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ABSTRACT: Understanding the effects of coupling protein protonation and conforma-
tional states is critical to the development of drugs targeting pH sensors and to the rational
engineering of pH switches. In this work, we address this issue by performing a
comprehensive study of the pH-regulated switch from the closed to the open
conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our
calculations show that D30 is the only amino acid that has two significantly different pKas
in the open and closed conformations, confirming its critical role in regulating pH-
dependent behavior. In addition, we describe the free-energy landscape of the
conformational change as a function of pH, obtaining accurate estimations of free-energy
barriers and equilibrium constants using different methods. The underlying thermody-
namic model of the switch workings suggests the possibility of tuning the observed pKa
only through the conformational equilibria, keeping the same conformation-specific pKas,
as evidenced by the proposed K125L mutant. Moreover, coupling between the
protonation and conformational equilibria results in efficient regulation and pH-sensing
around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing
constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis
presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight
into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of
pH switches beyond the common histidine trigger.

■ INTRODUCTION
pH is tightly regulated in organisms, even at the subcellular
level.1 Hence, even small changes in pH constitute a powerful
signaling mechanism that regulates a large number of cellular
processes, including proliferation, migration, and viral assem-
bly.2 Due to its critical role, pH dysregulation is associated with
diseases like cancer.3 pH differs from other regulation
mechanisms such as phosphorylation because its effects are
fast, reversible, and do not need to be catalyzed. pH Signaling
occurs via pH sensor proteins, in which changes in pH can
affect key properties such as the specificity of ligand binding,
cellular localization, aggregation propensity, and conformation.4

Because protein function is intrinsically related to structure,
pH-dependent allosteric regulation has important effects on
dynamics and catalysis. Understanding how pH-dependent
conformational changes take place is key to the development of
drugs targeting pH sensors,3 to the success of computational
drug discovery strategies,5,6 and to the engineering of pH-
switches.3,7−11

Protein structure, dynamics, and thus, functional pH
dependence arises from the presence of amino acid residues
that possess side chains capable of changing their protonation
state in response to the environmental pH. These titratable
groups are normally present in all proteins, yet not all of them
act as pH sensors. What makes some sites important to pH
regulation while others have a negligible effect? The key factor

is that in any protein, only a few amino acids will titrate at the
physiological pH range. As a consequence, in many pH-sensing
proteins, histidine residues (pKa = 6.5 in water) are critical to
pH regulation2,4,12 and histidine switching is a powerful tool to
engineer pH-dependent behavior.8−10 However, pKas are
strongly influenced by the residue’s environment,13 which can
cause large deviations from typical pKa values,

14 thus expanding
nature’s resources beyond a single amino acid.
Beyond the need of having at least one site titrating at

around physiological (or functional) pH, there are also specific
requirements for pH-dependent allosteric regulation arising
from the thermodynamic linkage between pH and protein
conformation.15−23 Tanford showed that it is necessary to have
at least one residue with different conformation-specific pKas,
implying that this group must experience significantly different
environments in each conformation.24 Tuning the environment
to achieve the necessary pKa shifts around physiological pH is
likely easier in the case of histidine residues, but nature’s
resourcefulness provides examples of allosteric regulation
through other amino acids as well.
Nitrophorin 4 (NP4) is an excellent model for studying pH-

regulated allostery because of its relatively small size, the
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availability of crystal structures at different pHs,25−28 and its
extensive computational29−33 and experimental34−40 character-
ization. This protein is found in the salivary glands of the
kissing bug Rhodnius prolixus, which acts as a vector for the
parasite causing Chagas’ disease (American trypanosomiasis).41

The role of NP4 is to selectively release nitric oxide (NO) into
the victim’s tissues, helping the insect feed by promoting
vasodilation. NP4 achieves this selectivity through pH sensing:
at the low pH of the insect’s salivary glands (5.5), NP4 is
predominantly in a closed conformation, while at the pH of the
victim’s tissues (7.5) it transitions to an open conformation.
While the strength of the heme−NO bond is pH-independent,
NO release is much more favorable in the open conformation
of the protein,30 and as a result, the conformational change is
the determining factor for pH-dependent regulation.
In the case of NP4, it is well-established that D30 plays a

critical role in pH-regulated allosterism.29,32,36 In the closed
conformation, D30 is buried and forming a hydrogen bond with
L130, while in the open conformation, it becomes deproto-
nated and solvent-exposed, thus losing the interaction. NP4’s
closed to open transition has an observed pKa of 6.5,

42 exactly
in the range necessary to achieve regulation around
physiological values.
Many computational pKa prediction methods are available to

identify residues that may be critical for pH sensing (see43 for a
review), but molecular dynamics (MD)-based methods44−56 are
ideal for focusing on how the effect of pH on protonation
influences protein conformation and dynamics. In this work, we
used a combination of constant pH MD (CpHMD) and pH
replica exchange MD (pH-REMD). CpHMD51 allows selected
residues to explore different protonation states along an MD
trajectory. Protonation changes are attempted regularly and
accepted or rejected after evaluating the energetic cost of the
proposed change based on the residue’s identity, environment,
and solvent pH. As a result, the simulation provides an
ensemble of properly weighted protonation states and
conformations at the pH of choice. In some cases, achieving
a sufficiently converged ensemble using CpHMD is compli-
cated;53,56 pH-REMD accelerates convergence and improves
conformational state sampling by introducing exchanges
between CpHMD simulations running at different pHs,56and
the implementation of MD packages on graphics processing
units (GPUs) allows for long simulations at low computational
cost.57−61 pH-REMD allowed us to explore the coupling
between conformation and protonation in a large pH range.
In this work, we will first address the importance of ionizable

residues on pH-regulated allostery in NP4, confirming the key
role of D30. Next, we will describe the pH-dependent free-
energy landscape for the conformational change. This section
includes calculations of conformational and acid/base equili-
brium constants, as well as estimations of free-energy barriers
for the conformational change. The values obtained are
discussed in the context of a thermodynamic pH switch
model for optimal pH-sensing. This is followed by calculations
that address the possibility of modifying NP4’s observed pKa
without affecting the conformation-specific pKas. Finally, we
turn our attention to dynamic aspects of the conformational
change, focusing on how the deprotonation of D30 at high pH
drives the conformational change. The type of calculations and
analysis presented here are of general applicability and provide
a guide as to how more complex systems can be studied. Our
results provide valuable insight into how pH-regulated allostery

works that can be of great value for designing drugs that target
pH sensors and for rational engineering of pH switches.

■ RESULTS AND DISCUSSION
What is the Effect of NP4 Titratable Residues on the

Thermodynamics of the pH-Dependent Conformational
Change? The sequence of NP4 contains 18 aspartic acid, 6
glutamic acid, and 3 histidine side chains that may change their
protonation state in the 5.5−7.5 pH range where this protein
fulfills its biological role. A detailed analysis of the environment
for each of these titratable residues in both the open and closed
conformations (presented in the Supporting Information)
reveals that many of these residues are always solvent exposed
or maintain the same environment in both conformations. It is
safe to assume that these residues have no effect on the
thermodynamics of the conformational change because their
pKas will be the same in both conformations and can be
modeled using a fixed protonation state. However, we found
that D30, as well as E32, D35, D129, and D132 may have a
significant role based on their location in the AB and GH loops
(Figure 1) and the complex hydrogen bonding interactions

displayed between them. In order to determine whether any of
these residues has significantly different pKas in the open and
closed conformations, we performed 5 independent CpHMD
simulations, each 20 ns long, of the closed conformation at pH
5.5 and of the open conformation at pH 7.5, where we titrated
these residues. The results, shown in Table 1, reveal that D30 is
the only residue that has two significantly different,
conformation-dependent pKas. On the basis of these results,
all other simulations will consider D30 as the only titratable
residue, unless otherwise specified.

Free-Energy Landscape of the pH-Dependent Con-
formational Change. The recent development of fast pH-
REMD methods56 makes it possible to study the equilibrium
between the different conformations as a function of pH. In
previous work,29 we identified two key distances that report on
whether the hydrogen bond between D30 and L130 is formed
(d30−130) and the NO-escape route is open (d36−130). The
different values of these distances in each conformation allow
us to use the sum of d30−130 and d36−130 as a reaction
coordinate that describes salient features of the conformational

Figure 1. Location of D30, E32, D35, D129, and D132. The AB loop
and GH loops are shown in darker colors than the rest of the protein.
The closed conformation is depicted in light blue, while the open
conformation is shown in yellow.
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change. From our simulation data, we can calculate the
probability of observing a conformation whose reaction
coordinate value lies in a certain range at each pH. Using this
probability, we can estimate the relative free energies of each of
these structures. Figure 2 shows the resulting pH-dependent

free-energy map. The minimum corresponding to the closed
conformation is narrowly distributed around a coordinate value
of 9.5 Å, while the minimum corresponding to the open
structure is much wider, centered at 17 Å and 0.65 kcal mol−1

higher in free energy. Both conformations increase their free
energy as we move away from their optimum pHs, but the open
conformation remains more energetically accessible than the
closed one. At pH = 6.5, the free energy of both minima is
similar and the transition between them would require an
activation free energy of 1.56 kcal mol−1.
The acid/base equilibrium constants can also be determined

from the results of the pH-REMD simulations. The observed
pKa can be determined directly from the titration curve
obtained by plotting the fraction of deprotonated D30 ( f D) as a
function of pH (Figure 3), which we fit to the Hill equation:

=
+ −

f
1

1 10nD (pKa pH) (1)

On the basis of the fitting for five different sets of pH-REMD
simulations (Figure 3, black titration curve), we found the
average observed pKa to be 6.2 ± 0.3, in excellent agreement
with Montfort’s experimental value of 6.5.42 Most importantly,

the observed pKa falls in the relevant physiological range
necessary for pH regulation, even though the usual pKa of an
aspartic acid residue is ∼4.14
In order to obtain the conformation-specific pKas, we

calculated the individual titration curves only for those
structures unambiguously assigned as open or closed. At any
given time, we determined the conformation of NP4 using a
distance criterion based on d30−130 and d36−130 (detailed in
the Supporting Information). The resulting titration curves
were also fit to the Hill equation and are shown in Figure 3.
The average pKa for the closed conformation is 8.9 ± 0.01,
while the average pKa for the open conformation is 4.5 ± 0.2.
Both are in good agreement with our previous estimations (8.5
and 4.3, respectively), based on short CpHMD of open and
closed structures separately.29 As expected based on the
environment of D30, the pKa in the closed conformation is
considerably up-shifted, while the one for the open
conformation is close to the average pKa of a solvent-exposed
aspartic acid. These calculations confirm that D30 has two
different, conformation-specific pKas, as required to regulate
pH-dependent allostery.24

It is important to note that none of the conformation-specific
pKas correspond to the observed pKa of 6.2 ± 0.3. In previous
work,29 we showed that the observed pKa is not simply an
average of the conformation-specific pKas because the
conformational equilibria, itself pH-dependent, must be taken
into account. This can be accomplished using a four-state
model, which we summarize in Figure 4 and is applicable to any
pH switch involving two conformations and regulation by a
single amino acid. This model has four parameters: the D30
acid/base equilibrium constants in each conformation (Ka) and
the conformational equilibrium constants when D30 is
protonated (KH) or ionized (KD). Of these four, only three
are independent and we will show that their values are
constrained. Using the equation presented in Figure 4 and the
acid/base equilibrium constant values determined from the pH-
REMD simulations, we find that the conformational equili-
brium constant when D30 is deprotonated is KD = 580 ± 400.
It is also possible to obtain an independent estimation of KD

using umbrella sampling to compute the free-energy profile of
the conformational change. The nudged elastic band method
was used to obtain a minimum energy path connecting the
closed and open states at a fixed D30 protonation. This

Table 1. Average pKa Values and 95% Confidence Intervals
for D30, E32, D35, D129, and D132 in the Closed and Open
Conformationsa

titratable residue closed conformation, pH 5.5 open conformation, pH 7.5

D30 8.6 ± 0.5 5.2 ± 0.3
E32c 5.5 ± 0.6 5.4 ± 0.3
D35c 5.5 ± 0.3 5.0 ± 0.2
D129c 3.4 ± 0.3 3.7 ± 0.6
D132b 1.9 ± 1.9 2.6 ± 0.7

aResidue pKas were estimated based on the fraction of time spent
protonated in the corresponding simulation, assuming ergodicity and
Henderson-Hasselbach titration curves. bD132 interacts with the
backbone amino groups of T3 and K4, as well as the hydroxyl group of
T3 during most of the dynamics, shifting its pKa down substantially.
cThe minor upward pKa shifts of E32 and D35 are caused by transient
interactions with D129, shifting its pKa down as a result.

Figure 2. Relative free-energy map for the pH-dependent conforma-
tional change. The closed and open basins are labeled C and O,
respectively. Isocontour lines from 0.5 to 3.5 kcal/mol in 0.5 kcal/mol
increments are shown.

Figure 3. Average titration curves for the closed (purple) and open
(green) ensembles and for the complete ensemble (black) obtained
using pH-REMD. Each point corresponds to the average f D at the
given pH computed from the five independent simulations. Error bars
correspond to the standard error of the mean.
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approach has been used successfully to obtain free-energy
barrier estimations in good agreement with experimental data.62

The resulting profiles (included in the Supporting Information)
allow us to estimate the conformational equilibrium constants
based on the free-energy difference between the minima
corresponding to the closed and open conformations. The
values of KD obtained are 263, based on the calculation where
D30 is deprotonated, and 83 based on the calculation where
D30 is protonated and using the pKa values reported above.
These values fall within the range determined from the pH-
REMD simulations and support our previous prediction of KD
being of the order of 102 to maximize NP4’s efficiency.29 The
free-energy barrier for opening is 5.1 kcal mol−1 in the
protonated case and 0.3 kcal mol−1 in the deprotonated case,
showing that the opening rate is expected to be ∼3000 faster
when D30 deprotonates. In terms of the biological function of
NP4, this difference allows the conformational equilibrium to
be established quickly when the protein is injected into the
blood, thus allowing fast NO release from the open
conformation.
To make a pH-regulated switch work, having different

conformation-specific pKas is crucial but not sufficient. There
are also constraints on KD to achieve proper regulation and
thus, it is interesting to assess the effect of KD on the protein’s
ability to fulfill its biological role: it must be predominantly
closed at pH 5.5 to avoid NO release inside the salivary glands
of the insect and predominantly open at pH 7.5 to maximize
NO release into the victim’s tissues. In this context, we can
define a score S for the conformational switch in terms of the
mole fractions of the open and closed conformation at each pH
(eq 2). In a hypothetical case where NO release is perfectly
bimodal, each term would have a value of 1, resulting in Smax =
2.

= − + −S X X X X( ) ( )closed open pH5.5 open closed pH7.5 (2)

On the basis of the model presented in Figure 4, the score
can be written as a function of the two conformation-specific
pKas and KD. For cases like NP4’s, where the critical residue for
the conformational change is solvent-exposed in one of the
conformations, one of the pKas is fixed and only two other
variables remain in our model: the pKa in the remaining
conformation and KD. Figure 5 shows S as a function of these
two variables. The highest pKa reported for an aspartic acid
residue is 9.2,14 so we limited the plot to values lower than 9.5.
The plot shows that only certain combinations of KD and
closed pKa values result in efficient conformational switching,

falling in the red region of Figure 5. The KD values estimated
using pH-REMD and umbrella sampling calculations all fall
within this range. Outside this region the score drops for
different reasons: if Ka (closed) is too high or too low, pH
switching will not happen at pH 6.5; if KD is too low then Xopen
at pH = 7.5 will be low; and if KD is too high, this also makes
KH high, causing a low Xclosed at pH = 5.5.
This type of analysis could be applied to any other system

where only one residue is responsible for pH-dependent
regulation, adjusting the score definition to the pH values
relevant for that particular system. If, unlike in this case, one of
the conformation-specific pKas is not known, the analysis can
be performed for different combinations of values. The plots
obtained have the same general features, but the optimum-
switching zone and the iso-pKa contour lines would shift (see
the Supporting Information for an additional example). It is
noteworthy that pH-switching is more efficient when the
difference between the conformation-specific pKas is larger, as
long as KD also increases so as to remain in the regulating
region of the plot. This implies that even in those cases where
histidine residues are responsible for pH-dependent regulation,
it is necessary for these sites to have two sufficiently different
conformation-specific pKa values.

Can We Modify the Observed pKa without Affecting
the Conformation-Specific pKas? In accordance with the
model we presented,29 the observed pKa depends on the values
of the conformation-specific pKas, and the equilibrium constant
KD. This implies that, in principle, it should be possible to
modify the observed pKa by tweaking only the conformational
equilibrium. On the basis of this idea, we devised mutants
where the KD value would be different, but the pKas of D30
would remain the same. V36 is an obvious target for mutations,
since we know that the packing of its side-chain against that of
L130 stabilizes the closed conformation. However, the V36
mutants attempted either had no significant effect on the
observed pKa (e.g., V36A) or affected both the observed pKa
and the conformation-specific pKas due to changes in the
solvent exposure of D30 (e.g., V36G). Because of this, we
turned our attention to K125, a residue located in the GH loop,
away from D30. This residue forms a hydrogen bond with the
heme 50% of the time in the closed conformation, and the
hydrocarbon part of its side chain is packed against L130. In the
open conformation, it forms this hydrogen bond only 10% of
the time, and it is more solvent-exposed. In order to validate

Figure 4. Thermodynamic model proposed,29 and expression for the
observed pKa in terms of the parameters of the model. CH: closed
state with D30 protonated; C−: closed state with D30 deprotonated;
OpH: open state with D30 protonated; Op−: open state with D30
deprotonated. Ki are the equilibrium constants for the reactions in the
direction shown by the arrow. KD and KH are not independent and are
related by KH = [KDKa(closed)/Ka(open)].

Figure 5. S as a function of the pKa of the closed conformation and
KD. The calculated values of KD are shown using a ● (pH-REMD), ■
(umbrella sampling, deprotonated case), and ▲ (umbrella sampling,
protonated case). Isocontours of observed pKa at different values are
also shown.
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that a possible protonation change in K125 would not affect the
results, we performed a pH-REMD simulation where both
K125 and D30 were allowed to titrate and observed no
differences with respect to the simulations where only D30 was
titratable (details available in the Supporting Information). In
the K125L mutant, the closed conformation is still stabilized by
packing of L125 against L130, but the hydrophobic nature of
the leucine side chain relatively destabilizes the open
conformation, in which it becomes solvent-exposed. Figure 6

shows that the titration curve obtained for the K125L mutant
differs significantly from the WT curve at pH 6.5. As a result,
the observed pKa for K125L is 6.8 ± 0.4, while the pKa of D30
in the closed conformation is 8.9 ± 0.01 and in the open
conformation is 4.5 ± 0.2. The KD calculated from these values
is 250 ± 160. Although this value is not statistically different
from the one observed for the WT due to the large uncertainty
in its estimation, it is the only parameter that is changing
enough to explain the changes in the titration curve. Taken
together, our results confirm that it is possible to modulate the

observed pKa by modifying KD while keeping the conformation-
specific pKas constant.

Dynamics of the pH-Dependent Conformational
Change. In order to study the details of how the conforma-
tional change from closed to open takes place, we performed
eight 40 ns simulations where the closed conformation is
initially placed at a pH of 7.5, at which the open conformation
is more stable. For those simulations where the conformational
change took place, we mapped the D30 protonated fraction
with respect to d30−130, which reports on whether the key
hydrogen bond is formed and d36−130, which increases when
the protein opens to facilitate NO escape, as the simulation
progressed (Figure 7). Our results show that deprotonation

begins while the protein can still be considered closed (yellow
and orange points in the left lower quadrant), after a slight
increase in the hydrogen-bonding distance between D30 and
L130 that can be interpreted as the opening necessary for a
water molecule to be able to interact with D30 and change its
protonation. In the majority of cases, the transition to the open
conformation takes place through the lower right quadrant.
This is consistent with a conformational change driven by a
change in protonation of D30, since d30−130 increases first,
and d36−130 increases later as a consequence, opening the
protein. Once the system crosses over to the open quadrant, it
explores a larger range of conformations, consistent with the
fact that the open minimum is much wider than the closed one
and the number of possible open structures is expected to be
much larger than the number of possible closed configurations.
In other words, NP4’s allosteric transition occurs in two steps:
first the D30 pH switch is locally opened, fixing D30 in the
charged, solvent-exposed configuration and then the AB and
GH loops open, paving the way for NO escape. It is important
to note that because of how the protonation changes are
treated in our simulations, we are working under the
assumption that protonation changes are much faster than
conformational changes. This assumption is normally employed
when studying the kinetics of similar systems.63

One interesting possibility is that while E32, D35, D129, and
D132 play no role on pH-regulated allostery, they may play a
role in the details of how the conformational change takes
place. In order to consider this, we performed the same type of
simulations but now allowing all these residues to change
protonation. Out of the five simulations where the conforma-

Figure 6. (A) Location of K125 in the closed (blue) and the open
(orange) conformations. L130, D30, and the heme are also shown. (B)
Titration curves of K125L (●, solid lines) and WT NP4 (■, dashed
lines). The values shown are the averages of five different independent
pH-REMD simulations; error bars correspond to the standard error of
the mean. Green: open ensemble; purple: closed ensemble; black:
complete ensemble.

Figure 7. Mapping of the protonated fraction as a function of d30−
130 and d36−130 for one of the trajectories at pH 7.5 that starts from
the closed conformation. The plots for all trajectories are available in
the Supporting Information. Each data point represents the average
value for 0.2 ns.
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tional change took place, in three of them, there are no
noticeable differences with respect to the case where only D30
is allowed to titrate. In the remaining two, we observed that the
hydrogen bond between E32 and D129 was formed most of the
time before D30 became deprotonated, causing an increase in
the d30−130 distance. However, because the E32-D129 bond
was formed, d36−130 did not reach values typical of the open
conformation until this bond was broken (see the Supporting
Information for more details). These results show that although
we determined that E32, D35, D129, and D132 have no effect
on the thermodynamics of the conformational change, they
might have an effect on its kinetics, which we are not able to
quantify based solely on these simulations.

■ CONCLUSIONS
In this work, we present a comprehensive study of the pH-
regulated allosteric change that controls NP4 activity and allows
it to fulfill its function. Our results show that D30 is the only
amino acid whose protonation equilibrium is thermodynami-
cally linked to the conformational change, since it is the only
residue that has two significantly different conformation-specific
pKas. In accordance with our calculations, the pKas for the
closed and open conformations are 8.9 ± 0.01 and 4.5 ± 0.2,
respectively, confirming that D30 has two significantly different
conformation-specific pKas due to the different environments it
experiences in each state. This property of D30 is what
determines its crucial role in regulating pH-dependent allostery.
Our simulations allowed us to explore the pH-dependent

free-energy landscape of NP4’s conformational change. While
the minimum for the closed conformation is narrow, the one
for the open case is wider and shallower. At pH 6.5, both states
have similar free energies and the barrier for the transition
between them is low. We also computed the observed pKa to be
6.2 ± 0.3, in excellent agreement with experimental results42

and within the range necessary for regulation around
physiological pH. Our estimations of KD using different types
of calculations all yield values on the order of 102, which fall in
the range required for efficient pH switching. Our model for
how the observed pKa arises from the coupling between
conformational and protonation equilibria suggests the
interesting possibility of being able to tune this value without
changing the conformation-specific pKas. Our calculations
confirm this for the K125L mutant.
In accordance with our data, NP4’s allosteric transition

occurs in two steps: first the D30 pH switch is locally opened,
allowing D30 to deprotonate, and then the AB and GH loops
open, paving the way for NO escape. This is consistent with
D30 acting as the allosteric trigger because when it becomes
charged at pH 7.5, breaking the hydrogen bond to L130, this
results in an unfavorable electrostatic interaction that is the
driving force for the conformational change. Our results suggest
that E32 and D129 may play a role in the kinetics of this event
but do not affect the equilibrium distributions.
On the basis of the results obtained for NP4, we present a

general thermodynamic model of a protein pH switch between
two conformations regulated by a single amino acid. The four-
state model, based on a single titratable residue and two protein
conformations, allowed us to analyze the requirements for
efficient conformational switching. Our data shows that the
switch works only for certain combinations of values for the
acid/base and conformational equilibrium constants, which
maximize the populations of each conformation at the two pH
values of relevance. This analysis can be applied to any other

case where the conformational change is driven by a single
amino acid that is solvent exposed in one of the
conformations.64 It is worth noting that even in cases where
a histidine residue is responsible for pH-dependent regulation,
having two sufficiently different conformation-specific pKas is a
requirement for efficient conformational switching.
Our results show clearly that efficient pH-regulated allostery

can be accomplished for residues other than histidine, a fact
that seems to be given little attention when considering how to
engineer pH switches, which are largely histidine-based8−10 or
when analyzing what residues play important roles in pH
sensors that could be interesting drug targets. Garcia-Moreno
and co-workers have laid the foundations for tuning the pKa of
buried ionizable groups,7 making it possible in principle to
design systems where pH-regulated allostery works in a similar
way as in NP4: having a titratable residue that is solvent-
exposed in one conformation and tuning the pKa in the state
where it is buried to achieve an observed pKa in any desired
range between them.

■ METHODS
General Considerations. All simulations were performed

using the AMBER12 suite.65 The Amber ff99SB force field66

parameters were used for all residues except the heme, for
which we employed parameters developed and tested by our
group.67 The SHAKE algorithm was used to keep bonds
involving H atoms at their equilibrium length.68 Newton’s
equations were integrated with a 2 fs time step, and frames were
collected at 1 ps intervals. All simulations used different random
seeds to avoid synchronization artifacts.69 Initial structures for
each conformation were derived from 20 ns long dynamics with
fixed protonation states, which we describe in detail else-
where.29 These started from PDB = 1X8O (1.01 Å) for the
closed conformation, and PDB = 1X8N (1.08 Å) for the open
conformation.25

Constant pH Molecular Dynamics (CpHMD). Starting
topologies were built using the tleap module of AmberTools 13,
and the initial protonation of titratable residues was chosen in
agreement with previous work.25,29−31 The initial structure was
minimized for 1000 steps using 10 kcal mol−1 Å−2 restraints on
the backbone, and then heated using a linear gradient from 10
to 300 K during 0.2 ns and maintained at the final temperature
during 0.2 ns using the same backbone restraints. Finally, we
performed 1 ns of dynamics with 1 kcal mol−1 Å−2 restraints on
the backbone. All production simulations were performed using
the pmemd.cuda module of AMBER12.65 We used the
Generalized Born implicit solvent model,70 a 0.1 M salt
concentration, an infinite cutoff for nonbonded interactions,
and a 300 K temperature maintained using Langevin dynamics
with a collision frequency of 10 ps−1. Using the CpHMD
method,51 we attempted a change in protonation state every 5
steps. Amino acid pKas were estimated based on the fraction of
time spent protonated, assuming ergodicity and Henderson-
Hasselbach titration curves (pKa = pH − log([X−]/[HX])).

pH-Replica Exchange Molecular Dynamics (pH-
REMD). Starting topologies were built using the tleap module
of AmberTools 13, and the initial protonation of titratable
residues was chosen in agreement with previous work.25,30,31 All
pH-REMD simulations were run using 8 equally spaced replicas
in the 2.5−9.5 pH range. The initial closed and open structures
were minimized and equilibrated like those for CpHMD. The
pH-REMD simulations were started using the equilibrated
closed structure as the initial structure for replicas in the 2.5−
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5.5 pH range, while the remaining replicas started from the
equilibrated open structure. Each replica was initially simulated
at its corresponding pH for 1 ns, using the pmemd.cuda.MPI
module, before any exchange between replicas was allowed.
During the 50 ns production stage, we attempted to exchange
replicas every 1000 steps. All other simulation parameters were
the same as for CpHMD.
Nudged Elastic Band and Umbrella Sampling Simu-

lations. Starting structures were obtained from 20 ns long
molecular dynamics simulations in implicit solvent70 at 300 K
of the open and closed conformation with D30 either
constantly protonated or deprotonated. For those simulations
where the structure would not be stable32 (closed with D30
deprotonated, open with D30 protonated), we used 1 kcal
mol−1 Å−2 restraints on the backbone to prevent the
conformational change. The NEB method was used to obtain
structures within a path that links the closed and open
conformations for each protonation state.62 Path calculations
for each protonation state were performed by linking 12 copies
of the closed structure and 12 copies of the open structure.
NEB forces were calculated on all atoms, and a Langevin
thermostat was used. The 6 stage simulated annealing path
optimization procedure employed is similar to the one used by
Bergonzo et al.:62 (1) 80 ps equilibration at 300 K with 10 kcal
mol−1 Å−2 spring forces and a 100 ps−1 collision frequency to
ensure rapid uniform heating and a viscosity that stabilizes the
system against the force of the springs; (2) 500 ps equilibration
at the same temperature, increasing spring forces to 50 kcal
mol−1 Å−2 and decreasing the collision frequency to 75 ps−1;
(3) stepwise heating from 300 to 350 K during 80 ps, with a
spring constant of 25 kcal mol−1 Å−2 and the same collision
frequency as stage 2; (4) 500 ps equilibration at 350 K; (5)
stepwise cooling to 300 K over 100 ps; and (6) final
equilibration at 300 K for 1000 ps, using the same collision
frequency and spring constant as in stage 3. This calculation
allowed us to identify the distance between CB in V36 and CG
in L130 (d36−130) as a suitable driving coordinate for
subsequent umbrella sampling given its linear variation (see the
Supporting Information).
Each structure obtained from NEB was solvated using TIP3P

waters, and the resulting water boxes were relaxed by subjecting
them to 2000 steps of minimization, followed by 100 ps of
linear heating from 50 to 300 K and 350 ps of N, V, T dynamics
at 300 K, all using large 100 kcal mol−1 Å−2 restraints on the
protein. Umbrella sampling was performed using 10 kcal mol−1

Å−2 restraints on the d36−130. Each umbrella was equilibrated
for 100 ps, followed by 2.5 ns of production simulations.
WHAM analysis was used to calculate free energies.71 All
explicit solvent simulations were performed using periodic
boundary conditions and Langevin dynamics with a 2 ps−1

collision frequency.
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