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Céline M’Kadmi,4 Jorge G. Ramos,2 Jacky Marie,4 Jean-Alain Fehrentz,4

Jacques Epelbaum,3,5 Virginie Tolle,3 and Mario Perello1

1Laboratory of Neurophysiology of theMultidisciplinary Institute of Cell Biology (Argentine Research Council
and Scientific Research Commission, Province of Buenos Aires, National University of La Plata), La Plata,
Buenos Aires, Argentina; 2School of Biochemistry and Biological Sciences, National University of Litoral and
Institute of Environmental Health, Santa Fe, Argentina; 3Centre de Psychiatrie et Neurosciences UMR_S894
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Mousseron,UMR5247CNRS-UniversitéMontpellier-ENSCM, Faculté de Pharmacie, 34093Montpellier, France;
and 5MECADEVUMR7179Centre National de la Recherche Scientifique,MuséumNational d’Histoire Naturelle
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Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secreta-
gogue receptor (GHSR), a G-protein-coupled receptor highly expressed in the hypothalamus. In vitro
studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is
uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions,
we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-
induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia
that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT
mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin
binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were eval-
uated in ghrelin- or GHSR-deficient mice, only the latter displayed an ;15% smaller hyperphagia,
compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller
in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice
treated with vehicle, whereas it was unaffected inmice centrally treated with the GHSR antagonists
D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and
pharmacological results support the notion that constitutive GHSR activity modulates the mag-
nitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR sig-
naling system could affect the set point of daily food intake, independently of plasma ghrelin levels,
in situations of negative energy balance. (Endocrinology 159: 1–15, 2018)

Ghrelin is a 28-residue octanoylated peptide pre-
dominantly secreted from endocrine cells of the

stomach (1). Ghrelin is recognized as a highly potent
orexigenic peptide hormone (2). In addition, ghrelin
plays a variety of other physiological roles that include,
but are not limited to, modulation of growth hormone
secretion, blood glucose homeostasis, and stress

response, among others (2). In humans and rodents,
plasma ghrelin levels rise before meals and then decrease
postprandially (3, 4). Ghrelin acts via its unique receptor,
the growth hormone secretagogue receptor (GHSR),
which is a G-protein-coupled receptor (GPCR) highly
expressed in the hypothalamus (5). GHSR is particularly
enriched in neuropeptide Y (NPY) and agouti-related
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protein (AgRP) neurons of the hypothalamic arcuate
nucleus (ARC), which are a key target of circulating
ghrelin to increase food intake (6–9).

GHSR is recognized as a GPCR that displays an un-
usually high constitutive activity. Specifically, in vitro
studies showed GHSR signals with ;50% of the maxi-
mum activity in the absence of ghrelin (10, 11). Notably,
most studies concerning constitutive GHSR activity have
focused on molecular aspects of this phenomenon,
whereas the magnitude of its in vivo effects and physi-
ological relevance are uncertain (12). To study the in vivo
impact of constitutive GHSR activity, two studies in
rodents have tested the effect of GHSR inverse agonists,
which reduce constitutive activity. In the first one, ad
libitum-fed rats chronically treated with central infusions
of the GHSR inverse agonist [d-Arg1,d-Phe5,d-Trp7,9,
Leu11]-substance P reduced their food intake and body
weight (13).However, this analog of substance P also acts
on other GPCRs, raising some concerns about its spec-
ificity for GHSR when used in vivo (14, 15). The other
study used central administration of the GHSR inverse
agonist K-(D-1-Nal)-FwLL-NH2 and also found a de-
crease in food intake in ad libitum-fed rats (16). Genetic
manipulations of the ghrelin system in rodents also
suggest that constitutive GHSR activity may have in vivo
implications. In particular, most studies using ghrelin
knockout (KO) mouse models, fed with either regular
chow or a high-fat diet, do not show substantial differ-
ences in terms of food intake or body weight, compared
with wild-type (WT) mice (17). In contrast, some studies
using GHSR-deficient mouse models fed with regular
chow showed a subtle but substantial decrease in body
weight, compared with WT mice, and such differences
were enhanced when mice were either aged or fed with a
high-fat diet from weaning (17). The fact that mice
lacking GHSR exhibit more robust alterations in eating
behaviors, compared with ghrelin KO mice, may be an
indication that the latter retains high constitutive GHSR
activity (17). In humans, a role for constitutive GHSR
activity is suggested by a naturally occurring mutation
(Ala204Glu) that selectively abolishes constitutive ac-
tivity without altering ghrelin-evoked activity and leads
to familial short stature (18). In addition, another study
reported some mutations of GHSR that impact on its
constitutive GHSR activity and also lead to short stature
in humans (19). Altogether, these findings suggest that
constitutive GHSR activity may play a role in vivo, in-
dependently of ghrelin action.

The ghrelin/GHSR system helps to cope against energy
deficit conditions. Thus, the relevance of the GHSR
signaling becomes more evident in situations such as
fasting or caloric restriction, when the ghrelin/GHSR
system is up-regulated and activates a number of

responses that contribute to maintain glycemia and drive
food intake (20). Plasma ghrelin levels increase under
fasting in both humans and rodents (21, 22). In addition,
GHSR mRNA levels increase in the hypothalamus of
fasted rodents (23–25), and the hypothalamic re-
sponsiveness to a GHSR agonist, measured by the in-
duction of the marker of neuronal activation c-Fos,
increases in fasted rats (26). Notably, central GHSR
signaling seems to be more relevant during prolonged
fasting, compared with short fasting periods, despite that
similar plasma ghrelin levels are found in 24 or 48 hour
fasted mice (24, 27). Under fasting conditions, ARC
NPY/AgRP neurons are activated, and the ARC neurons
that produce anorexigenic peptides derived of the
proopiomelanocortin (POMC) precursor are inhibited
(28–30). The upregulation of NPY signaling is one of the
key players known to drive the compensatory hyper-
phagia that fasted animals display when they have access
to food (9, 31). Thus, it can be hypothesized that con-
stitutive GHSR activity at the hypothalamic level mod-
ulates the compensatory hyperphagia that follows a
48-hour fasting event. To test this hypothesis, we studied
the response of mice with genetic and pharmacological
manipulations of the ghrelin/GHSR system to a fasting-
refeeding protocol.

Materials and Methods

Animals
This studywas performed using 3- to 5-month-oldmale mice

generated in the animal facility of either the IMBICE Q:5(La Plata,
Buenos Aires, Argentina) or the Centre de Psychiatrie et Neu-
rosciences (Paris, France). Experimental mice included the
following: (1) WT mice, on a pure C57BL/6 background, (2)
GHSR-null mice, which do not express the GHSR (32), and (3)
ghrelin-KO mice, which lack the preproghrelin gene (33).
GHSR-null and ghrelin-KO mice were obtained from crosses
between heterozygous animals backcrossed for .10 genera-
tions onto a C57BL/6 genetic background. Animals were
maintained under controlled temperature (21°C) and photo-
period (12-hour light/dark cycle from 0600 to 1800 Q:6) with
regular chow and water available ad libitum. For fasting-
refeeding studies, mice were housed individually under the
same controlled conditions and maintained on a chow diet for
1 week before the experiments. Studies were carried out in strict
accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Research
Council (United States) (34) and the European Communities
Council Directive (86/609/European Economic Community).
All experimentations received approval from the Institutional
Animal Care and Use Committee of each institution.

Fasting-refeeding protocol
The overall experimental design for the fasting-refeeding

protocol is diagrammed in Fig. 1. Initially, individually
housed WT mice were either fed ad libitum (n = 9) or exposed
to a fasting-refeeding protocol (n = 17), in which mice were
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fasted by removing the chow diet from the home cages at 1000
and refed 48 hours later. Body weight and food intake were
monitored daily and manually at 1000 for 7 days after
refeeding. Food intake was calculated by subtracting the weight
of the remaining food at 1000 by the weight of the initial food.
In an independent study, acclimated and singly housedWTmice
were either fed ad libitum (n = 4) or exposed to a fasting-
refeeding protocol (n = 4) in cages placed in the Labmaster
device (TSE Systems GmbH), which automatically monitors
food intake and locomotor activity using feeding sensors and an
infraredQ:7 light beam-based system. In both cases, mice were
monitored, at least, from the third day before fasting to the
seventh day after fasting (experimental day 7).

In independent studies,WTmice were euthanized at 1000, at
different experimental days along the fasting-refeeding pro-
tocol. In one experiment, mice were euthanized in ad libitum-fed
(n = 6) or 2 days fasted (n = 6) conditions (hereafter, named fed
and fasted groups, respectively), aswell as after 2 (n = 6) or 4 (n =
6) days of refeeding (hereafter, referred as 2-d refed and 4-
d refed groups, respectively). Here, blood samples were used to
quantify plasma ghrelin and desacyl-ghrelin levels, whereas
their brains were used to obtain ARCpunches thatwere, in turn,
used to quantify the mRNA levels of POMC, NPY, and GHSR
genes. In another experiment, fed (n = 4), fasted (n = 7), 2-d refed
(n = 4), and 4-d refed (n = 4) mice were used to estimate the
presence of GHSR protein using the ghrelin binding assay de-
scribed later. Finally, another set of fed (n = 7), fasted (n = 8), 2-
d refed (n = 6), 4-d refed (n = 6), and 6-d refed (n = 6) mice were
anesthetized and perfused with formalin to obtain their brains,
which were used to perform immunostainings against NPY and
POMC and estimate the levels of these food intake-regulating
signals in the ARC.

Fasting-refeeding response in mice with genetic
manipulations of the ghrelin system

GHSR-null mice (n = 11) and their WT littermates (n = 15)
were exposed to the fasting-refeeding protocol, and their body
weight and food intake were manually monitored, as described

previously. In other experiment, GHSR-null mice and their WT
littermates were fed ad libitum (n = 6 and n = 7, respectively) or
2 days fasted (n = 7 and n = 8, respectively). On the morning of
the experimental day, fed and fastedmice were anesthetized and
perfused with formalin to obtain their brains for immuno-
staining. In another study, ghrelin-KOmice (n = 5) and theirWT
littermates (n = 7) were exposed to the fasting-refeeding pro-
tocol, and their bodyweight and food intakewere automatically
monitored, as described previously.

Fasting-refeeding response in mice with
pharmacological manipulations of the
GHSR signaling

For central infusion of drugs, mice were first stereotaxically
implanted with a single indwelling guide cannula into the lateral
ventricle [intracerebroventricular (ICV); placement co-
ordinates: anteroposterior: 20.34, lateral: +1.0, and ventral:
22.3 mm]. After surgery, mice were individually housed and
allowed to recover for at least 5 days. To block pharmaco-
logically ghrelin-induced GHSR activation, WT mice were ICV
treated during the fasting period with [D-Lys3]-growth
hormone-releasing peptide 6 (GHRP-6; Cat. #SLBN1014V;
Sigma-Aldrich) or JMV2959 [synthesized as previously de-
scribed (35)]. In particular, mice were treated with vehicle
(artificial cerebrospinal fluid) alone (n = 10) or containing [D-
Lys3]-GHRP-6 (2 nmol/mouse, n = 5) or JMV2959 (3 nmol/
mouse, n = 8) every 8 hours, starting at 1600 of the first day of
fasting and finishing at 800 of the second day of fasting. Thus,
each mouse received six ICV injections. Mice were refed at
1000, and body weight and food intake were manually mon-
itored during refeeding, as described previously. The dose of [D-
Lys3]-GHRP-6 was chosen based on a previous study (36) and
on our own work, which showed that it reduced by 42.4 6
4.0% the 2-hour food intake induced by 0.02 nmol/mouse of
ICV-injected ghrelin. The dose of JMV2959 was chosen based
on a previous study (37) and on our own work, which showed
that it reduced a 2-hour food intake induced by ICV-injected
ghrelin (0.02 nmol/mouse) by 72.0 6 12.8%. To block phar-
macologically constitutive GHSR signaling, WTmice were ICV
treated with K-(D-1-Nal)-FwLL-NH2 during the fasting period.
The K-(D-1-Nal)-FwLL-NH2 is an inverse agonist that was
synthesized by automated solid-phase peptide synthesis, as
described elsewhere (16). Mice were treated with artificial ce-
rebrospinal fluid alone (n = 12) or containing K-(D-1-Nal)-
FwLL-NH2 (1 nmol/mouse, n = 13) every 8 hours during the
fasting period, as described previously.Micewere refed at 1000,
and body weight and food intake were manually monitored
during the refeeding period. The dose of K-(D-1-Nal)-FwLL-
NH2was chosen based on a previous study (16) and on our own
work, which showed the following: that (1) it significantly
reduced ad libitum food intake in the early dark-phase period
(from 1800 to 2300) when injected at 1800 (160.06 41.3mg vs
669.06 123.7 mg, respectively) and (2) it reduced 2 hour food
intake induced by ICV-injected ghrelin (0.02 nmol/mouse) by
81.0 6 5.6%. Importantly, the same dose of K-(D-1-Nal)-
FwLL-NH2 did not reduce ad libitum food intake in GHSR-null
mice during the early dark-phase period when injected at 1800
(n = 5 each). Importantly, mice exposed to pharmacological
manipulations in GHSR signaling did not show any sickness-
like behavior, such as a spiky coat, hunched posture, altered

Figure 1. Overall experimental design. The figure summarizes the
experimental design used in the current study. Mice were fasted by
removing the chow diet from the home cages at 1000 and refed
48 hours later. WT mice were exposed to the fasting-refeeding
protocol and studied at the different times of refeeding indicated
over the time line. Mice, with genetic manipulation of the GHSR
signaling, included GHSR-null mice and ghrelin-KO mice. Mice with
pharmacological manipulations of the GHSR signaling included WT
mice treated with either [D-Lys3]-growth hormone-releasing peptide
6 (GHRP-6), JMV2959, or K-(D-1-Nal)-FwLL-NH2 during the fasting
period. In particular, mice were intracerebroventricular (ICV) injected
every 8 hours, starting at 1600 of the first day of fasting and
finishing at 800 of the second day of fasting.

doi: 10.1210/en.2017-03101 https://academic.oup.com/endo 3

http://dx.doi.org/10.1210/en.2017-03101
https://academic.oup.com/endo


breathing rate, labored movements, reduced activity, and/or
subdued behavior.

Determination of plasma ghrelin levels
Ghrelin and desacyl-ghrelin plasma concentrations were

assayed by specific enzyme immunoassay (A05118 and
A05117, respectively; Bertin Pharma). Blood samples were
collected on EDTA (1 mg/mL final) and p-hydroxy-
mercuribenzoic acid (0.4 mM final). Then, plasmas were im-
mediately acidified with HCl (0.1 N final) to preserve acylation
and stored frozen at 280°C.

Quantification of mRNA levels in
hypothalamic punches

Brains were extracted, placed in cold diethylpyrocarbonate
phosphate-buffered saline, and sectioned into 1 mm coronal
slices by use of a mouse brain matrix. Punches of tissue cor-
responding to the location of the ARC, identified by comparing
the coronal slices with a mouse brain atlas (38), were excised
using a 15-gauge needle. Punches were collected in TRIzol re-
agent (Invitrogen), and total RNAwas isolated, according to the
manufacturer’s protocol. The concentration and purity of RNA
were estimated in a NanoDrop Lite Spectrophotometer (Thermo
Scientific). One microgram of total RNA from each region was
reverse transcribed into cDNA using random hexamer primers
and Moloney murine leukemia virus reverse transcription
(Promega). Quantitative polymerase chain reaction for NPY,
POMC, and GHSR was performed in triplicate with HOT
FIREPol EvaGreen qPCR Mix Plus (Solis BioDyne), using a real-
time polymerase chain reaction system StepOne Cycler (Applied
Biosystems). Product purity was confirmed by dissociation curves,
and random samples were subjected to agarose gel electrophoresis.
Fold change from fed values was determined using the relative
standard curve method, normalizing the expression to the ribo-
somal protein L19 (reference gene). Primer sequences for NPY
were sense: 50-GCCAGATACTACTCCGCTCTG-30, antisense:
50-GATCTCTTGCCATATCTCTGTCTG-30 (GenBank acces-
sion no. NM_023456.3), product size 68 bp. Primer sequences
for POMCwere sense: 50-CCTCCTGCTTCAGACCTCCATA-30,
antisense: 50-TGTTCATCTCCGTTGCCTGG-30 (GenBank ac-
cession no.NM_008895.3), product size 159bp. Primer sequences
for GHSR were sense: 50-GCTCTGCAAACTCTTCCA-30, anti-
sense: 50-AAGCAGATGGCGAAGTAG-30 (GenBank accession
no. NM_177330.4), product size 99 bp. Primer sequences for
ribosomal protein L19 were sense: 50-AGCCTGTGACTGTC-
CATTCC-30, antisense: 50-TGGCAGTACCCTTCCTCTTC-30

(GenBank accession no. NM_009078.2), product size 99 bp.

Immunohistochemistry
As previously described (39), brains of perfused mice were

removed, postfixed, immersed in 20% sucrose, and cut coro-
nally at 40 mm into three equal series on a sliding cryostat. To
perform immunohistochemistry, sections were pretreated with
0.5%H2O2, treatedwith blocking solution (3%normal donkey
serum and 0.25% Triton-X), and incubated with a rabbit anti-
NPY antibody (Table 1), rabbit anti-c-Fos (Table 1), or rabbit
anti-POMC antibody (Table 1) for 48 hours at 4°C. Next, all
sections were incubated with a biotinylated goat anti-rabbit
antibody (Cat. #BA-1000; 1:3000; Vector Laboratories) and
then with the Vectastain Elite ABC (Cat. #PK-6200; Vector
Laboratories), according to the manufacturer’s protocols.
Finally, a visible signal was developed with diaminobenzidine
(DAB)/nickel solution for NPY and c-Fos immunostainings,
giving a black/purple precipitate and only with DAB for POMC
immunostaining. Negative controls were also performed using
the same procedure for each immunostaining but omitting ei-
ther the primary antibody or secondary antibody. Sections were
sequentially mounted on glass slides and coverslipped with
mounting media.

Assessment of ghrelin-binding sites
A fluorescein-ghrelin(1–18) (hereafter referred to as F-

ghrelin) tracer, provided by Dr. Luyt (University of Western
Ontario, Canada) was used. F-Ghrelin is an 18-residues analog
of the hormone with a fluorescein moiety attached at its C
terminus. F-Ghrelin behaves similarly to endogenous ghrelin in
terms of GHSR affinity and specificity (40, 41). Here, anes-
thetized mice were stereotaxically implanted with a single in-
dwelling sterile guide cannula into the lateral ventricle and
injected with F-ghrelin (60 pmol/mouse). Mice were perfused
with formalin, 30 minutes after treatment, as described pre-
viously. Brains were processed, as described previously to
generate coronal brain sections, which were then used for im-
munostaining against fluorescein using a goat anti-fluorescein
antibody (Table 1) for 48 hours at 4°C. Then, sections were
treated with a biotinylated donkey anti-goat antibody (Cat.
#BA-5000; 1:1500; Vector Laboratories) and then with the
Vectastain Elite ABC kit, according to the manufacturer’s
protocols. Finally, a visible signal was developed with DAB/
nickel solution, giving a black/purple precipitate. Negative
controls were also performed using the same procedure but
omitting the primary or secondary antibodies. Sections were
sequentially mounted on glass slides and coverslipped with
mounting media.

Table 1. Antibodies Used

Peptide/Protein
Target Name of Antibody Source

Species Raised in
(Polyclonal)

Dilution
Used RRID

NPY Neuropeptide Y antibody Cat. #Ab30914 (Abcam) Rabbit 1/30,000 AB_1566510
c-Fos c-Fos (H-125) antibody Cat. #sc-7202 (Santa Cruz

Biotechnology)
Rabbit 1/2000 AB_2106765

Fluorescein/Oregon
Green

Anti-fluorescein (fluorescein
isothiocyanate)/Oregon Green

Cat. #A-11096 (Molecular
Probes)

Goat 1/1500 AB_221558

POMC POMC precursor (27–52Q:13 ) antibody Cat. #H-029-30 (Phoenix
Pharmaceuticals)

Rabbit 1/6000 AB_2307442

Abbreviation: RRID, research resource identifierQ:14 .
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Quantitative analysis
Low- and high-magnification bright-field images were ac-

quired with a Nikon Eclipse 50i and a DS-Ri1 Nikon digital
camera. Quantifications were bilaterally performed in digital
high-magnification images of one complete series of coronal
ARC sections between bregma21.58 and22.06 mm, using the
anatomical limits, according to themouse brain atlas (38). Total
NPY-immunoreactive (IR) cells, POMC-IR cells, and c-Fos-IR
cell nuclei were quantified, and data were expressed as IR cells
per side. Fluorescein-IR signal was quantified as either positive
cells or punctuates; these data were expressed as IR cells per
coronal section per side or IR-punctas/100 mm2. All data were
corrected for double counting, according to the method of
Abercrombie (42). The mean diameter of the positive signal was
determined using Fiji. Blind quantitative analysis was per-
formed independently by at least two observers.

Statistical analyses
Data are expressed as the means 6 standard error of the

mean (SEM). Equality of variance was analyzed using Bartlett’s
or Levene’s tests. When variances were equal, one-way analysis
of variance (ANOVA), followed by the Tukey test, was used.
When variances significantly differed, one-way ANOVA, fol-
lowed by the Games–Howell test was used. Unpaired t test with
Welch’s correction was performed to compare cumulative food
intake data ofWTmice, ICV treated with each pharmacological
manipulation andWT vs either GHSR-null or ghrelin-KOmice.
Two-wayANOVA, followed by the Bonferroni test, was used to
compare data from fasting-refeeding responses of WT, GHSR-
null, ghrelin-KO, and WT ICV-treated mice. Differences were
considered significant when P , 0.05.

Results

Daily food intake is affected in a long-term fashion
after an event of fasting

First, we quantified food intake and body weight re-
sponses ofWTmice under the fasting-refeeding protocol.
Daily food intakewas 3.436 0.07 g/day in ad libitum-fed
WT mice. As compared with fed mice, daily food intake
of refed mice significantly increased and remained ele-
vated until day 5 of refeeding [Fig. 2(a)]. Cumulative food
intake from day 1 to day 5 of refeeding was 24.076 0.58
g, which represented an average of 3.486 0.90 g/day for
the overall period of fasting plus the 5 days of refeeding.
The body weight of fasted mice significantly decreased at
the end of the fasting period, comparedwith fedmice, and
then fully recovered by day 3 of refeeding [Fig. 2(b)]. An
independent set of WT mice tested in an automatized
system showed an increase in the daily food intake that
was also significantly higher until day 5 of refeeding,
similarly as seen using the manual method. The autom-
atized system, however, showed that most of the daily
food intake of ad libitum-fed mice occurred in the dark
cycle (86.26 0.6%of the total daily food intake) and that
such patternwas unchanged through the study [Fig. 2(c)].
In refed mice, daily food intake not only increased but

also changed its daily pattern [Fig. 2(c)]. As compared
with food intake of fed mice, light-phase food intake of
refed mice significantly increased the first 6 days
of refeeding [Fig. 2(d)], whereas dark-phase food intake
of refed mice significantly decreased in the same period of
time [Fig. 2(e)].

ARC GHSR levels increased after an event of fasting
We then studied the impact of the fasting-refeeding

protocol on plasma ghrelin levels and hypothalamic
GHSR expression. As expected, plasma ghrelin and
desacyl ghrelin levels were 1.96 0.5- and 1.86 0.3-fold
higher in fasted mice compared with fed mice [Fig. 3(a)
and (b)]. Plasma ghrelin levels decreased at 2 days of
refeeding compared with levels detected in fasted mice.
GHSR mRNA levels in the ARC were 3.1 6 0.6-fold
higher in fasted mice, compared with fed mice, and then
decreased in refed mice [Fig. 3(c)]. To estimate the
amount of GHSR protein, we used a F-ghrelin binding
assay that provides distinct cell body-like and punctate
labelings. The number of cell bodies binding F-ghrelin in
the ARC was similar in all experimental groups (not
shown). However, the density of F-ghrelin binding
punctate in the ARC of fasted mice was 3.8 6 0.6-fold
higher compared with ad libitum-fed mice. The density of
F-ghrelin binding punctate in the ARC decreased after
2 days of refeeding, compared with the amount found in
fasted mice, but remained 2.3 6 0.2-fold higher than the
density found in the ARC of fed mice. The density of F-
ghrelin binding punctate in the ARC at 4 days of
refeeding was similar to the values found in fed mice
[Fig. 3(d) and (e)].

As NPY is a key target of GHSR signaling in the ARC,
we studied the effect of the fasting-refeeding protocol on
the biosynthesis of this NPY. ARC NPY mRNA levels
were 11.16 2.9-fold higher in fastedmice comparedwith
fed mice [Fig. 4(a)]. After 2 days of refeeding, ARC NPY
mRNA levels remained 6.4 6 1.1-fold higher than in fed
mice. After 4 days of refeeding, ARC NPY mRNA levels
were similar to fedmice. In terms of NPY peptide, most of
the NPY-IR signal was observed with a dendritic local-
ization, and fewNPY-IR cell bodies were identified in the
ARC of fed mice. The number of NPY-IR cells signifi-
cantly increased in the ARC of fasted mice (46.4 6 4.3-
fold higher compared with fed mice) and then decreased
after 2 and 4 days of refeeding, compared with numbers
detected in fasted mice, but remained 23.5 6 3.7- and
7.7 6 1.4-fold higher, respectively, compared with the
values detected in fed mice [Fig. 4(b) and (c)]. After 6 days
of refeeding, the number of NPY-IR cells in the ARC was
similar to the number found in fed mice. POMC mRNA
levels and the number of POMC-IR cells in the ARCwere
0.5 6 0.1- and 0.5 6 0.1-fold smaller, respectively, in
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fasted mice compared with fed mice [Fig. 4(d)–(f)].
However, POMC mRNA levels and the number POMC-
IR cells in the ARC were not statistically different after 2
or more days of refeeding compared with fed mice.

GHSR signaling is required for a full
compensatory hyperphagia

Then, we studied the food-intake response of GHSR-
null mice to the fasting-refeeding protocol. Daily food

Figure 2. Daily food intake is affected in a long-term fashion after an event of fasting. (a) and (b) Changes in food intake and body weight,
respectively, of WT mice that were maintained with ad libitum access to regular chow (n =9) or fasted for 2 days and then allowed free access
to food at 10:00 AMQ:12 (n = 17). (c) The daily feeding pattern monitored using an automated feeding/activity station (TSE system, GmbH). Light and
dark phases are denoted by white and black rectangles on the x-axis. (d) and (e) Percentage of light- and dark-phase feeding, respectively (n = 4
for ad libitum-fed mice and n = 4 for refed mice). Data represent the means 6 SEM and were compared by two-way ANOVA. aP , 0.05 vs ad
libitum-fed mice on the same day.
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intake of refed GHSR-null mice significantly increased
and remained elevated until day 5 of refeeding, as seen in
WT mice [Fig. 5(a)]. However, cumulative food intake in
GHSR-null mice between days 1 and 5 of refeeding was
decreased by 14.4% 6 3.5% compared with WT mice
[Fig. 5(b)]. Body weights of WT and GHSR-null mice did
not differ throughout the experiment [Fig. 5(c)]. An in-
dependent set of WT and GHSR-null mice exposed to
fasting showed that the number of both NPY-IR cells and
c-Fos-IR cells was significantly reduced in the ARC of
fasted GHSR-null mice compared with the numbers
found in the ARC of fasted WT mice [Fig. 5(d)–(g)].

Constitutive, but not ghrelin-evoked, GHSR
signaling is required for a full
compensatory hyperphagia

Then, we studied the response to the fasting-refeeding
protocol of mice with other manipulations of the ghrelin
system. We found that daily food intake, as well as the
compensatory hyperphagia, after the fasting period of
ghrelin-KO mice [Fig. 6(a) and (b)] and of WT mice
treated with the GHSR antagonists [D-Lys3]-GHRP-6 or
JMV2959 [Fig. 6(c) and (d)] was similar compared with
the control group. The daily food intake of refedWTmice
treated with the GHSR inverse agonist K-(D-1-Nal)-

Figure 3. ARC GHSR binding sites but not circulating ghrelin remain increased several days after an event of fasting. (a) and (b) Plasma ghrelin
and desacyl-ghrelin levels evaluated by specific enzyme immunoassay, respectively (n = 6 for each experimental group). (c) Comparative
values of GHSR mRNA, relative to the ribosomal protein L19 gene, in ARC punches obtained from each experimental group (n = 6/group).
(d) Bar graph displaying the quantitative analysis of the number of fluorescein-IR puncta per area unit in the ARC of each experimental group.
(e) Representative photomicrographs of ARC coronal sections of ICV F-ghrelin-treated mice (n = 4–7/group) subjected to chromogenic
immunostaining against fluorescein. Insets in each image show high magnification of areas marked in low magnification images. Arrows and
arrowheads point to fluorescein-IR somas and puncta, respectively. Original scale bars, 100 and 10 mm for the low and high magnification
images, respectively. Data represent the means 6 SEM and were compared by one-way ANOVA. aP , 0.05 vs ad libitum-fed mice; bP , 0.05 vs
fasted mice.
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FwLL-NH2 significantly increased and remained elevated
until day 5 of refeeding, but the cumulative food intake
between days 1 and 5 was significantly decreased by
14.8% 6 3.8% in K-(D-1-Nal)-FwLL-NH2-treated mice
compared with vehicle-treated mice [Fig. 6(e) and (f)]. In

an independent set of mice treated with either vehicle or
K-(D-1-Nal)-FwLL-NH2 during the fasting period, the
number of both NPY-IR and c-Fos-IR cells in the ARC
was significantly reduced in fasted mice treated with K-

Figure 4. ARC NPY levels increased and POMC levels decreased after an event of fasting. (a) and (d) Comparative values of NPY and POMC
mRNA, respectively, relative to the ribosomal protein L19 gene, in ARC punches obtained from each experimental group (n = 6/group). (c) and (f)
Representative photomicrographs of ARC coronal sections of mice in each experimental group (n = 6–8/group) subjected to chromogenic
immunostaining against NPY and POMC, respectively. Insets in each image show high magnification of areas marked in low magnification
images. Arrows point to NPY- or POMC-IR cells. Original scale bars, 100 and 10 mm for the low and high magnification images, respectively. (b)
and (e) Bar graphs displaying the quantitative analysis of the number of NPY and POMC cells, respectively, in the ARC of each experimental
group. Data represent the means 6 SEM and were compared by one-way ANOVA test. aP , 0.05 vs ad libitum-fed mice; bP , 0.05 vs fasted
mice.
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(D-1-Nal)-FwLL-NH2 compared with the numbers
found in fasted mice treated with vehicle [Fig. 6(g)–(j)].

Discussion

In vitro studies, using heterologous expression systems or
lipid discs, have shown that GHSR displays an unusually
high constitutive activity that signals with ;50% of its
maximal capacity in the absence of ghrelin (11, 43–45). In
addition, the constitutive GHSR activity has been shown
to affect growth hormone secretion in human somato-
troph adenomas in vitro (12). Whether GHSR displays in
vivo ghrelin-independent signaling is unknown; however,

some naturally occurringGHSRmutations that impair its
constitutive activity have been linked to short stature in
human populations, suggesting that constitutive GHSR
activity may be physiologically relevant (18, 19). As in-
dicated in the Introduction, some pharmacological or
genetic manipulations of the ghrelin/GHSR system in
mouse models also provided circumstantial evidence that
the constitutive GHSR activity plays a role in regulating
body weight and/or food intake. However, observations
have been subtle and inconsistent in ad libitum-fed
conditions. Thus, the relevance of ghrelin-independent
GHSR signaling on food intake regulation has remained
uncertain. It is well established that the ghrelin/GHSR

Figure 5. GHSR signaling is required to display a full fasting-induced hyperphagia. (a) and (c) Changes in food intake and body weight,
respectively, of WT (n = 15) and GHSR-null (n = 11) mice during 2 days of fasting and refeeding, as described in Fig. 1. Data represent the means
6 SEM and were compared by two-way ANOVA. (b) The 5-day cumulative food intake during refeeding of WT and GHSR-null mice, respectively.
Data represent the means 6 SEM and were compared by unpaired t test with Welch’s correction. a P , 0.05 vs WT mice. (e) and (g)
Representative photomicrographs of ARC coronal sections of WT and GHSR-null mice, respectively, belong to ad libitum-fed and fasted groups,
subjected to chromogenic immunostaining against NPY and c-Fos, respectively. Arrows point to NPY-IR cells. Original scale bars, 100 and 10 mm
for the low and high magnification images, respectively. (d) and (f) Bar graphs displaying the quantitative analysis of the number of NPY-IR and c-
Fos-IR cells, respectively, in the ARC of each experimental group. Data represent the means 6 SEM and were compared by two-way ANOVA. aP
, 0.05 vs WT mice under fasting conditions.
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system becomes more relevant under
conditions of energy deficit, such as 48-
hour fasting, a situation where plasma
ghrelin levels, as well as the hypotha-
lamic expression of GHSR, are in-
creased (23, 24). Notably,
hypothalamic GHSR mRNA levels, as
well as the sensitivity to ghrelin, seem
to be higher in mice fasted for longer
periods of time (24, 27). Thus, we
reasoned the following: that (1) the
central GHSR signaling is likely to be
increased when hypothalamic GHSR
expression levels are high and (2) the
refeeding period that follows a 48-hour
fasting event would be an interesting
condition to unmask a potential effect
of constitutive GHSR signaling on food
intake regulation.

Here, we confirmed that mice dis-
play several days of hyperphagia after
an event of fasting and then return to
basal food-intake levels, as previously
reported (46, 47). Interestingly, the
extra amount of calories that refed
mice ingested during the fasting-
induced hyperphagia period exactly
matched the amount of calories that
mice did not consume during the
fasting period. Thus, the compensatory
hyperphagia seems to depend on ho-
meostatic aspects of feeding, which
drive food intake according to energy
balance. Notably, ghrelin levels in-
creased in fasted mice and quickly
returned to basal levels when the
fasting state was over, as expected
based on the short half-life of circu-
lating ghrelin (48). Indeed, ghrelin
levels in fasted rats return to basal
levels a few hours after refeeding (22,
49, 50). GHSRmRNA levels have been
shown to be increased in the ARC of
fasted mice and rats (44, 51). A more
recent study showed that GHSR
mRNA levels are ;3.4-fold increased,
specifically within ARC NPY/AgRP
neurons (25, 52). In line with these
observations, the ghrelin-induced in-
crease in the number of c-Fos-IR cells in
the ARC has been shown to be higher
in fasted animals (26). Here, we not
only confirmed that ARC GHSR

Figure 6. Central administration of the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, but not
genetic deficiency of ghrelin or GHSR antagonists, impairs the fasting-induced hyperphagia.
(a), (c), and (e) Changes in food intake of WT (n = 7) or ghrelin-KO (n = 5) mice; WT mice
ICV treated with vehicle (n = 7) or with the GHSR antagonists D-Lys(3)-GHRP-6 (n = 5) or
JMV2959 (n = 8); and WT mice ICV treated with vehicle (n = 12) or with the GHSR inverse
agonist K-(D-1-Nal)-FwLL-NH2 (n = 13), respectively. Mice were fasted and refed as described
in Fig. 1. Data represent the means 6 SEM and were compared by two-way ANOVA. (b), (d),
and (f) The 5-day cumulative food intake during refeeding of WT or ghrelin-KO mice; WT
mice ICV treated with vehicle, D-Lys(3)-GHRP-6, or JMV2959; and WT mice ICV treated with
vehicle or with K-(D-1-Nal)-FwLL-NH2, respectively. Data represent the means 6 SEM and
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mRNA levels increased in fasted mice but also showed
that ghrelin binding increased in the ARC of these ani-
mals, suggesting that gene transcription results in GHSR
protein biosynthesis. We did not detect an increase in the
number of ghrelin binding cells in the ARC of fastedmice,
but rather, we detected an increase in the presynaptic
bouton-like shape-labeling in this hypothalamic region.
Ghrelin binding has been already shown in the NPY and
g-aminobutyric acidQ:8 synaptic terminals within the ARC
and its targets (e.g., the hypothalamic paraventricular
nucleus), respectively, where it regulates neurotransmit-
ter release via the regulation of presynaptic calcium
channels (28, 44, 53, 54). Here, we found that the NPY-
IR signal displayed a dendritic localization in the ARC of
fed mice but had both a dendritic and a cell body lo-
calization in the ARC of fasted mice. These observations,
together with the fact that the NPY mRNA levels were
increased in the ARC of fastedmice, suggest that the NPY
biosynthesis is increased during fasting. In parallel,
POMC mRNA levels and the number of POMC-IR cells
were decreased in the ARC of fasted mice. Thus, it can be
hypothesized that the fasting-induced increase in GHSR
signaling promotes ARC NPY/AgRP neuron activation,
which in turn, inhibits the ARC POMC neurons (28).
Interestingly, ARCGHSRmRNA levels returned to basal
levels at day 2 of refeeding, whereas the density of ghrelin
binding sites in the ARC remained elevated at this time
point and returned to basal levels at day 4 of refeeding. In
addition, we found that the NPY levels remained elevated
at days 2 and 4 of refeeding, whereas POMC levels
returned to fed levels after refeeding. To our knowledge,
the in vivo half-lives of the GHSR mRNA and protein
have not been estimated. As the half-life for other GPCRs,
such as the k-opiod receptor, has been estimated to
several days (55), it seems reasonable to hypothesize that
GHSR mRNA gene expression in the ARC returns to
basal levels when the fasting state is over, whereas the
GHSR protein remains present in NPY/AgRP neurons
for a longer time period. Such increments of GHSR levels
in ARC NPY/AgRP neurons at the first days of refeeding

would impact NPY biosynthesis and as a consequence,
feeding behavior.

To test if the behavioral and neuronal changes detected
at the first days of refeeding require GHSR signaling, we
studied GHSR-deficient mice. Mice lacking GHSR
displayed a smaller hyperphagia during the refeeding
period compared with WT mice. In parallel, the in-
crements of the NPY levels and the neuronal activation,
as indicated by c-Fos signal, in the ARC of fasted GHSR-
null mice were also smaller compared with fasted WT
mice. These observations indicate that GHSR signaling is
required to display the full compensatory hyperphagia
that follows a fasting event. Remarkably, GHSR-null
mice displayed fasting-induced hyperphagia and
showed a subtle decrease in their total cumulative food
intake during the refeeding period (;15%) without
substantial differences in body weight compared with
refed WT mice. Such results are not unexpected, as a
result of inherent redundancies in the mechanisms re-
sponsible for body weight homeostasis-related food in-
take in which many hormonal [e.g., leptin (46)] and
metabolic [e.g. glucose (56)] systems are involved (57). It
is interesting to note that stress strongly influences eating
behaviors and that ghrelin signaling also modulates the
response to stress (39, 58, 59). Thus, the smaller fasting-
induced hyperphagia observed in GHSR-null mice may
be impacted by a different susceptibility to fasting-
induced stress of these animals. Further studies are re-
quired to investigate this aspect of the study in detail.
Notably, a previous study did not detect differences in
food intake of WT and GHSR-KO mice exposed to a
fasting-refeeding paradigm similar to the one used in the
current study (60). However, the study to which we refer
was performed with mice previously fed a high-fat diet
that weighed ;40 to 45 g, whereas we used young mice
ranging from 22 to 25 g of body weight, fed with regular
chow diet. As obese and/or aged mice are less prone to
adapt to metabolic changes (61), it is likely that such
differences may explain the diverse outcomes of
the studies.

Mice lacking the ghrelin gene and mice centrally
treatedwith two unrelatedGHSR antagonists displayed a
full compensatory hyperphagia after a fasting event.
Some, but not all, previous studies using different
pharmacological strategies (e.g., anti-ghrelin RNA spie-
gelmers, anti-ghrelin antibodies, GHSR antagonists) have
shown that the action of endogenous ghrelin is required
for the fasting-induced hyperphagia (8, 62–66). The
reason for these discrepancies is unknown, although
differences between Q:9experimental designs (e.g., dose,
administration protocols) are likely among the critical
factors that impact the results. To our knowledge, no
adverse effects have been reported for the tested GHSR

Figure 6. (Continued). were compared by unpaired t test with
Welch’s correction. aP , 0.05 vs WT mice ICV treated with vehicle.
(h) and (j) Representative photomicrographs of ARC coronal sections
of WT mice ICV treated with vehicle or K-(D-1-Nal)-FwLL-NH2 during
the fasting period, subjected to chromogenic immunostaining
against NPY and c-Fos, respectively. Arrows point to NPY-IR cells.
Original scale bars, 100 and 10 mm for the low and high
magnification images, respectively. (g) and (i) Bar graphs displaying
the quantitative analysis of the number of NPY-IR cells and c-Fos-IR
cells, respectively, in the ARC of each experimental group. Data
represent the means 6 SEM and were compared by unpaired t test
with Welch’s correction. aP , 0.05 vs WT mice ICV treated with
vehicle.
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ligand; however, toxicity is always a concern when drugs
are centrally administered. For the current study, phar-
macological tests were carefully set up, and mice were
treated with the maximum dose of GHSR antagonists
that did not induce any sign of sickness-like behavior to
avoid nonspecific effects of the compounds on food in-
take. Under these experimental conditions, GHSR an-
tagonists successfully, but partially, blocked the
orexigenic effect of exogenously administered ghrelin.
The fact that not only two completely unrelated GHSR
antagonists but also the genetic deficiency of endogenous
ghrelin failed to affect the compensatory hyperphagia
after a fasting event suggests that the ghrelin-evoked
GHSR activation was not required for such behavior.
Interestingly, we found that mice centrally treatedwithK-
(D-1-Nal)-FwLL-NH2 displayed a smaller compensatory
hyperphagia after fasting compared with mice treated
with vehicle. Importantly, the extent to which this
pharmacological treatment impacted hypothalamic,
constitutive GHSR activity cannot be directly measured;
however, the observation that WT mice treated with K-
(D-1-Nal)-FwLL-NH2 and GHSR-null mice displayed a
similar reduction of the fasting-induced hyperphagia
suggests that this GHSR inverse agonist fully abrogated
the receptor activity. It is interesting to stress that fasted
mice were centrally treatedwith K-(D-1-Nal)-FwLL-NH2

exclusively during the fasting period and that they dis-
played smaller increments of both NPY levels and neu-
ronal activation in the ARC at the end of the fasting
period. Thus, GHSR activity seems to play a role during
both fasting and refeeding periods. The fact that K-(D-1-
Nal)-FwLL-NH2 did not affect the food intake of GHSR-
null mice strongly indicated that the effects were specific.
Notably, K-(D-1-Nal)-FwLL-NH2 partially blocked
ghrelin-induced food intake (seeMaterials andMethods),
suggesting that this GHSR ligand may also affect the
ghrelin-evoked GHSR activation; however, the obser-
vations that the compensatory hyperphagia after fasting
was not affected in ghrelin-KO mice and in mice treated
with GHSR antagonists suggest that this eating behavior
is independent of the action of ghrelin.

Given the high constitutive activity of GHSR, both
antagonism and inverse agonism properties should be
taken in consideration when testing GHSR ligands as
potential drugs for clinical use. Here, we found evidence
that the decrease in GHSR signaling in mice mitigates the
hyperphagia that follows an event of food deprivation.
Further studies are necessary to test if changes in GHSR
signaling also contribute to the mechanisms controlling
long-term body weight after chronic caloric restriction.
Notably, a recent study showed that the suppression of
ghrelin signaling in obese mice prevents postdieting body
weight rebound, a problem commonly observed in dieters

(67). Thus, treatments capable of blocking constitutive
GHSR signaling may help to maintain a reduced calorie
intake after dieting and contribute to the long-term
management of obese patients (68). Further studies are
required to test if the suppression of ghrelin signaling is
also useful to treat other eating disorders that have been
linked to ghrelin signaling, such as binge eating (69, 70).
Importantly, an oral GHSR inverse agonist, named PF-
05190457, has been recently developed and already
tested in patients (71, 72). Thus, our observations in a
mouse model may have clinical applications in the
near future.
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45. Mustafá ER, López Soto EJ, Martı́nez Damonte V, Rodrı́guez SS,
LipscombeD, Raingo J. Constitutive activity of the ghrelin receptor
reduces surface expression of voltage-gated Ca2+ channels in a
CaVb-dependent manner. J Cell Sci. 2017;130(22):3907–3917.

46. Pedroso JA, Silveira MA, Lima LB, Furigo IC, Zampieri TT,
Ramos-Lobo AM, Buonfiglio DC, Teixeira PD, Fraz~ao R, Donato
J, Jr. Changes in leptin signaling by SOCS3 modulate fasting-
induced hyperphagia and weight regain in mice. Endocrinology.
2016;157(10):3901–3914.

47. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and
susceptibility to seizures of mice lacking neuropeptide Y. Nature.
1996;381(6581):415–421.

48. AkamizuT,TakayaK, IrakoT,HosodaH,Teramukai S,Matsuyama
A, Tada H,Miura K, Shimizu A, FukushimaM, YokodeM, Tanaka
K, Kangawa K. Pharmacokinetics, safety, and endocrine and appetite
effects of ghrelin administration in young healthy subjects. Eur J
Endocrinol. 2004;150(4):447–455.

49. Guo ZF, Ren AJ, Zheng X, Qin YW, Cheng F, Zhang J, Wu H,
Yuan WJ, Zou L. Different responses of circulating ghrelin, obe-
statin levels to fasting, re-feeding and different food compositions,
and their local expressions in rats. Peptides. 2008;29(7):
1247–1254.

50. Zizzari P, Hassouna R, Longchamps R, Epelbaum J, Tolle V. Meal
anticipatory rise in acylated ghrelin at dark onset is blunted after
long-term fasting in rats. J Neuroendocrinol. 2011;23(9):804–814.

51. Nogueiras R, Tovar S, Mitchell SE, Rayner DV, Archer ZA,
Dieguez C, Williams LM. Regulation of growth hormone secre-
tagogue receptor gene expression in the arcuate nuclei of the rat by
leptin and ghrelin. Diabetes. 2004;53(10):2552–2558.

52. Yasrebi A, Hsieh A,Mamounis KJ, KrummEA, Yang JA,Magby J,
Hu P, Roepke TA. Differential gene regulation of GHSR signaling
pathway in the arcuate nucleus and NPY neurons by fasting, diet-
induced obesity, and 17b-estradiol [published correction appears in
Mol Cell Endocrinol. 2016;428:171–173]. Mol Cell Endocrinol.
2016;422:42–56.

53. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove
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