
2532 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

A Probabilistic Logic of Cyber Deception
Sushil Jajodia, Noseong Park, Fabio Pierazzi, Andrea Pugliese, Edoardo Serra,

Gerardo I. Simari, and V. S. Subrahmanian

Abstract— Malicious attackers often scan nodes in a network
in order to identify vulnerabilities that they may exploit as they
traverse the network. In this paper, we propose that the system
generates a mix of true and false answers in response to scan
requests. If the attacker believes that all scan results are true,
then he will be on a wrong path. If he believes some scan results
are faked, he would have to expend time and effort in order
to separate fact from fiction. We propose a probabilistic logic
of deception and show that various computations are NP-hard.
We model the attacker’s state and show the effects of faked
scan results. We then show how the defender can generate fake
scan results in different states that minimize the damage the
attacker can produce. We develop a Naive-PLD algorithm and a
Fast-PLD heuristic algorithm for the defender to use and show
experimentally that the latter performs well in a fraction of the
run time of the former. We ran detailed experiments to assess
the performance of these algorithms and further show that by
running Fast-PLD off-line and storing the results, we can very
efficiently answer run-time scan requests.

Index Terms— Computational and artificial intelligence,
computer networks, computer security, logic-probabilistic logic,
network security.

I. INTRODUCTION

WHEN targeting a network, cyber-criminals must map it
out, by understanding the answers to questions such as:

which nodes are connected to which nodes? What operating
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systems are they running? What other types of software are
they running? What are the names of associated subnetworks
and users? What do the routing tables look like? What are
the IP/MAC addresses of devices on the network? Armed
with answers to such questions, attackers are better able to
target networks in order to wreak maximal havoc. To achieve
this, attackers tend to execute a suite of such requests by
using tools such as NMAP—except for security assessments
by administrators, there are few legitimate reasons for network
scanning.

We propose a new solution: returning a mix of true and
false results to an attacker’s scan on a network so that we both
increase the time they need to formulate their attack (allowing
us additional time to erect our defenses) and increase costs on
them (e.g., to determine what is true vs. what is false), poten-
tially giving us a greater chance of interdicting the attacker.

We use the term “scan query” to denote a wide range of
inquiries about the network, such as NMAP commands, TCP
connection scans, stealth SYN scans, UDP scans, as well as
IP protocol scans to determine the IP protocols used by a
node, and more—our proposed methods are therefore very
general.

Of course, combinations of true and fake results must be
given in a consistent manner over time, as the same attacker
may make many different scan queries. Moreover, the system
must reason about the state of the attacker’s knowledge of
the network as time proceeds. We propose to develop a
probabilistic logic theory by which the defender can provide a
realistic fake answer to an attacker’s scan query and continue
to provide fake answers as the attacker probes the network.

A. Overview of the Approach

When an attacker initially targets a network, they know that
the true state of the network is one of a very large number
of “possible worlds”, each reflecting a different configuration.
As they probe the network (e.g., through different types
of scan operations, or routing table information requests),
they learn more and more about it, enabling them to prune
possible worlds that are inconsistent with the results of the
scan queries. By iteratively querying the network through a
variety of technical devices, the attacker can quickly zero in
on vulnerabilities.

However, this pruning of worlds is possible only if the
attacker’s scan queries are honestly answered by the system.
If the attacker has to consider the possibility that responses
to scan queries include fake results, then his task can poten-
tially become exponentially harder. For instance, consider a
node with just two types of software running on it: a web
server (either Tomcat or Nginx), and a DBMS (either Oracle
12c or MySQL). Prior to scanning this node and/or having
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any further intelligence about it, the adversary has 4 possible
worlds to consider, depending on which of the 2×2 combina-
tions of web server and database the system has. If the system
honestly answers a scan query about a DBMS, this narrows the
space of possible worlds down to just 2. On the other hand,
if there is a possibility that the system answers dishonestly,
then the adversary has to consider all 4 possible worlds even
after making their query.

In general, suppose the system has a set {τ1, . . . , τn} of
types of software running on it (e.g., the types might be OSs,
web servers, DBMSs, etc.) and each software type τi has ni

possible candidate software packages of that type that could
be running on a node. If our system honestly answers scan
queries and an attacker queries the system about m software
types (and suppose ni = 2 for all i ), then he can reduce
the number of possible worlds by a factor of 2m . But if the
system cannot be assumed to be honest, then the attacker’s
query does not reduce the number of possible worlds at all.
And of course, if the attacker is oblivious as to whether the
system is honest or can fake results, then the fake results will
lead them astray, increasing the time they need to carry out a
successful attack and injecting uncertainty into their strategy.

We develop a formal Probabilistic Logic of Deception
(PLD-Logic) in which the adversary’s knowledge of the sys-
tem is captured via a set of formulas in the logic. Each PLD-
Logic formula implicitly expresses a set of possible worlds that
are intuitively “compatible” with that formula. Using PLD-
Logic, we will address the following problems:

• define the structure and software running on the network
as well as how the attacker can exploit vulnerabilities in
order to compromise the network;

• identify what the attacker may learn from the results of a
scan query and how they may use that learned knowledge
to continue attacking the network; and

• determine how to answer a scan query from the attacker
so that their current query—as well as likely future
ones—prevent them from learning the true nature of the
network to the maximal possible extent by increasing
uncertainty.

Our overall technical approach therefore aims to formalize
each of these three problems in order to identify how best
to respond to scan queries. Note that as we will discuss in
Section V, the bulk of the computational effort is performed
offline; the result of offline processing is essentially a lookup
“scan table” that can be used “online” to answer attackers’
scan queries—this table can be accessed in milliseconds.
Therefore, computational costs need only be incurred when
there are changes in the network.

B. Plan of the Paper

The remainder of the paper is organized as follows.
In Section II we introduce the syntax and semantics of
our proposed PLD-Logic. In Section III we formalize
attacker behavior and discuss the problem of minimizing
damage by selecting the most appropriate answers to his
queries. Then, in Sections IV and V we develop two algo-
rithms and present our experimental assessment. Finally,

in Sections VI and VII we discuss related work and outline
conclusions.

II. PLD-LOGIC: SYNTAX AND SEMANTICS

In the following we assume the existence of a finite set of
constants C containing all elements of interest (such as network
nodes, software packages, known vulnerabilities, etc.), and an
infinite set of variables V . We use lowercase strings to denote
constants and uppercase ones to denote variables. We also have
a finite set P of predicates, each with an associated arity.

A. Syntax

We start with a logical model of enterprise networks.
As usual, a term is either a constant or a variable (note that we
do not have function symbols in our language). If t1, . . . , tn
are terms and p is an n-ary predicate, p(t1, . . . , tn) is an atom;
if all the ti ’s are constants, then it is a ground atom. For
simplicity—and without loss of generality—we assume that
atoms are well-formed, i.e., that constants and predicates have
types and that they are always respected.

Both the attacker’s and the defender’s model of a net-
work are built using the following predicate symbols (where
n, n1, n2, t, s, x, v ∈ C):

• node(n) declares that n is a node;
• edge(n1, n2) declares the existence of an edge between

nodes n1, n2;
• runs(n, t, s, x) declares that n runs version x of software

s, which is of type t ;
• vuln(s, x, v) declares that version x of software s has

vulnerability v.

Formulas over the above predicates are defined in the usual
way using ∀, ∃, ∧, ∨, and ¬. We use Nodes and Edges to
denote the set of all nodes and edges in the network, respec-
tively. Moreover, we assume the existence of a function—
underlying the vuln predicate—that identifies vulnerabilities
in software packages; NIST’s National Vulnerability Data-
base (NVD) [1] can be considered an encoding of such a
function.

A scan query over a node allows the attacker to query
the node regarding its connectivity in the network, as well
as what software it is running; we assume that the former
data is automatically gained by the attacker when the query is
executed, while the latter can be intercepted by the defender
in order to return fake answers to the query. The attacker will
also perform exploits for a specific software and vulnerability
in a node; we assume that the attacker will decide to take this
action when he is prepared to do so, and that the defender will
immediately realize that this occurred.

Example 1: Figure 1 reports an example of a simple
network with two “frontier” nodes, i.e. nodes which may
be directly accessed from outside of the network ( f1 and
f2, represented as squares with yellow background), and
three “internal” nodes (n1, n2 and n3, represented as circles
with green background). Dashed squares report software
running on the nodes. The node and edge ground atoms
in Figure 1 are node(n1), node(n2), node(n3), edge( f1, n1),
edge(n1, n2), edge(n2, n3), edge( f2, n3), edge( f1, n3). The
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Fig. 1. Simple example of enterprise network.

ground atoms that represent the software running on node f1
are runs( f1, os, rhel, v7), runs( f1, web, tomcat, v8.0.30),
runs( f1, ssh, openssh, v7.2p2). In addition, we may know
that, according to the NVD, CVE-2016-0763 is a vulnerability
in Tomcat 8.0.30. Hence, we also have an atom representing
this: vuln(tomcat, v8.0.30, cve-2016-0763). �

B. Semantics

We now focus on defining the semantic structures used in
our framework. The first structure is a possible world, which
is simply a set of ground atoms; all atoms in the set are
assumed to be true in that possible world, while the rest are
false. Satisfaction of formulas in worlds is defined as usual.
In order to model extra information about what kinds of
situations are possible in the domain, we also assume we have
a set of integrity constraints IC.

Definition 1 (Integrity Constraint): An integrity constraint
ic is a statement of the form head ← body, where head
and body are logical formulas. Such a constraint is said to
be satisfied by a set of atoms S, denoted S |� {ic}, whenever
either body is not satisfied or head is satisfied by S. �

We use W to denote the set of all possible worlds and WIC

the subset of W that satisfies all constraints in IC.
Example 2: Suppose that in the enterprise network of

Figure 1 each node must have exactly one operating sys-
tem (e.g., because they are not supposed to run virtual
machines on them). To enforce this, the security analyst
can define two integrity constraints. The one states that
there must exist an OS: (∀N)(∃S)(∃X)[runs(N, os, S, X)←
]. The second prohibits the existence of two OSs:
(∀N)(∀S1)(∀S2)(∀X1)(∀X2)[S1 = S2 ∧ X1 = X2 ←
runs(N, os, S1, X1) ∧ runs(N, os, S2, X2)]. We can also
define a set of software types T (e.g., {web, db, ssh})
that can appear at most once in each node: (∀T ∈
T )(∀N)(∀S1)(∀S2)[S1 = S2 ← runs(N, T, S1, X) ∧
runs(N, T, S2, Y )]. Likewise, the constraint “number of
browsers must be at most 2” would be expressed
as (∀N)[¬ (S1 	= S2 ∧ S2 	= S3 ∧ S1 	=
S3)← runs(N, browser, S1, X)∧ runs(N, browser, S2, Y )∧
runs(N, browser, S3, Z)]. �

Proposition 1: The problem of determining if there exists a
world satisfying a given set of integrity constraints is NP-hard.

Proof sketch. We show a reduction from MAXIMUM INDE-
PENDENT SET, which is known to be NP-hard, to our problem.
The former, given a graph G = (VG , EG) and a number
k, consists of deciding whether there exists a set H ⊆ VG

with |H | ≥ k s.t. for all the edges (a, b) ∈ EG , it holds
that {a, b} 	⊆ H . In our reduction we assume that a node
in VG corresponds to a software package that may run on a
machine and the set H represents the software packages that
are actually running on that machine. By using the integrity
constraints IC the same way we did for Example 2, we can
impose that there are at least k software packages running on
a machine, and for each edge (a, b) ∈ EG only one between
the software packages a and b is running. It is easy to see that
there exists an independent set in G of size k iff there exists
a world that satisfies the integrity constraints. �

Definition 2 (PLD Framework and Scan Query): A PLD
framework is a pair

M = 〈N, IC〉
where N is a set of node, edge, runs, and vuln atoms, and
IC is a set of integrity constraints. Given a PLD framework,
we refer to a scan of a specific node (by an alleged attacker)
as a scan query. �

Definition 3 (Probabilistic State): A probabilistic state σ is
a set of annotated atoms of the form

A : [�, u]
where A is a ground atom formed with the runs predicate and
[�, u] ⊆ [0, 1] is a closed probability interval. �

Intuitively, each annotated atom in a probabilistic state
denotes the fact that the probability that a given node runs
a specific software of some type is at least � and at most u.

Example 3: Assume that the attacker, after some recon-
naissance activities, is in the following initial probabilistic
state:

runs(N, os, windows, X) : [0.4, 0.8]
runs(N, os, linux, X) : [0.15, 0.5]

runs(N, web, tomcat, X) : [0.4, 0.75]
runs(N, web, nginx, X) : [0.5, 0.65]

runs( f1, os, linux, rhel7) : [0.6, 0.85]
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runs( f1, web, tomcat, v8.0.30) : [0.6, 0.9]
runs( f1, ssh, openssh, 7.2p2) : [0.7, 0.9]

runs( f2, os, linux, rhel7) : [0.6, 0.85]
runs( f2, web, nginx, v1.9.15) : [0.5, 0.8]

runs( f2, ssh, openssh, v7.2p2) : [0.7, 0.9]
The first four formulas are just a synthetic representation of
the a priori knowledge of the attacker on possible software
types running in the network. The other formulas contain runs
atoms for nodes f1 and f2 that the attacker can obtain by
scanning. We observe that from the defender’s perspective
there is some uncertainty whether the attacker fully believes
what is disclosed to him. For this reason, the probability
interval of these runs atoms is different from [1, 1]. �

A probabilistic state represents the state of knowledge the
attacker might have about the enterprise at a given time. As the
attacker issues scan queries to the system, he learns more about
the network, causing the state to change. The defender must
reason about the attacker’s probabilistic state—as well as how
it might evolve in the future—in order to reason about the
attacker’s possible future actions and use them to answer scan
queries in a manner that delays his progress or causes maximal
uncertainty.

A probabilistic state defines constraints on what probability
distribution are valid w.r.t. the space of all possible worlds.
In the following, let pi denote the (unknown) probability of
each world wi ∈WIC; for each Ai : [�i , ui ] in a probabilistic
state σ , we have the constraint

�i ≤
∑

w j∈WIC∧Ai∈w j

p j ≤ ui .

Intuitively, the sum of the probabilities assigned to (constraint-
compatible) possible worlds in which Ai is true lies within the
specified interval. In addition, we require

∑
wi∈WIC

pi = 1.
Given a probabilistic state σ , we use LCM (σ ) to denote

the set of linear constraints described above with respect to a
PLD framework M; when the framework is clear from context,
we write simply LC(σ ). Moreover, we say that M is consistent
in state σ if LCM (σ ) has a solution.

Example 4: Let us focus on the probability that node f1 of
Example 3 is running windows, linux, tomcat, and/or nginx.
Let wi be the i -th possible world. We have the following
list of possible worlds (for the sake of clarity, we use only
the initial of each possible software package running on f1):
w0 = {∅}, w1 = {w}, w2 = {l},
w3 = {t}, w4 = {n}, w5 = {w, l},
w6 = {w, t}, w7 = {w, n}, w8 = {l, t},
w9 = {l, n}, w10 = {t, n}, w11 = {w, l, n},
w12 = {w, l, t}, w13 = {w, t, n}, w14 = {l, t, n},
w15 = {w, l, t, n}.
Suppose the integrity constraints state that a node

has exactly one operating system and at most one web
server. Then only the following worlds are possible:
w1, w2, w6, w7, w8, w9. We recall from Example 3 that for
node f1 the attacker believes that the node is running linux
with probability in [0.6, 0.85] and tomcat with probability
in [0.6, 0.9]. Moreover, the attacker believes that nodes in
the network are running windows with probability [0.4, 0.8]

and nginx with probability [0.5, 0.65]. LC(σ ) consists
of:

0.6 ≤ p2 + p8 + p9 ≤ 0.85

0.6 ≤ p6 + p8 ≤ 0.9

0.4 ≤ p1 + p6 + p7 ≤ 0.8

0.5 ≤ p7 + p9 ≤ 0.65

p1 + p2 + p6 + p7 + p8 + p9 = 1

�

III. THE DEFENDER’S OPTIMAL ACTIONS

We now focus on the problem of choosing the defender’s
optimal actions.

A. Attacker’s Behavior

We begin by formalizing attacker behavior. We assume that
the attacker seeks to move around the enterprise network in
search of nodes to compromise by exploiting vulnerabilities.
For this purpose, we make use of the notion of utility of nodes
in the network, which we represent via a function.

Definition 4 (Utility of a Node): Let M = 〈N, IC〉 be a
PLD framework. Given possible world w ∈ WIC, the utility
of network nodes is given by a function util : Nodes→ R

≥0.
�

The following are two examples of utility functions:

util1(n)=
∑

runs(n,t,s,x)∈w,vuln(s,x,v)∈N

(impact(v) · exploitability(v))

util2(n)= max
run(n,t,s,x)∈w,vuln(s,x,v)∈N

(impact(v) · exploitability(v))

where impact (v) and ex ploi tabili ty(v) are metrics from the
NVD that represent the direct consequence of a successful
exploit and the ease with which the vulnerability can be
exploited, respectively.

In our framework, the attacker scans the neighbors of some
known node and receives answers from the defender; by doing
this, he builds a utility array [u1, ..., um], ui = util(ni ).
We assume that the attacker is smart, i.e. he chooses to attack
next, a neighbor with utility greater than some percentile of
the utility array multiplied by a given subrationality factor in
[0, 1]—this factor, denoted as SUB in the remainder, allows the
defender to simulate an attacker making suboptimal decisions
which may occur. A completely rational and perfect attacker
will be captured in our framework by setting SUB to 1.

B. Possible Answers and State Updates

Let M = 〈N, IC〉 be a PLD framework, Q a scan query
over M , and H a set of ground atoms formed with the runs
predicate. The set of possible answers to Q, given that the
atoms in H have been provided as answers to past queries,
is possAnswers(Q, H ) = {A1, ..., An} (where each Ai is a set
of runs atoms) that satisfies the condition that if H ∪N |� IC,
then H ∪ N ∪ Ai |� IC, for all Ai ∈ possAnswers(Q, H ).

Definition 5 (State Update): Given a probabilistic state σ
and a set A of ground atoms formed with the runs predicate,
the new probabilistic state is obtained by

updateState(σ, A) = consolidate(σ \ σ ′ ∪ σ ′′)
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where σ ′ = {b : [�, u] | b : [�, u] ∈ σ, b ∈ A}, σ ′′ =⋃
a∈A{a : [1, 1]}, and consolidate(.) is a function that removes

the inconsistencies that can arise in the set of linear constraints
after the update of the probabilistic state. �
Note that the attacker believes everything in the answer.

Our consolidation makes the formulas consistent by widen-
ing the probability intervals in LC(σ ) (which is always pos-
sible since in the worst case an interval of [0, 1] is reached).
We achieve this via the steps below—recall that for the i -th
atom Ai : [�i , ui ] ∈ σ , the corresponding constraint in LC(σ )
has the form �i ≤∑

w j∈WIC∧Ai∈w j
p j ≤ ui .

1) For every atom Ai : [�i , ui ] ∈ σ , (i) replace �i with a
variable �′i in the i -th constraint and (ii) add a constraint
�′i ≤ �i to LC(σ ).

2) For every atom Ai : [�i , ui ] ∈ σ , (i) replace ui with a
variable u′i in the i -th constraint and (ii) add a constraint
u′i ≥ ui to LC(σ ).

3) Compute M∗ = maximize
∑

i

(
βi × (�′i − u′i )

)
subject

to: LC(σ ), where βi is the (user-defined) “believability
weight” of the i -th atom.

4) Build the final set of constraints as LC ′(σ ) = LC(σ )∪
{∑i

(
βi × (�′i − u′i )

) = M∗}.
Example 5: Consider a scenario where σ is

{runs(n3, os, linux, rhel7) : [0.5, 1],
runs(n3, os, windows, v8) : [0.8, 1]}

If there is an integrity constraint stating that a node can run
only one operating system, then the possible worlds are w1 =
{linux} and w2 = {windows}. LC(σ ) will then include the
following constraints:

0.5 ≤ p1 ≤ 1

0.8 ≤ p2 ≤ 1

p1 + p2 = 1

These constraints admit no solution, as the lower bounds of
p1 and p2 add up to a value greater than 1. Consolidation can
make the constraints consistent as follows. Let us assume that
β1 = 1 is the believability weight for the a priori knowledge
of the attacker about node n3 running linux, whereas β2 = 50
is the believability weight about the same node running win-
dows (e.g. if the attacker favors information provided by scan
queries over his previous beliefs gained from reconnaissance
activities). In this case, LC(σ ) becomes:

�′1 ≤ p1 ≤ u′1
�′2 ≤ p2 ≤ u′2

�′1 ≤ 0.5, u′1 ≥ 1

�′2 ≤ 0.8, u′2 ≥ 1

p1 + p2 = 1

Then, we solve M∗ = maximize{�′1 − u′1 + 50× (�′2 − u′2)}
subject to: LC(σ ) to obtain a value for M∗, and finally add
the constraint M∗ = �′1 − u′1 + 50× (�′2 − u′2) to LC(σ ). �

As an alternative, we could widen the probability intervals
through an iterative adjustment of the bounds: we start by
setting all lower bounds to zero, then we iteratively choose

one constraint and do a binary search-style adjustment of its
lower bounds to tighten the intervals as much as possible.
This can be done for a fixed number of steps, or until some
user-defined criterion is satisfied (such as time spent, or the
extent to which the bounds are being tightened is small
enough).

C. Quantifying Damage

In order to decide among all the possible deceptive answers
that the defender could give, we need a way of deciding how
certain probabilistic states can be better than others.

First, in order to keep track of the attacker’s actions,
we store the nodes that become compromised in sequences
we call strategies, of the form λ = 〈n1, . . . , nk〉, where
ni ∈ Nodes and the subgraph formed by taking the nodes
in λ and their incident edges in Edges is connected. We use
A to denote the set of all possible attacker strategies, and
sometimes slightly abuse notation and write n ∈ λ. Finally,
probability distributions over A in world w are defined as
expected: Prw : A→ [0, 1] s.t.

∑
λ∈A Prw(λ) = 1.

Such probability distributions over strategies can be
obtained by a simple procedure that simulates the attacker’s
behavior (as described before) for a certain number of “future
steps” by the attacker (denoted NSTEPS in the remainder).
This is done multiple times, and the probability of each node
being visited is simply derived from the number of times it
appears in a simulation (the number of simulations will be
denoted with NSIM).

Example 6: Consider a scenario where SUB = 0.8,
the attacker strategy has been λ = 〈n1, n2〉 so far, and
the attacker issues scan queries over all the neighbors of
n1 and n2, that are n3, n4, n5, and n6 with val(n1) =
10, val(n2) = 5, val(n3) = 1, val(n4) = 5, val(n5) = 100,
and val(n6) = 10. The defender needs to choose answers to
such queries; in particular, he wants to move the attacker away
from node n5 (which has the maximum value). Let us assume
that the defender samples an answer that leads to the following
utilities for the surrounding nodes: util(n3) = 40, util(n4) =
50, util(n5) = 10, util(n6) = 35. A fully rational attacker
would go after node n4, as it has the highest utility. However,
since we are assuming SUB = 0.8 and the maximum value
in the utility array is 50, we then assume that the attacker
randomly picks any node with utility higher than 50×0.8 = 40
at the first attack step (see Section III-A). In a simulation with
NSTEPS = 2, he will therefore randomly choose between n3
and n4 at the first step—if for instance he chooses n4, then
at the second step the choice will be between n3 and n6,
as both have utility greater than 40× 0.8 = 32. We run NSIM
simulations and get the strategies for those (in this example,
one simulation is λ′ = 〈n1, n2, n4, n6〉). After simulating all
NSIM strategies for a given answer, the defender can get the
probability of each strategy and then estimate the associated
damages. The process is repeated for all the sampled
answers. �

Given an attacker strategy λ, we can quantify the amount of
damage that it represents by computing some aggregate over
the values assigned by the defender to the nodes affected by
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the strategy. This value may represent the value of informa-
tion contained in the node for the enterprise (e.g., sensitive
customer data, source code, etc.).

We define damage(λ) = ∑
n∈λ value(n). Another

option, as with utility, would be that of using max
instead of summing—of course, further possibilities
exist. From here, we can easily compute the expected
damage the network will sustain in a given world as
exp-damage(w) =∑

λ∈A Prw(λ) · damage(λ). Finally, we can
compute the damage of a probabilistic state σ from these
elements as

damage(σ ) =
∑

wi∈WIC

(pi · exp-damage(wi )) .

The probabilities pi above, each corresponding to a world
wi , must satisfy the set of linear constraints obtained from
σ after consolidation (cf. Section III-B). However, there
can be many probability assignments that satisfy such con-
straints. We consider the worst case scenario by choosing
the assignment that corresponds to the worst damage, i.e.
the maximum possible damage obtainable under the given
constraints.

Proposition 2: Computing the probability assignment that
corresponds to the worst damage is NP-hard.

Proof sketch. The problem amounts to solving a linear program
with a polynomial number of constraints and an exponential
number of variables, each representing the probability of a
specific world under the integrity constraints. It is well known
that the complexity of solving a problem with this kind of
linear formulation is NP-hard if the corresponding “price prob-
lem” is still NP-hard. The price problem for this formulation
is that of determining whether there exists a column, i.e.
a world, whose associated reduced cost is negative. Since
deciding whether there exists a world that satisfies the integrity
constraints is NP-hard, the price problem is NP-hard as
well. �

The overall goal of the defender is to keep the attacker away
from the most valuable nodes in the network; this is done via a
careful selection of answers to the scan queries—the notion of
worst damage introduced above directly guides this selection.
Starting from an initial probabilistic state of the attacker,
the defender answers the attacker’s queries with deceptive
answers that minimize damage, updates the probabilistic
state as shown above, and updates the history of answers
given.

Proposition 3: The problems of determining (i) whether
there exists an answer to a scan query, and (ii) find-
ing the answer that minimizes the damage, are both
NP-hard.

Proof sketch. Answering a scan query amounts to finding
at least one set of runs atoms that satisfy the integrity
constraints. It is easy to see that the same reduction used for
Proposition 1 can be used to prove NP-hardness of determining
whether there exists at least one answer. It immediately follows
that finding the optimal one is NP-hard as well. �

Fig. 2. Naive algorithm.

IV. ALGORITHMS

In this section we develop two algorithms for solving the
problem of selecting answers to the attacker’s scan queries.1

A. Naive Algorithm

Figure 2 contains the pseudocode of a naive algorithm
for solving our problem. Note that, even though the initial
probabilistic state can contain non-ground statements, the ini-
tial probabilistic state is grounded by the defender, who has
knowledge of the entire network.

The algorithm cycles through all possible answers that can
be provided for the input scan query. For each one, the updated
probabilistic state is obtained, and the associated damage
is computed; this is accomplished via a simulation of how
the attacker would continue to act if they were given that
answer (Line 8), which is done NSIM times, for NSTEPS
each time, and with subrationality factor SUB. The algorithm
finally outputs the answer that has the lowest associated
damage.

From now on, MaxSW denotes the maximum number of
software packages that can run on a network node, and S
denotes the number of software packages (of different types
and versions) that can occur in the network.

Proposition 4: Naive-PLD correctly computes the answer
to a scan query that minimizes the damage of the resulting

1It should be observed that, if we are in a setting in which all events are
pairwise probabilistically independent—or this assumption can be made as a
reasonable approximation—then a great deal of computational effort can be
saved with respect to the algorithms described in this section. In this case,
the probability of a conjunction of annotated atoms is the product of the
individual probabilities; in interval form, the bounds will be the product of the
corresponding bounds of all probabilistic atoms in the conjunction. So, since
any atom that does not have an associated annotated atom can be assumed to
be annotated with [0, 1], we can get the probability of a world by multiplying
the bounds of each atom. As a direct consequence, we no longer need to
build the linear programs to get probabilities; the complexity of computing
the probability of a world is linear in the maximum between the number of
atoms in the world and the size of the probabilistic state (i.e., the number of
ground instances of annotated atoms in the state). This option was included
in the experimental evaluation, but obtained almost no benefit.
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Fig. 3. Heuristic algorithm.

probabilistic state, and runs in time

O(|Nodes| ×
(

S

2MaxSW

)
× NSIM× P × |WIC|)

where P is the cost of computing probabilities of worlds.

Proof sketch. There are
( S

2MaxSW

)
different answers that need to

be inspected; for each one, the history needs to be inspected
to see if the answer is consistent with it (additional |Nodes|,
as there are |Nodes| possible scan queries), there are NSIM
simulations run to see the effect on the attacker’s behavior,
and the computation of the damage that will arise requires
time O(P × |WIC|). �

B. Heuristic Algorithm

As Naive-PLD is expensive, we developed the heuristic
algorithm shown in Figure 3 which works by first sampling an
answer to a query and then, with this answer fixed, sampling
many different sets of possible worlds—the number of answers
to be sampled in each iteration is controlled by parameter NA,
while the number of worlds sampled for each answer is set
by NW.

In each case, since all worlds outside the sampled set
are left out, their probability has in practice been set to
zero, which means that the resulting set of constraints is
likely to be inconsistent. This is taken care of in Line 10
along with corrections that may be required to update the
state with the consequences of the selected answer. The rest
of Fast-PLD works by continuing this sampling-in-tandem
process, each time keeping the best answer seen so far and
updating the probability distributions used for sampling based

on automated learning of how well the algorithm did in the
past; this technique is generally known as “Iterative Density
Estimation” [2], [3] (I.D.E.). The total number of I.D.E.
iterations is set by parameter NIDE. The sampling procedures
in Lines 6 and 9 could be implemented in many different
ways—here, it starts out as purely random, and then continues
with the importance sampling techniques; the initial sample
could also be done using information provided by human
experts.

Proposition 5: Fast-PLD computes an answer to a scan
query in time

O (NIDE× NA× |Nodes| ×MaxSW× NSIM× P × NW)

where P is the cost of computing probabilities of worlds.

Proof sketch. The NA, NW, and NIDE parameters are clearly
multiplicative factors in the algorithm’s computation time,
as they are in nested for loops. For each sampled answer,
the history needs to be inspected to see if the answer is
consistent with it (additional |Nodes|). In the sampling loop,
the computation of the damage that will arise in each world
requires time O(NSIM× P × NW). �

Thus, Fast-PLD is considerably faster than Naive-PLD.

V. EXPERIMENTAL EVALUATION

We have implemented a Java prototype of the proposed
framework. Each experiment was run on an 8-core, 8-
processor machine with 20GB of RAM. The optimization
problems were solved using the IBM CPLEX library, and the
Jung library for handling network graphs.

A. Setting

We considered an enterprise network based on real data.
We first ran the Cauldron software [4] in a real network
environment consisting of about 60 nodes—Cauldron scans
for the software on each node, and can find vulnerabilities that
are consistent with the NVD. We then replicated the network
into a 600 node network, adding network connections through
the NS2 network simulator [5].

In order to assign values to the nodes in the network,
we sampled from a Zipf distribution and a Gaussian distri-
bution. The values are normalized so that in both cases their
sum is 10, 000. These two alternatives allowed us to verify
how a network administrator should “distribute” the resources
in the network to reduce the possible damage caused by an
attacker.

We compared the Naive-PLD and Fast-PLD algorithms with
a TRUTH baseline algorithm where the system answers hon-
estly to scan queries. We evaluated the performance of these
algorithms in terms of:
• expected damage after a certain number of attacker

steps, each of which corresponds to a new node being
compromised—the damage of a strategy was defined as
the sum of the values of the nodes in the strategy;

• execution time required by the algorithms.
In addition, to evaluate the statistical significance of the results
we computed p-values through both the student t-test [6] and
the more challenging Mann-Whitney u-test [7].
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In the experiments we varied the following parameters:

• NA (number of answers evaluated at each I.D.E.
iteration—Fast-PLD algorithm);

• NSTEPS (number of “future” attacker steps considered in
the estimation of the damage);

• NIDE (number of I.D.E. iterations—Fast-PLD algorithm);
• SUB (subrationality factor of the attacker).

We also introduced an additional parameter PA representing
the percentage of network nodes for which attacker strategies
were considered.

We fixed the number of worlds sampled at each iteration of
the Fast-PLD algorithm to NW = 50—this value guaranteed
a good tradeoff between result quality and execution times.
For the sake of fairness, whenever we sample new worlds,
we also include the true world, i.e. the world corresponding
to the actual state of affairs. This allows the defender to choose
whether telling the truth might actually bring better long-term
benefits. Finally, we fixed the number of attacker simulations
done for each answer and each world in order to estimate
damage to NSIM = 10.

The values of the believability weights βi in the consolida-
tion function were chosen as follows: if the atom is related to
a priori knowledge of the attacker, then we set βi = 1; if the
atom is contained in an answer of the defender, then βi = 100.
This way, the replies given by the defender are given higher
“priority”, but if the defender gives the attacker an inconsistent
answer, then his belief automatically decreases.

For the utility function, we used the util1 definition reported
in Section III. The a priori knowledge and the “frontier” nodes
were initialized randomly.

Finally, we introduced several integrity constraints such as,
e.g., (i) each node must have exactly one operating system, (ii)
each node can have at most one web server, (iii) each node
can have at most one DBMS, (iv) each node can have at most
25 software packages that access the Internet (we therefore
had MaxSW = 25).

Remark: The Fast-PLD algorithm computes an answer for
all the not-yet-scanned neighbors of nodes that have been com-
promised by the attacker at once (also considering NSTEPS
future attacker steps in the estimation of the damage). The
time needed for this process is called offline execution time
in the remainder, and is used to assess the efficiency of
the algorithms. In the scenario we envision, the network
administrator pre-computes a set of deceptive answers for the
whole network (or a large fraction of it) initially and after
any major modification to the network configuration (which
happens with relatively low frequency) and then uses this
set to answer scan queries. We will call the time needed to
compute the set of answers for the whole network total offline
execution time, and the time to answer single scan queries
online response time. It should also be observed that in the
results reported in the next section, every curve is averaged
over 100 different simulations of attacker behaviors, but the
set of deceptive answers stays the same.

Fig. 4. Average damage on a 5-node network.

B. Results

1) Round 1 – Performance of Naive-PLD: Our first round
of experiments was aimed at evaluating the feasibility of
the Naive-PLD algorithm, which is expected to require much
longer execution times than Fast-PLD given its complex-
ity (Proposition 4). For this round we employed a very small
network consisting of just 5 nodes. The results in terms of
average damage, obtained with PA = 1.0, NA = 5, NIDE = 5,
NSTEPS = 6, and SUB = 0.8, are reported in Figure 4 (the
value of NIDE is reported in square brackets in the figure).
We obtained similar results with SUB = 1.0 that we do not
report for space reasons.

The results show that (i) the worst results are obtained with
TRUTH—at attacker step 2, the damage is already almost at
its maximum, and (ii) the best results are provided by Naive-
PLD. Fast-PLD appears to provide satisfactory results, with
damage values that are far lower than those obtained with
TRUTH. Clearly, at attacker step 5, all of the algorithms reach
the same damage, as the whole 5-node network is exploited.

The execution time of Naive-PLD is clearly impractical for
real contexts. The algorithm took around 10 hours to obtain a
solution, whereas Fast-PLD just required 3.2 seconds (0.2 sec-
onds for TRUTH). In the remainder of this section we will
therefore focus solely on the Fast-PLD algorithm.

2) Round 2 – Distribution of Node Value: In a second round
of experiments, we compared the results obtained with the two
different distributions (Zipf and Gaussian) of the values of the
nodes in the enterprise network. Figure 5 reports the results
for PA= 0.5 (i.e. we assume the attacker compromises 50% of
the 600 nodes network), NA = 10, NIDE = 1, NSTEPS = 10,
and SUB ∈ {0.8, 1.0}.

The results show that, even without I.D.E. learning (NIDE =
1), Fast-PLD performs better than TRUTH both for a fully
rational (SUB = 1.0) and a sub-rational (SUB = 0.8) attacker.
The performance of Fast-PLD is much better under the Zipf
distributions, whereas the improvement under the Gaussian
distributions is relatively limited. This clearly suggests that
a network administrator should prefer to distribute important
resources according to a Zipf distribution, i.e., putting impor-
tant resources on a small number of highly protected nodes.
The low p-values between TRUTH and Fast-PLD (always
≤ 0.01) confirm the statistical significance of the results.
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Fig. 5. Average damage under Zipf and Gaussian distributions without I.D.E.
learning.

3) Round 3 – Importance of the Number of I.D.E. Iterations:
The third round of experiments was aimed at evaluating the
impact of I.D.E. learning on the performance of Fast-PLD.
We expected that a larger number of iterations would increase
the probability of sampling “good” atoms, thus increasing
the overall performance in terms of expected damage. Fig-
ure 6 reports the results under Zipf and Gaussian node value

Fig. 6. Average damage under Zipf and Gaussian distributions when varying
NIDE. (a) Zipf (SU B = 0 : 8). (b) Zipf (SU B = 1 : 0). (c) Gaussian (SU B =
0 : 8). (d) Gaussian (SU B = 1 : 0).

distributions, with PA = 0.3, NA = 10, NIDE ∈ [1..5],
NSTEPS = 10, and SUB ∈ {0.8, 1.0}.

Under the Zipf distribution, increasing the number of I.D.E.
iterations provides a significant decrease in the damage caused
by the attacker. We also observe that there are some sudden
“spikes”; these correspond to cases where the attacker com-
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Fig. 7. Offline execution time when varying NIDE.

promises a high-value node despite the deception strategy.
However, the chance of such events decreases significantly
with NIDE ≥ 4. Moreover, although on average the results are
worse for a fully rational attacker (SUB = 1.0), after 100 steps
with NIDE = 5, we obtain much better performance than the
subrational attacker case (SUB = 0.8). This confirms that a
fully rational attacker that follows exactly the behavior we
assume can be better deceived by our strategy under proper
configurations. Increasing the number of I.D.E. iterations
does not greatly improve the performance under a Gaussian
distribution—this can be explained by observing that the node
values are more evenly distributed accross the network and
hence the specific decisions made by the attacker have a
smaller impact on the overall damage produced.

Figure 7 reports boxplots of the average offline execution
times when varying NIDE for this round of experiments.
Again, the results are satisfactory—in particular, the median
times increase almost linearly with the increase in NIDE.

We also analyzed what happens if we further increase
the number of I.D.E. iterations, in order to check whether
a good trade-off can be found between expected damage
and execution times. Figure 8 reports the results obtained
with PA = 0.1, NA = 10, NIDE ∈ {1, 5, 10, 15, 20, 25, 30},
NSTEPS = 10, and SUB = 0.8.

The results show that the benefit obtained with NIDE > 5
is almost negligible, as for higher values the expected damage
is rather stable. On the other hand, execution times increase
significantly—for instance, more than 30 minutes are required
when NIDE > 20. This suggests that the best trade-off
between expected damage and execution times can be obtained
with NIDE = 5.

4) Round 4 – Importance of the Number of Future Attacker
Steps Simulated: In the fourth round of experiments we
assessed the impact of varying the number NSTEPS of sim-
ulation steps—again, the aim was to possibly identify a
good trade-off between expected damage and execution times.
Figure 9 reports the results obtained with PA = 0.3, NA = 10,
NIDE = 5, NSTEPS ∈ {5, 10, 15, 20}, and SUB = 0.8.

The results show that low values of NSTEPS correspond to
cases where we might miss important future decisions made
by the attacker and lead him to high-value nodes. However,
for NSTEPS ≥ 10, we observe an important reduction of the

Fig. 8. Results for NIDE ∈ {1, 5, 10, 15, 20, 25, 30}. (a) Average damage.
(b) Offline execution time.

expected damage; also, performance is almost the same up to
100 attacker steps. Again, the p-values confirm the statistical
significance of the results.

Figure 10 reports the execution times for this round of
experiments. For NSTEPS > 15, the execution time for each
answer goes up to almost 30 minutes—this leads us to identify
a good trade-off with NSTEPS ∈ {10, 15}.

5) Round 5 – Total Offline Execution Times and Online
Response Times: In our final round of experiments we assessed
the total offline execution time and the online response time.
It is indeed of utmost importance that, after offline computa-
tion, the defender is able to reply to the attacker’s scan queries
in very short time.

Figure 11 reports the total offline execution times required
on two networks containing 60 and 180 nodes. More specifi-
cally, Figure 11a reports the results obtained with PA = 0.1,
NA = 10, NSTEPS = 10, and SUB = 0.8, whereas those
in Figure 11b were obtained with PA = 0.3, NA = 10,
NIDE = 5, and SUB = 0.8. Here we observe that with
NIDE = 5 and NSTEPS = 10, that were identified before
as good trade-off values, the total offline execution time for
about 180 nodes takes just a single day.

A boxplot for the online response time in this round of
experiments is reported in Figure 12—we can observe that
the median time to reply is around 5-6 milliseconds, which
is a realistic and perfectly acceptable latency for a network
response to the attacker.
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Fig. 9. Average damage when varying NSTEPS. (a) N ST E P S = 5.
(b) N ST E P S = 10. (c) N ST E P S = 15. (d) N ST E P S = 20.

VI. RELATED WORK

A. Logic, Optimization, and Probabilistic Logic

In this paper we use part of the annotated probabilistic
logic introduced in [8]. The computational aspect of this logic
is related to linear program formulations that are sometimes
very hard to compute. Annotated probabilistic logic is different
from its non-probabilistic counterpart due to the presence of

Fig. 10. Offline execution time when varying NSTEPS.

Fig. 11. Total offline execution time.

probability intervals, describing uncertainty of beliefs. Several
approaches to tackle the computational aspects have been
proposed [9], [10]; these methods use advanced optimization
techniques. The use of the latter for processing logic problems
goes back to [11] with a host of successful later work such
as [12] and [13]. Later, Nerode and his co-workers developed
methods to use integer programming for computing structures
in non-monotonic logic programming [14], [15]. Constraint
logic programming (CLP) [16] embedded numerical con-
straints within a logic programming framework.
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Fig. 12. Online response time.

B. Logic for Cybersecurity

Variants of CLP have been used for cybersecurity
research [17]–[19]. The use of logic in cybersecurity was first
introduced in [20]–[22]. In particular, [20] and [21] looked
at the use of deontic logic constructs to capture what is
permitted, what is obligatory, and what is forbidden in terms
of access control, while [22]–[26] looked at the use of logic in
order to answer queries to databases without revealing secret
information (e.g. letting the user infer data from the answer
that he was not authorized to know).

Later efforts looked at the use of logic for expressing
security policies, namely who should be authorized to access
a body of data, and who should not, and the conditions under
which such access should be granted [27]–[30]. However, none
of these works look at using temporal probabilistic logic in
security, nor do they build models of the adversary.

C. Defending Enterprise Networks

The problem of defending enterprise networks is well
studied in the literature under a wide variety of perspectives.
One body of work focuses on the automatic patching of
vulnerabilities and, when this is not possible, the extreme solu-
tion is the deactivation of products containing vulnerabilities
(see [31]). [32]–[34] consider the problem of finding plans for
patching vulnerabilities, that are tradeoffs between cost and
risk, by using Pareto analysis.

Another body of work focuses on the detection of advanced
persistent cyberattacks in enterprise networks to identify
revealing signals of an attacker. For example, [35] proposes a
scalable framework that ranks internal nodes of an enterprise
possibly related to “burst” and/or “low-and-slow” data exfil-
trations by analyzing suspicious network activities over time.
A comprehensive report about existing honeypot implementa-
tions is given in [36]. This report analyzes and compares the
advantages and the weaknesses of several implementations.
Many of these are able to emulate the honeypot network on
just one machine. The use of game theory in cybersecurity
problems is not new [31], [37]. Reference [38] and [39] study
different game models that address strategies for deploying
honeypot networks. The authors define a basic honeypot
selection game where the defender chooses the properties
of the network, an extension in which the attacker can use
also probe actions to test the network, and a final ver-
sion where all the attacker strategies are represented by an
attack graph.

Reference [40] highlights the importance of honeypot net-
works not just for the ability to attract the attacker but also
to delay him. They define the concept of distraction chains,
i.e. a sequence of decoy systems used to entice an adversary
to explore useless information. They study the problem of
creating the distraction chains and embedding them in the
network. Reference [41] defines a game-based model in order
to hide honey nodes from the attacker. Further examples of
game theory applied to security (not strictly related with
our work) can be found in [42]. Reference [43] studies the
defender’s optimal strategy for expelling (or not expelling)
an intruder from a system. By formulating the problem as
a Markov decision process where both the intruder and the
defender can learn about each other, they show that the strategy
of always expelling the intruder immediately upon detection is
not the best one. They show that this improves the learning rate
of the intruder, and consequently increases his probability of
success. Reference [44] adopts Stackelberg games to interdict
attack plans—the main aim of the game is that of obtaining
strategies for the defender that reduce the impact of the most
successful attacker strategy.

Finally, the two works that are closer in spirit to the
framework proposed in this paper are [45] and [46]; both use a
deceptive approach in order to confuse the attacker. In contrast
to these, our framework aims at finding the best way to answer
the attacker’s scan queries. Moreover, our proposal takes into
account the behavior of the attacker by modeling his beliefs
as facts under an annotated probabilistic logic.

VII. CONCLUSIONS

Network scanning is used by system administrators in order
to identify vulnerabilities in their systems, while attackers
do the same to enterprises that they target. In this paper,
we propose that for network scans that are not generated by a
system administrator, the system should return a mix of real
and fake results so that an attacker either is taken in by the
fake results or has to expend more resources (time, money) in
analyzing the scan results.

Generating such mixes of true and fake results poses
many challenges. First, the scan results must be consistent
with reasonable expectations of the system configuration—we
model these via integrity constraints. Second, the scan results
given must be consistent with the knowledge an attacker has
accumulated about the system from his past queries. In order
to address both of these issues, we propose a probabilistic logic
of deception (PLD-Logic) and show how we can generate a
mix of real and fake results that result in the least (expected)
damage to the system. We show how to use PLD-Logic to
model the set of possible worlds that the attacker may infer.
We then show how the defender can use this knowlege in
order to answer any specific scan query, considering both the
attacker’s current set of possible worlds, as well as how that
set of possible worlds may evolve in the future. We develop
two algorithms—Naive-PLD which takes exponential time to
run (not surprisingly due to a host of NP-hardness results we
show) and Fast-PLD, a fast heuristic algorithm that levereages
iterative density estimation methods.
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Our experimental results show that Fast-PLD can be
deployed in practice by computing the right scan results to
return offline and serving them up by a simple lookup of a
“scan table” when those scans occur online. The scan table
can be periodically updated offline as the network changes.
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