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We present an alternative numerical approach to compute the number of particles created inside a cavity due
to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always
remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on
the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding
equations of modes. By a further comparison between the ground state before and after the movement of the cavity
wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation
of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within
this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios
where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic
field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)—mode
photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a
tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare
the numerical results with analytical predictions as well as a different numerical approach. Its extension to three

dimensions is also straightforward.
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I. INTRODUCTION

One of the most intriguing and fascinating features of
quantum field theory resides in the nontrivial nature of its
vacuum states. Quantum fluctuations present in the vacuum are
responsible for nonclassical effects that can be experimentally
detected. The most well known of such phenomena is the
Casimir effect. An even more fascinating feature of the quan-
tum vacuum appears when considering dynamical boundaries
conditions. The presence of moving boundaries leads to a
nonstable vacuum electromagnetic state, resulting in the gen-
eration of real photons, which is an amazing demonstration of
the existence of quantum vacuum fluctuations of QED, referred
to in the literature as the dynamical Casimir effect (DCE)
[1-5].

A scenario of particular interest is a so-called vibrating cav-
ity [6], where the distance between two parallel ideal mirrors
changes periodically in time. A moving mirror modifies the
mode structure of the electromagnetic vacuum. If the mirror
velocity, v, is much smaller than the speed of light, ¢, then
the electromagnetic modes adiabatically adapt to the changes
and no excitations occur. Otherwise, if the mirror experiences
relativistic motion, changes occur nonadiabatically and the
field can be excited out of the vacuum, generating real photons.

The quantum theory of relativistic fields with moving
boundaries was first explored by Moore in a remarkably
original paper on the quantum formulation of linearly polarized
light in a one-dimensional moving cavity [7]. The primary
result of this investigation was the discovery that moving
mirrors in a vacuum create photons. Later, motivated by
developments in quantum field theory in curved spacetime,
the specialization to a single moving mirror in Minkowski
spacetime was carried out by the authors of Refs. [8,9], who
again found that nonuniformly accelerating mirrors generate
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radiation. From a theoretical point of view, it is widely accepted
that the most favorable configuration in order to observe the
phenomenon is a vibrating cavity, in which it is possible to
produce resonant effects between the mechanical and field
oscillations. Although the direct measurement of radiation
generated by moving mirrors is an important experimental
challenge, it has been asserted [10] that photon creation
induced by time-dependent boundary conditions has been
observed experimentally in superconducting circuits. This
experiment consists of a coplanar waveguide terminated by a
superconducting quantum interference device (SQUID), upon
which a time-dependent magnetic flux is applied. A related
experiment involving a Josephson metamaterial embedded in
a microwave cavity has been described in Ref. [11]. These
experiments stimulated new theoretical research on role of dy-
namical Casimir physics in quantum information processing,
quantum simulations, and engineering of nonclassical states of
light and matter [12-16]. There are also ongoing experiments
aimed at measuring the photon creation induced by the
time-dependent conductivity of a semiconductor slab enclosed
by an electromagnetic cavity [17], as well as proposals
based on the use of high-frequency resonators to produce the
photons and ultracold atoms to detect the created photons via
super-radiance [18]. However, despite this successful setup, no
optical frequency photons produced by DCE have been seen
yet. The main obstacle to its realization in a straightforward
way (by displacement of at least one of the cavity boundaries)
is a very low ratio of the boundary velocity to the speed of light
accessible nowadays in laboratory experiments. Therefore,
the only possibility for DCE observation with nonrelativistic
velocities is to accumulate the effect under resonance condi-
tions. Fortunately, recently studies involving superconducting
circuits showed the existence of parametric resonance in a
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superconducting cavity [19-22]. In Ref. [23], the authors
studied thoroughly the nonlinear cavity response, turning these
superconducting cavities into promising experimental setups
for the DCE.

Research in the field has mainly concentrated on one-
dimensional models, which are useful for giving an account of
the main physical processes participating in the phenomenon.
A cavity made of two perfectly parallel reflecting mirrors,
one of which oscillates with a mechanical frequency equal to a
multiple of the fundamental of the static cavity (while the other
one is at rest) is a typical case where this effect takes place
[24-29]. As said before, since the maximal velocity of the
boundary mirror that could be achieved under laboratory
conditions is very small in comparison with the speed
of light, parametric resonance becomes relevant (resonance
between the mechanical and field oscillations, where a gradual
accumulation of the small changes in the quantum state results
finally in a significant effect). Thus, many authors have studied
vibrating cavities where the boundary wall performs small
harmonic oscillations at twice the unperturbed eigenfrequency
of the lowest field mode. In most works, this problem has been
analytically studied through an expansion of the equations of
motion of the field in terms of the small oscillation amplitude
to find an approximative solution [multiple scale analysis
(MSA)] [30]. This method represents an improvement of a
perturbative approach [24-26] and yields solutions at longer
times. Depending on the law of motion of the driven wall,
some other asymptotical solutions have been found for cases
of harmonic motion [8,31]. In all cases, analytical approxima-
tions or strategies are necessary due to the complexity of the
problem, which involves a great number of degrees of freedom
(those of the field involved). The more realistic case of a three-
dimensional cavity is studied in Refs. [30-34]. The important
difference between one- and higher-dimensional cavities is that
the frequency spectrum in one spatial dimension is equidis-
tant while it is in general nonequidistant for more spatial
dimensions. An equidistant spectrum yields strong intermode
coupling, whereas in the case of a nonequidistant spectrum
only a few or even more modes may be coupled, allowing
for exponential photon creation in a resonantly vibrating
three-dimensional cavity. In all cases, the equations of motion
of the field modes of the electromagnetic field inside vibrating
cavities of one or higher dimensions are impossible to solve
analytically. In all references cited above, the authors make as-
sumptions that simplify the problem in some way and allow an-
alytical estimation of the particle created in particular regimes.

The electromagnetic field inside a dynamical cavity can
be decomposed into components corresponding to the electric
field parallel or perpendicular to the moving mirror. It is then
possible to introduce vector potentials for each polarization,
transverse electric (TE) and transverse magnetic (TM) [31].
The equations of motion for TE modes in a dynamical
rectangular cavity are equivalent to the equations of motion
for a scalar field with Dirichlet boundary conditions [30].
More complicated boundary conditions, so-called generalized
Neumann boundary conditions, emerge when studying TM
modes [31,32]. In most of the works cited above, only TE
polarization is treated.

The calculations involved in determining the physical out-
come of particle creation processes, though trivial to state, are
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often hard or impossible to complete. Usually it is necessary
to find the solution of a set of space- or time-dependent field
equations, with initial conditions covering a complete basis of
functions. Even though one can rely on simplifying approxi-
mations, the set of problems for which solutions can be found
analytically is considerably limited. In order to get insight
into the whole nonlinear problem with intermode coupling,
numerical schemes are much required. In Ref. [35], the author
has introduced a formalism allowing numerical investigation
of the DCE for scalar particles in a one-dimensional cavity.
Introducing a particular parametrization for the time evolution
of the field modes yields a system of coupled first-order
differential equations with Dirichlet boundary conditions. The
solutions of this system determine the number of created
particles and can be obtained by means of standard numerics.
The author employs this formalism to investigate the creation
of real particles in resonant and off-resonant cavities and
compares numerical results with analytical predictions. The
generalization of this method to higher dimensional cavities
is said to be straightforward. This makes it possible to
study the TE-mode photon creation in a three-dimensional
rectangular cavity because it can be related to the production
of massive scalar particles in a one-dimensional cavity [36].
However, as stated by the author, more complicated boundary
conditions appearing, for example, when studying TM-mode
photons cannot be treated within that numerical approach.
On the other hand, in Ref. [37], the authors present a Maple
package in order to solve the Moore equation (by considering
different trajectories of the wall), so as to compute the number
of particles created inside a one-dimensional cavity (also
Dirichlet boundary conditions and no extension to higher
dimensions) based on Refs. [38—42]. No further numerical
approaches of the DCE have been reported for Dirichlet and
Neunman boundary conditions. Our first approach in studying
the particle creation process in the DCE has been done by
considering the experimental setup of a superconducting qubit
at one end of the cavity [43]. This particular situation included
a more complicated boundary condition (compared to that of
Dirichlet and Neunman) and could not be computed in the
traditional way. This alternative procedure to computing the
particle creation can be extended to different time-dependent
boundary conditions as in order to study the particle creation
in a vibrating cavity fully numerically.

In the present paper, we shall introduce a detailed numerical
approach to simulate DCE and compute the number of particles
created by taking into account the intermode coupling and
holding all degrees of freedom of the problem. We shall
consider different type of boundary conditions for simulating
different physical situations: Dirichlet, generalized Neumann,
and generalized Robin. For each type of boundary condition
considered, we shall study the frequency spectrum inside
the vibrating cavity as it is close related to the particle
creation process. By introducing numerical considerations
of the processes involved in each case, we shall show the
particle created and compare the results obtain with analytical
predictions. We shall see that our approach reproduces known
analytical results and helps shed light into regions where
analytical approximates do not work. With this formalism at
hand, the DCE can be investigated numerically, making it
possible to study a variety of scenarios where no analytical

013307-2



ADAPTIVE NUMERICAL ALGORITHMS TO SIMULATE THE ...

results are known (large amplitude oscillations or arbitrary
wall motions). Of special interest is, of course, the realistic
case of the electromagnetic field in a three-dimensional
cavity, i.e., TE-mode and TM-mode photon creation. Finally,
by introducing generalized Robin boundary conditions (see
Ref. [44] for previous studies of this type of time-dependent
boundary condition), we can obtain a numerical analysis of
particle creation in a tuneable superconducting cavity [23].
The paper is organized as follows: In Sec. II, we discuss the
boundary conditions for different situations of a field inside
a cavity. In Sec. III, we detail all the procedures applied in
our numerical approach. In Sec. IV, we describe the cavity
spectrum for different boundary conditions and we show how
this spectrum is related to the number of particle creation
in each case. We shall compare our numerical results with
analytical predictions. Furthermore, we show the particle
creation in cases where there are no analytical results obtained.
Finally, in Sec. V we make our conclusions.

II. BOUNDARY CONDITIONS

First, we consider a rectangular cavity formed by perfectly
conducting walls with dimensions L, Ly, and L. The wall at
x = L isatrestfort < 0andstartstomove at?t = 0, following
a given trajectory L,(¢t) = L, — € A sin(2t), where € is a small
dimensionless parameter, 2 is an external frequency, and A
is the amplitude of the wall’s oscillation. In order to consider
the electromagnetic field inside the cavity, we introduce the
four-vector potential A, = ((p,g), which satisfies the wave
equation [J - A=0.

While for the static walls, the boundaries conditions are the
usual ones:

E =0, B, =0. (1)
On the moving walls, however, we must be very careful with
the boundary conditions. The electromagnetic field inside
a dynamical cavity can be decomposed into components
corresponding to the electric field parallel or perpendicular
to the moving mirror. It is then possible to introduce vector
potentials for each polarization, transverse electric (TE) and
transverse magnetic (TM). As the mirror moves in the x
direction, one can decompose the electromagnetic field in TE
and TM modes with respect to the x axis, as explained, for
example, in Ref. [32]. By imposing the boundary conditions
in the Lorentz frame (the one in which the mirror is at rest),
we can write

E™ = 5, AT, B™ — v x A, )
B — 5 AT EM™) — v 5 AW, 3)

which means that we use different vector potentials for
each polarization. In terms of these potentials, the bound-
ary conditions are relatively simple. Let us denote by §
the laboratory frame and by S’ the instantaneous mov-
ing frame. In §’, the TE vector potential satisfies Dirich-
let boundary conditions (DBC) A'™(x' =0,y’,z/,t') = 0.
Therefore, on the moving mirror A™[x = L. (1),y,z,1] = 0.
Similarly, qfor the TM vector potential, it is easy to check
that 78, A™[x = Ly(1),y.2.1] = [8x + L (03 ]A™[x =
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Ly(#),y,z,t] = 0, which is a generalized Neumann bound-
ary condition (NBC) with n* = (LXLI,O,O). On the static
mirror, the boundary conditions are AT (x = 0,y,z,1) =0
and 8XA(ZTM)(x =0,y,z,t) = BxAg,TM)(x =0,y,z,t) = 0. This
is the same for the other directions of the cavity considering
static mirrorsat y =0, y = L,, z =0, and z = L. It is easy
to note that by properly taking into account the polarization
of the different modes we can find the electromagnetic field
inside the cavity since the behavior of each TE vector field
is related to the problem of a scalar field subjected to DBC,
while the TM vector field deals with generalized NBC. As can
be seen, both boundary conditions differ in the fact that one is
applied on the field and the other one is applied on its spatial
derivative.

In order to simulate all possible cases where the DCE can
be tested, we can also consider generalized Robin boundary
condition (RBC). In this particular situation, we would be
considering the experimental setup of a superconducting
waveguide (L, > L,,L;) ending by a SQUID (located at
x = Ly), as explained in Sec. I. A time-dependent magnetic
flux through the SQUID generates a time-dependent boundary
condition. In such a case, the field satisfies the wave equation in
the cavity, along with the boundary conditions imposed by the
SQUID «(1)dxA(Lyx,1) + aa(t)A(Ly,t) + a3(1)A(Ly,1) = 0,
where a1, a, and a3 are defined by the physical properties of
the cavity. For the static wall of the superconducting waveguide
(x = 0), we can simply consider NBC or DBC.

So far, we have shown that by solving different boundary
conditions, we model different physical situations: TE modes
(Dirichlet), TM modes (generalized Neumann), and the exper-
imental setup of a SQUID at one end (generalized RBC). In
order to know the electromagnetic field inside the cavity, we
just have to consider the TE and TM configuration all together.
Moreover, by knowing the initial configuration of the field and
the one modified by the boundary conditions at a final time,
we can estimate the number of particles created in the cavity.
In the following, we shall explain this procedure in detail.

The vector pqtential field operator can be written in terms

of the creation 4, and annihilation 4, operators as
o0
A1) =Y Tana(x,0) + aj P (x,0]. )

Here, v,,(x,t) are the mode functions of the field and are chosen
so as to satisfied the boundary conditions mentioned above. For
t <0, ¥, (x,r) forms a complete orthonormal set of solutions
of the wave equation and each field mode is determined by a
non-negative integer n. When the mirror is moving, we do not
have a complete orthonormal set of solutions. Then, we should
expand each mode with respect to an instantaneous basis for
t>0as

Yalx,t) = 0 (Opi(x,1), )

k=1

where k is a positive integer and Qi”)(t) are canonical variables
to be determined. Inserting the expansion of field modes Eq. (5)
into the wave equation and integrating over spatial dimensions
lead to the equation of motion for the canonical variables,
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expressed as
0y + wp () Q;)
=Y Sus(t. Ly, Ly, L0y, O, Qs 05) O
N

+ Z TmS(taLX7l")CvL'Xﬂa)l‘la va QA" Q'.Y)Q.A(;n)ﬂ (6)
N

where the supraindex n refers to the field eigenstate n. We
shall have a set of m equations of motions for each mode n
of the field considered. As the free electromagnetic field is an
operator which can be written as the sum of an infinite number
of harmonic oscillators, the number of field modes involved
will be settled by the definition of a frequency cutoff A, which
will size of the numerical problem to be solved. The frequency
of the cavity w,, () is determined in each case by the boundary
condition. We shall see in the following that the field mode
equation always has the same structure so it is easy to include
all cases in the same numerical approach.

III. NUMERICAL METHOD

In this section, we describe the numerical method used for
solving the equation of motion of the field modes determined
by different boundary conditions. We shall see that all sets of
differential equations are very similar, with Dirichlet being the
easiest and Robin being the most complicated.

We shall solve the set of coupled differential equations
for the canonical variables Q;c”) and hence obtain information
about the behavior of the field modes, by performing a change
of variables so as to reach a new system of one order differential
equations:

Qm = Um,
Un = —0p()0n+ Y Sus(t, . )05+ Y Tus(t,..)Qs,

(7

where S,,(t,...) and T,,(t,...) are the coefficients ac-
companying Q, and Q; in Eq. (6). We have dropped the
supraindex for simplicity. The structure of the intermode
coupling mediated by the coupling matrix S,(¢,...) and
Tus(t, . ..) matrices depends on the particular kind of bound-
ary conditions. In most cases, we consider a static wall in
x =0 and a moving wall in the x direction, defined as
L,(t) = L, — Aesin(2t), where L, is the distance of two
walls in the static situation, 2 is an external frequency, €
is a dimensionless parameter which characterizes the small
deviation of the wall from the initial static position, and A is
the amplitude of the wall’s oscillation. In the particular case of
generalized Robin boundary conditions, we consider a SQUID
locatedatx = L.

The initial conditions, specified for each field mode in all
cases, are

10 =

s 0(0) = ~i, |25 (3)
; = —i\/ 5 8k
V2o, " k 2 e

which indicates that the field modes and their derivatives are
continuous at r =0, as long as L,(¢) and L, are smooth
functions. For a time dependence of the boundary L, (z) which
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is not sufficiently smooth (for example, discontinuities in its
time derivative), one may expect spurious particle creation. In
Appendix A, we present the different set of differential coupled
equations obtained in the case of using Dirichlet, Neumann,
and generalized Robin boundary conditions.

For each of the set of differential coupled equations and their
initial conditions, we have used an integration scheme based
on a fourth-order Runge-Kutta-Merson numerical method
between r = 0 and a maximum time f#y,,x > 0. The goal of
this family of solvers is to introduce a control in the time-step
size for keeping the error of the solution within a prescribed
bound, very useful when in a given problem there are abrupt
changes in the coefficients involved [45]. The truncation error
of the usual fourth Runge-Kutta methods can be made equal
to an approximated expression:

~1° f5(xi, fi, fa, 3. f4) + O(h®), )

where / refers to the time increment in each evaluation step.
The modifications introduced with Merson algorithms with
respect to the normal fourth-order Runge-Kutta method consist
in the design of a special function of fifth order for Eq. (9) using
a linear combination of the four earlier functions. After some
algebra, it is easy to arrive at an expression for an estimated
error of this step of integration. This error can be prescribed
under a certain defined value and consequently the time step
must be chosen in order to accomplish this prescription. If
under a certain time step the error estimation is greater than
the prescription values, the calculus is reinitiated with a minor
time step that matches the estimated error and repeated until the
total original time step is reached. Using this procedure, the
algorithm can be initiated with a relatively high time step and
when the variation of the coefficients or the rapidity of the
variations of the solutions require fewer time steps, the local
time is turned on and the algorithm alone searches for the
time step that maintains the error under the prescribed value.
By using this algorithm we can perform integrations without
time limitations and can explore solutions at any time scale
required.

In all cases, the moving wall is at rest at # = 0 and then is
turned on for times between 0 < ¢ < tp, with tp < fi,.x, Where
the wall remains static again. For times t < 0 and ¢ > tp, the
cavity is a static one and we know the set of orthonormal
functions. The quantization of the system is straightforward
through creation and annihilation operators:

1 . .
0,(t <0) = N (@pe™'" +alel), (10)

with frequency w, () = 1/L./(wn)? + M2, where L, is the
initial length of the cavity and M is a dimensionless mass
parameter (in the case of a three-dimensional cavity). For a
one-dimensional cavity, M = 0. The time-independent annihi-
lation and creation operators d,, &i associated with the particle
notion for r < 0 are subject to the commutation relations
[, a4 ] = [a},a),] = 0and [a,,d}] = 8,y. The initial vacuum
state |0,7 < 0) is defined by

a0, <0)=0 Vn. (11)

When the cavity dynamics is switched on at # = 0 and the
wall follows the prescribed trajectory L.(¢), the field modes
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are coupled. Then, the Q,, can be written as

0n(t = 0) = amer () +ale™ ], (12)

Y 7l
- 2w,
with complex functions e,'(¢) that satisfy the equation of
modes. When the motion ceases and the wall is at rest again

fort > tg, Q,(t) can be expressed again as

Qu(t > tr) = [an(tp)e @ + Gl tp)e’ @], (13)

1
F
V2w}
where the annihilation and creation operators an, fJ,,, and a),f

correspond to the particle notion for ¢ > ¢r. The final vacuum
state |0,¢ > tp) is defined by

al0,e > tp) =0 Van. (14)

As expected, the initial-state particle operators &, and &Z are
linked to the final-state operators @, and él by a Bogoliubov
transformation &, = Yl tF)am + B, (tp)&,;1]. The total
number of particles created in a mode n during the motion
of the wall is given by the expectation value of the particle
number operator fz,i a, associated with the particle motion for
t > tp with respect to the initial vacuum state:

Na(tp) = (0,6 < 01@faf0,6 < 0) = > |Buntr)*.  (15)

This is the way the number of particles created has
been computed in the literature, analytically (by solving
the Bogoliubov transformation [32,36]) and numerically (by
implementing a numerical approach to compute N,(t) as
defined above [36]). However, there is also another possibility
to achieve similar results. Herein, we propose an alternative
procedure. We can assume the unperturbed final state (r > #5)
to be of the form

0ut > tr) = ——[A,tp)e ™ + B, ™). (16)
V2o

We can therefore multiply both terms of the equation by
exp (—ia),iE t) and take the mean value in fp <t < fpax. In
this way, we are able to numerically evaluate |B,|> and the
particle number in field mode n as a function of time as
N, (t) = | B, (0)|%/ (2w?l). In our numerical approach, we solve
the equation of motion for the field modes (for Dirichlet, gener-
alized Neumann, and generalized Robin boundary conditions)
and evaluate the number of particles created in each case. In
Appendix B, we show the excellent agreement between our
numerical scheme, the analytical prediction of Ref. [32] and
the numerical approach proposed in Ref. [36].

Our numerical scheme so as to compute the number of
particles created in a mode field for each case considered
is basically resumed as (i) the definition of the basis of
orthonormal functions satisfying the boundary conditions and
the frequency spectrum of each cavity; (ii) the resolution
of a set of differential coupled equations for the canonical
functions Q, defined by the boundary conditions chosen; and
(iii) computation of B,(¢) so as to estimate the number of
particles created.

In order to obtain the numerical results presented in the
following sections, we proceed in the following way: Two
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cutoff parameters A (for the field modes considered) and
A,, (for the number of canonical variables considered) are
introduced to make the system of differential equations finite
and suitable for a numerical treatment. The system of n x m
coupled differential equations is then evolved numerically
from ¢t = 0 up to a final time #r and the expectation value
of Eq. (15) is calculated for several times in between. By
doing so, we interpret fr as a continuous variable such that
Eq. (15) becomes a continuous function of time. Consequently,
the stability of the numerical solutions with respect to the
cutoffs has to be ensured. In particular, A will be chosen such
that the numerical results for the number of particles created in
single modes are stable. In most cases, it is enough to choose
A, = A.Inour units, the spectral modes k, = €2, are given in
units of 1/L, (k,L, is dimensionless) and consequently time
is measured in units of L.

IV. PARTICLE CREATION

In this section, we shall show the particle creation for the
different physical situations considered above. In all cases,
we shall show that the numerical results obtained are in
complete agreement with the analytical predictions existing
in the literature.

A. Dirichlet and Neumann boundary conditions

When studying the particle creation in a cavity with moving
walls, it is important to study the energy spectrum inside the
cavity. For both Dirichlet (DBC) and Neumann boundary
conditions (NBC), the eigenfrequencies inside the cavity
satisfy the following condition:

7 (t)\/(rrn)2 + M2, (17)

where n is natural number. If the field is massless (which
corresponds to a one-dimensional cavity), then the spectrum
is equidistant; i.e., the difference between two consecutive
eigenfrequencies is constant. Otherwise, if M has nonzero
values, the spectrum is nonequidistant, corresponding to the
one of a three-dimensional cavity.

For example, by allowing the wall to have a frequency
Q = 2wy, we can see that the particle creation inside the cavity
behaves as shown in Fig. 1(a). It has already been derived
analytically that for a perturbation of the field mode equation,
the particle creation is quadratic in time [holding for times
~ 1/(€)] and linear for a later time regime [32]. The numerical
results perfectly agree with the analytical predictions at times
t < 1/e showing the initial quadratic increase of the total
particle number and the number of particles created in the
resonance mode n = 1. Some analytical approaches, as mul-
tiple scale analysis (MSA), reproduce these results if € < 1.
However, by solving the equation of motion of each field mode
[Eq. (A1)], we can go beyond the multiple scale analysis and
see that the particle creation is exponential at very long times.

We can give further significance to the consideration of M
in Eq. (17). If we assume that the mass parameteris M = Lok,
we can identify kj = J'r\/(ny/Ly)2 + (n;/L.)? to nondynami-
cal cavity dimensions. Then, the number of TE-mode photons
created in a three-dimensional cavity equals the number of

wn(t) =
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FIG. 1. (a) Left: Number of particles for the mode field 1, Ny, of a massless field inside a cavity with a moving wall under the perturbation
Q = 2w, with DBC. Parameters used: € = 0.001, A = A,, = 25. (b) Right: LogPlot behavior for the number of particles created N, coefficient
for different values of the mass parameter M under the perturbation of 2 = 2w, under DBC, suchas M = 1, M = 5, and M = 10. Parameters

used: € = 0.001, A =10, A =25,and A,, = 25.

scalar particles of mass k; created in a one-dimensional
cavity [35]. If we consider that the field has mass, then we
can see that the spectrum becomes nonequidistant and the
particle creation behaves different as it is exponential at very
short times. For a nonequidistant spectrum, in Fig. 1(b), we
show the number of particles created for the mode 1 of the field
and different values of the mass. This result has been obtained
by an analytical approach [32,36], assuming a small pertur-
bation leading to an exponential growth defined as N,(t) =
sinh(r?et /4LovVm? + M?L3)? for the first mode [36]. This
exponential behavior again agrees with our results; however,
we do not have the constraint of a small perturbative motion
as we solve the equation of motion of all field modes.

As said before, the only assumption we make is the number
of field modes A that the field contains. We can investigate
how fast we reach a stable solution as function of the number
of modes used to solve the set of coupled differential equations
[Eq. (A1)]in order to assure autonomy of the solution obtained.
In Fig. 2(a), we show the total number of particles N; created
for a fixed time by changing the total number of modes

0.0173 —— T

0.01728 | 1
0.01726 | 1
0.01724 1
0.01722 j—w""*\ e 1
0.0172 | 1
0.01718 | 1
0.01716 | 1
0.01714 | 1
0.01712 1

0.0171 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

A

N

for the parameters considered in Fig. 1(a). Since the DBC
yields the simplest set of differential coupled equations, in
this case, a total number of field modes of A = 10 already
gives an accurate solution, being very reliable when A > 20.
In Fig. 1(b), we plot the number of particles created N; for
M =1 for A = 10 (stronger dashed black line) and A = 25
thinner dotted black line. We can note that black dashes and
black dots overlap, meaning that the precision of the solution
is very accurate for both cases (considering A = A,,).

As the electromagnetic field involves both Neumann and
Dirichlet boundary conditions, we can analyze separately a
scalar field satisfying DBC and generalized NBC. This can
be done this way since TE modes of the electromagnetic field
are essentially described by Dirichlet scalar field, while TM
modes correspond to a Neumann scalar field (as explained in
Sec. I). In Fig. 2(b), we present the resonant photon creation
inside a three-dimensional oscillating cavity taking the vector
nature of the electromagnetic field into account. We compute
the number of particles created N; for a massless field for both
Dirichlet (blue dashes) and Neumann (red dots) conditions

Nq

Qt

20 40 60 80 100 120 140

FIG. 2. (a) Left: Total number of particles created inside a cavity with DBC and zero mass as function of the total number of field modes
A considered at a fixed time. Parameters used: € = 0.01, Q = 2w;. (b) Right: Number of particles for the mode field 1, Ny, of a massless field
inside a cavity with a moving wall under the perturbation 2 = 2w, with DBC (red dashes) and generalized NBC (blue line). Parameters used:

€ =0.01,M =0.5.
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FIG. 3. Particle creation when the wall is excited as 2 = 2w, for different fields in the cavity obeying DBC: (a) one-dimensional field
(M = 0) and (b) a massive field M = 1. In all cases, we show different values of €.

under resonance condition 2 = 2w;. In Ref. [32], authors have
studied in detail the resonant situation 2 = 2wy, and showed
that the exponential growth of created photons is greater for
TM modes. This implies a novel contribution since there has
been no numerical verification of this result.

B. Results beyond analytical estimations

In the following, we shall show results beyond analytical
estimations. As we do not consider any approximation in our
numerical approach, we can numerically estimate the behavior
of particle creation when the motion of the cavity wall is
considered arbitrary. It is important to note that the motion of
the wall must be described by smooth and derivable functions
in order to avoid the creation of spurious particle. In addition,
the cavity wall has to return to its original position after a time
Tr has elapsed. However, we are not limited to perturbative
motions and can consider different values of ¢, as can be
observed in Figs. 3(a) and 3(b).

In Fig. 3(a), we show the particle creation for a scalar field
satisfying DBC (M = 0). For this situation, it is well known
that particles are created quadratically in the perturbative
regime for times ¢ < 1/€. However, for bigger values of €, no
analytical prediction has been obtained. As has been shown, we
can obtain the expected results in the corresponding limits. In
addition, we can predict that for bigger values of €, the behavior
is no longer a power law function. In Fig. 3(b), we show the
particle creation for a massive field satisfying DBC. In this
case, we choose M = 1 and compute the particle creation for
different values of €. It is easy to note the behavior predicted
by Refs. [30,32,36] by the MSA analytical estimations for
€ = 0.001 intimes t < 1/e. However, we can add information
as for how the particle creation behaves as € increases.

C. Generalized Robin boundary conditions

As for generalized Robin boundary conditions (RBC),
the eigenfrequencies inside the cavity should satisfy a more
difficult relation, such as [23,46]

(wn L) tan(w, Ly) + xo(w, Ly)* = bg cos( fo). (18)

We numerically solve this transcendent equation using a
single Newton-Raphson method with an stopping error of

107'6. We therefore obtain the eigenfrequencies inside the
superconducting cavity as shown in Fig. 4, where we have
plotted the difference of consecutive eigenfrequencies (from
frequency w, to frequency wg) for different parameters of the
cavity. If we leave the experimental value xo = 0.05 fixed, we
can study the difference between consecutive eigenfrequencies
as a function of Vj. We can see that as the value of V), is bigger,
the the spectrum is more equidistant.

In Fig. 4, we can note that there is an equidistant and a
nonequidistant region of the cavity spectrum (different from
the other case). This particularity allows us to interpolate
between different situations. This means that by setting the
parameters of the generalized RBC, we can reobtain results
corresponding to either DBC and NBC (depending on which
term is nonzero) [see Eq. (A8)], or in other case, explore new
physical situations.

In Fig. 5(a), we present the number of particles created N,
for a massless field in a superconducting waveguide satisfying
generalized RBC by solving the set of differential equations
presented in Eqgs. (A6) and (AS8). By choosing parameters
Vo = 20 and € = 0.005, we convert the generalized RBC into

3.2
817 —.—,—r;(f:?:iiff’—""%T"T@Tfﬁ??{%:
| 2282 S
3} T ]
K DDDD

2.9

a
B
&

2.8 Wo-Wyld ——
Wa-Wo|d o
Wy-Wa|d o
Wg-Wyld o
Wg-Wg|d ——— 1

Dirichlet and Neumann

|wj-w;ld

2.7

2.6

25

0 10 20 30 40 50 60 70 80
Vo

2.4

FIG. 4. Difference of consecutive eigenfrequencies as a function
of Vi = by cos(fp), for a fixed value of yy = 0.05 for generalised
Robin boundary conditions. The constant line represents the differ-
ence of consecutive frequencies for all values of cavity for Dirichlet
and generalized Neumann conditions.
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FIG. 5. (a) Left: Number of particles created N, under the perturbation of Q = 2w, for Vi = 20, and a small perturbation amplitude
€ = 0.005, so as to have Ve ~ 0.1. For equidistant spectra, the coupling between an infinite number of modes generates a quadratic and linear
growth in the number of particles, for short and long timescales respectively. (b) Right: LogPlot behavior of the number of particles created
N, coefficient for a short temporal scale under a perturbation of 2 = 2w, for V) = 1, xo = 0.05, and ¢ = 0.001. We show the behavior of the
number of particles created for the first eigenstate of eigenfrequency w; = 0.8495 (red and blue dashed lines) and for the second eigenstate of
wy = 3.2819 (black dotted line). The difference between the red and blue dashed lines is that we consider different values of A,,. It is shown
that N, grows exponentially for N; as expected since the spectrum is nonequidistant. Parameters used: A = 10.

a DBC. This means that by setting the right combination of
parameters, we are investigating the equidistant part of the
spectrum. As expected, we verify that the coupling between
infinite numbers of modes generates a quadratic or linear
growth of the number of particles for short and long timescales
respectively. In this case, it is possible to check that Vpe < 1
and then MSA still applies [25], yielding an exponential
growth at longer times and showing results similar to the
Dirichlet case. In fact, this is a case where we can reproduce
Dirichlet results by considering a low-amplitude perturbation
in the equations of generalized RBC [43]. In Fig. 5(a), for
longer times, we draw a blue thick slope, which corresponds
to the linear growth predicted by the MSA analytical approach,
while the quadratic behavior of shorter times is generally
predicted by a simpler perturbative approach.

In Fig. 5(b), we still consider a massless field satisfying
generalized RBC. However, we choose parameters in the

Time of perturbation T = 20 t/(Q))

60000 0 |B1 |
50000
40000 - o
t==5
— 30000
m t==7
a
20000
NANNANAAAAAAAAT
t==3
a
10000
]
t==1 o
a
0 . . . . . : !
200 250 300 350 400

time

nonequidistant region of the spectrum, for example, by setting
Vo = 1,€ = 0.001, and xo = 0.05. In that case, w; = 0.8495,
wy = 3.2819, and w3 = 6.1403, just to mention a few eigen-
frequencies. By driving the cavity with an external frequency
Q = 2w, we see the exponential growth in the number of
particles created in mode field one N;. It is important to note
that  # |w; & w;|, which means there is only one single
mode under parametric resonance. As one expects, if the only
resonant mode is tuned with the external frequency 2, the
number of created particles in this mode grows exponentially
[similarly to Fig. 1(b) with different boundary conditions]. In
this case, we have solved the problem by using different values
of A,,. In the red solid line of Fig. 5(b) we have used A,, = 10
and in the blue dashed line A,, = 30. We have verified that for
values A,, > 30 the results obtained are similar. The difference
between both curves is only noticeable at short times. The
black line corresponds to the second eigenfrequency, which

Time of perturbation T =20 t/(Q2))

t==5 o B,

t==9

{

== =3

0 : : Lo : .
200 250 300 350 400

time

FIG. 6. (a) Absolute value of B; as function of time to show the role of the time ¢ for which the perturbation is on. It can be seen that
the number of particles A} = |B;|*/(2w,) is increased as the perturbation time is longer. Parameters used: Q = 2w, or V, = 1, £ = 0.05, and
€ = 0.001. (b) Absolute value of B, as function of time to show the role of the time ¢, which is considerably smaller compared with B; for

the same time.
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is not excited. The freedom for choosing different parameters
in order to transform RBC into already known situations (as
DBC) allows us to cross-check analytical results and makes
our numerical scheme reliable.

In order to set some light into the numerical scheme, in
Fig. 6, we show the absolute value of the coefficient B, which
is numerically related to the number of particles created N; =
|Bk|2 /Quwy), where k is the field mode considered. Therein,
we show how the value of this coefficient grows in time, as the
perturbation time is turned on for longer times. In Fig. 6(a),
we show the behavior of |Bj| for the same parameters used
in Fig. 1(b), while in Fig. 6(b), we present |B;|. It is clear to
see that the leading term is the one related to the field mode 1.
This schematic representation applies to all cases considered.

V. CONCLUSIONS

We present an alternative numerical approach to simulate
the process of photon generation in a cavity in which one mirror
is forced to oscillate in a prescribed way. The focus is not
restricted to one-dimensional models, but three-dimensional
(3D) cavities are studied as well, beyond the perturbative
regime, which is shown to be recovered in the appropriate
limit. We are also not restricted on the type of boundary
condition used. In our numerical approach, we can choose
to use Dirichlet, Neumann, or generalized Robin conditions,
allowing the computation of particle creation in time regimes
beyond any analytical prediction. In our approach, we take
advantage of the analytical studies obtained in the area and
present a global numerical approach. Our numerical scheme
is based on the resolution of the equations of field modes
with different time-dependent boundary conditions (without
constraints in the wall motion) and a further comparison
between the ground state before and after the movement of the
cavity wall. We selectively focus on obtaining the information
required for the calculation of the number of particles created,
relying only on numerical schemes.

We have considered a cavity with a moving wall at one end
x = L,(t), while the other wall at x = 0 remains at rest. We
have derived the set of differential equations for the canonical
variables in each case considered and computed numerically
the number of particles created. For example, by considering
separately the Dirichlet and Neumann cases, we have solved
the TE and TM modes of the electromagnetic field inside
the cavity, reproducing previous analytical predictions. We
have also shown that by considering Neumann (at x = 0)
and generalized Robin boundary conditions (at x = L,), we
simulate a waveguide superconducting cavity terminated with
a SQUID at one end, which is the promising experimental
setup for measuring the DCE. We have further shown that by
introducing the parameter M, we can reproduce the creation
of particles for a 3D cavity, while if M = 0, then the scalar
field is inside a 1D cavity. In all cases, we have shown that the
rate of particle production depends strongly on whether the
frequency spectrum is equidistant or not.

In all cases considered, we have presented the number of
particles created. We have, for example, reobtained already
known results in the simplest cases of 1D massive and massless
field with Dirichlet boundary conditions. These examples
validate our numerical scheme. We have further presented

PHYSICAL REVIEW E 96, 013307 (2017)

results that have been longer predicted but never demonstrated
as the bigger rate of TM photons compared to TE photons. In
the case of generalized Robin boundary conditions, we have
obtained expected results for an equidistant spectrum and for
a nonequidistant one. Hence, the formalism presented in this
paper can be used to cross-check analytical results also in
this realistic case, which might be of importance for future
experiments. Finally, we have also shown excellent agreement
of our numerical scheme with the theoretical predictions and
with other numerical approaches.

With our formalism at hand, the DCE can be investigated
fully numerically, making it possible to study a variety of
scenarios where no analytical results are known, such as
large-amplitude oscillations and arbitrary wall motions. By
considering this numerical approach, we gain confidence in our
numerical method by reproducing already known analytical
results. This allows us to explore, on the one hand, regions of
the frequency spectrum that cannot be yet reached because
of analytical difficulties in the development of solutions,
and on the other, multimode couplings beyond MSA (i.e.,
longer times). This approach can be easily extended to having
two moving mirrors by adding a time-dependent boundary
conditions to the x = 0 extreme [47]. Finally, it is worth
mentioning that this method can be used to study the generation
of squeezed states of light in moving cavities, as studied
in Ref. [48].
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APPENDIX A: BOUNDARY CONDITIONS CONSIDERED

In this appendix, we present the set of differential coupled
equations for the canonical variables Q} determined by the
use of different boundary conditions when considering Eq. (6)
in Sec. II.

1. Dirichlet boundary condition (DBC)

We first present the set of coupled differential equations
for the canonical variables obtained when the field inside the
cavity satisfies DBC, expressed by

Qm - Uﬂ‘h
Up = =0 ()0m +20(1) Y S0 0+ 4() Y S0,

+27(0) ) S S 0, (A1)
l,s
where S,fzY is a coupling matrix, and takes the form
SD O lf m==:s A2
" (=) s otherwise (A2)

and A(f) =

L.
L.(1)
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2. Neumann boundary condition (NBC)

In the case when the field inside the cavity satisfies NBC, the procedure is similar, but the coupling matrices S5, T;ns, and

Vins are more complicated, defined in this case as

Qm = Uy,

Un = =0 ()0 — 2() D Si 05 = M0) Y Sp Qs = 2L3(DA1) ) Ty O

B Z (Li)LTmS B k(t)Rms(l’ e )) Q.S - LJZ()"(I) Z Tms és»

where the coupling matrices are

o -1 ifm=s A3
ms (_1)s+m (mZZrﬁSSZ) if m # s’ ( )
1 —34+(Tm)? . _
15 d(rm)* ifm=s
Tons = (m =) {124 [ (m+5)1%} cosl (m+s)] 4 2 . (A%
[T —(m+s){—124+[x(m —s)]*}cos[r(m —s)] ifm#s
_ 8(mm)8(33+2L0*)+315[—34(mm)°+8(mm)® —315Lo>+3(mm)* (46—5Lo>)+15(mm)*(—18+11Ly?) cos(2mm)) if m =
2520(mm)3 m=s
R =11 {10080L¢>—(m—s)>w2(=2160+1320Lo*+(m—s)*m* {27647 [—29m>+34ms —55>+2m(m—s)* w21=30Ly>})} cos[z (m—s)] (AS)
ms = ) 7% (m—s)8
2_ 220 2 2.2 2r_ _ 227 2 o .
+[10080L0 (m+s) = (=21604-1320 Lo~ +-(m+s5) 7~ {276 +(m+-s5)m " [=29m —5s+2m(m~+s) 7> ]—30Lo"})] cos[r[(ers)]) if m 7& s

(m+s)3

3. Robin boundary condition (RBC)

A promising setup in order to experimentally study the
DCE consists of a superconducting waveguide ended with a
SQUID that determines the boundary condition of the field
at that point [23]. A time-dependent magnetic flux through
the SQUID generates a time-dependent boundary condition,
with the subsequent excitation of the field (particle creation)
in the waveguide. The electromagnetic field inside the cavity
can be described by a single quantum massless scalar field
satisfying NBC in x = 0 and generalized RBC in x = L,
(assuming a SQUID located at L, ). From a mathematical point
of view, the system is therefore modeled by a massless scalar
field satisfying generalized RBC. The set of equations for the
canonical variables related to the field modes are

Qm = Um,

Un = 0p()0n + Y _ Sk Os. (A6)
with
SR = 2¢bo sin( fp) sin(€2¢) cos(w,, L) cos(wsLy). (A7)

and M,, =1+ % + % cos(wnuLy)* with by and xo
dimensionless physical quantities. f(¢) is the phase across the
SQUID controlled by an external magnetic flux and defined as
cos[ f(¢)] = cos[ fo + € cos(2t)] [43], obtaining a boundary
condition described as

Xo9L, + bocosLf(D¢r, + ¢ =0, (A8)

with by =2E;/E;,, and xo=2C;/(CoL,), all physical
parameters defined in [23].

APPENDIX B: COMPARISON AMONG PREVIOUS
NUMERICAL RESULTS

In Refs. [30,36], the authors show that the number of
TE-mode photons created in a three-dimensional cavity equals
the number of scalar particles of mass k; created in a
one-dimensional cavity of length [0,L,(¢)]. Considering a
periodic trajectory of the moving mirror

Ly(1) = L[l —esin(Qr)], € <1,

In a resonantly vibrating cavity Q2 = 2w,, the number of
TE-mode photons created in the resonant mode increases
exponentially in time as

2

No(t) = sinh®(nyper), with 7, = l(l) . (B

4w, \ Ly
with w, defined as in Eq. (17) and L, being the initial length
of the one-dimensional cavity.

In the present paper, we propose a fully numerical approach
following the analytical expressions for the mode field equa-
tions developed in Refs. [30,32]. The only numerical approach
existing in the literature corresponds to Refs. [35,36], which
presented a formalism allowing numerical investigation of
the DCE for scalar particles in one-dimensional cavity. In
Ref. [35], the author studied the number of TE-mode photons
created for a massless electromagnetic field, while in Ref. [36]
the generalization of the method to higher dimension has
been presented. As explained in the main text, the number
of particles created is defined by the comparison between the
ground state before and after the movement of the cavity wall,
explicitly defined as in Eq. (15). The author then introduces
auxiliary functions &, and 1) to explicitly find the expression

n
for the Bogoliubov coeficients «,,, and B,,,. Through these
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auxiliary functions, the author is making a transformation into
aknown basis, ensuring the new variables satisfied the equation
of motion and the same boundary conditions (Dirichlet). In
Ref. [36], these coefficients are presented:

F

Cpn(tF) = 3 91(1) [ASRE) (tr) + A, e (tr)],  (B2)
1 F

Bun(tF) = 3 Q’é [A, R)ENtF) + A @pn) (tp)], (B3)

with AE(r) = 1/2[1 £ Q°%/Q,(¢)] as defined in Ref. [36].
In this way, Ref. [36] has complete knowledge of the final
state and can compute the number of created particles by
means of Eqgs. (B3) and (15). After obtaining this analytical
result, a numerical implementation is applied based on these
expressions. The numerical results presented were entirely in
very good agreement with the corresponding analytical predic-
tions derived for small amplitude oscillations € < 1, which
demonstrates the reliability of the numerical simulations.
However, the highest drawback of the approach presented in
Refs. [35,36] is that more complicated boundary conditions
appearing, for example, when studying TM-mode photons
cannot be treated within that approach. This is because they
cannot obtain the corresponding expression for «,,, and B,
in the case of more complicated boundary conditions.

In contrast, with our numerical approach we do not focus on
the exact expressions for «,,, and B,,,. We proceed alternately
to compute the number of particles created. We assume that
the unperturbed solution has the form of:

Ot > t5) = [A,(tp)e™ ™" + B,(tp)e'™ '], (B4)

1
V20F
with ! being the frequency for ¢ > tr as explained in
the main text. We therefore can multiply both terms of
the equation by exp(—iw,)f) and take the mean value in
tp <t < tmax. In this way, we are able to numerically evaluate
|B,|> and also the particle number in field mode n as a
function of time as N,,(t) = | B,(t)|*/2w?). In our numerical
approach, we solve the equation of motion for the field modes
(for Dirichlet, generalized Neumann, and generalized Robin
boundary conditions) and evaluate the number of particles
created in each case.

In order to compare our numerical scheme with others
reported in the literature, we consider Dirichlet boundary
conditions. In the case of a three-dimensional cavity, we
can reproduce the analytical result derived in Ref. [32] and
compare with the results obtained by the numerical approach
proposed in Ref. [35] (also programmed by us).

In Fig. 7, we show the numerical results obtained by
our approach in the case of a three-dimensional cavity with
Dirichlet boundary conditions and compare them with the
analytical prediction [32] and previous results in the literature.
As we can see, our result agrees very accurately with the
analytical prediction up to times of order 1/¢ by considering
only ten field modes involved, i.e., a frequency cutoff of
A = 10. Our method can be improved by considering a bigger
number of modes involved. Within our formalism, the DCE can
be investigated fully numerically, making it possible to study
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FIG. 7. We show the analytical prediction of Ref. [32] for the
number of TE-mode photons created in mode n with a solid red
line. With a blue dashed line, we present the curve predicted by
the numerical approach of Ruser and with a black dotted line, we
show our numerical results. Parameters used: € = 0.001, M = 0.2,
L,=10,A=10,andn = 1.

a variety of scenarios where no analytical results are known
(large-amplitude oscillations and arbitrary wall motions etc).
Our main advantage is that we can apply this formalism to
more general boundary conditions such as generalized NBC
and RBC (contrary to Refs. [35,36]).

APPENDIX C: CODE DESCRIPTION AND
COMPUTATIONAL PERFORMANCE

The code was written in FORTRAN 90 and was running on
several computers with processor 17 3.6 and Intel Xeon 2.4.
Distributed parallelism was implemented using the OPENMP
standard. The integration in time of the modes following the
Runge-Kutta fourth-order method with accelerator of Mayer
is the most demanding part of the code, consuming 95% of
the calculations. Incrementing the number of coupled modes

120

{1 —T
100 4 — 2XT
| 4xT
sl o 8xT

60

40

cpu time (sec)

20

FIG. 8. Time consumed in calculations as a function of the
number of modes A considered in the electromagnetic field.
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having geometric intensification of the time consumed that
is the reason why it was important to establish the minimal
number of modes for which the results were accurate enough
in the first place. We have noted that a cutoff of A ~ 17 was
a good number of field modes involved to obtain accurate
simulations and reproduce analytical results [as shown in
Fig. 2(a)]. Consider that we need to solve a [4 x A] set of
coupled differential equations of first order in each time step.
[See Eq. (7), real and imaginary parts.]

PHYSICAL REVIEW E 96, 013307 (2017)

In Fig. 8 we plot for a general case the time consumed
in calculations for obtaining 10 points of the curve |B?| in
function of time (see Fig. 6 for a description of numerical
scheme). We increase the number of modes used (in the x
axis), increasing the final time ¢ at which the wall remains at
rest again, for four different values of 7 ( 7 = 100 numerical
time units). In this way, we compute | B?|. It is easy to note that
the time consumed depends strongly of the number of modes,
especially for large times.
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