean DTD of 0.125 ms between channels; with a power consumption
of 2.5 mW, which improves all the experimental setups for signals in the
audio range reported in the literature [1–3, 7]. Moreover, the circuit per-
formance is similar to a commercial high-end programmable analogue
filter.
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