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Abstract
We study some mathematical properties of generalized Sturmian functions
which are solutions of a Schrödinger-like equation supplemented by two
boundary conditions. These generalized functions, for any value of the energy,
are defined in terms of the magnitude of the potential. One of the boundary
conditions is imposed at the origin of the coordinate, where regularity is
required. The second point is at large distances. For negative energies, bound-
like conditions are imposed. For positive or complex energies, incoming or
outgoing boundary conditions are imposed to deal with scattering problems;
in this case, since scattering conditions are complex, the Sturmian functions
themselves are complex. Since all of the functions solve a Sturm–Liouville
problem, they allow us to construct a Sturmian basis set which must be
orthogonal and complete: this is the case even when they are complex. Here
we study some properties of generalized Sturmian functions associated with
the Hulthén potential, in particular, the spatial organization of their nodes, and
demonstrate explicitly their orthogonality. We also show that the overlap matrix
elements, which are generally required in scattering or bound state calculations,
are well defined. Many of these mathematical properties are expressed in terms
of uncommon multivariable hypergeometric functions. Finally, applications to
the scattering of a particle by a Yukawa and by a Hulthén potential serve as
illustrations of the efficiency of the complex Hulthén–Sturmian basis.

PACS numbers: 31.15.−p, 34.10.+x

(Some figures may appear in colour only in the online journal)

1. Introduction

The applications in physics of Sturm–Liouville formulation appeared immediately after the
principal theorems were demonstrated by Sturm and Liouville in 1836 and 1837. A large variety
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of problems can be solved using this technique leading to a generalization of the Fourier method
to expand general functions. In atomic physics studies, Sturmian functions were introduced by
Shull and Löwdin [1] as a complete basis set to expand atomic wavefunctions. Later Rotenberg
[2, 3] gave them the name Sturmian to emphasize their connection with the Sturm–Liouville
theory. Glöckle and co-workers used Weinberg states (which are actually Sturmian functions)
in scattering problems [4]. In 1968, Goscinsky [5] presented, in an Uppsala University internal
report, a rigorous mathematical generalization of this basis set. This report was unknown
to the atomic physics community until recently when Goscinsky and Avery presented it
as an appendix in [6]. Originally, Goscinsky regarded Sturmian functions as solutions to
the Schrödinger equation with a constant and externally defined energy, and considered the
magnitude of the potential (the ‘charges’) as the eigenvalues [5, 6]. In his work, only negative
energies were considered and no consideration over how to obtain the basis functions was done.
Here we extend Goscinski’s work by discussing some important issues related to Sturmian
basis functions, mostly in connection with complex and positive energies and their applications
to scattering problems.

When compared with hydrogenic functions, Sturmian basis functions present considerable
advantages. One of them is that they are thickly crowded on a spatial region that can be adjusted
to be the desired region of interest through the adequate choice of the energy and of different
parameters appearing in the potentials. Bound-state hydrogenic wavefunctions, on the other
hand, are widely spread in space, since the maximum value position is proportional to n2;
moreover, their innermost zeros are insensitive to the principal quantum number n. This
accounts for the fact that these functions do not form a complete set; the continuum is required
to describe the region between the origin and the first zero. Other properties (advantages) are
best described according to whether the energy is taken positive, negative or complex.

Negative energy Sturmian functions, which asymptotically decrease exponentially, have
been widely and efficiently used to perform ab initio calculations of N-electron atomic and
molecular systems (see, for example, [7] and references therein). Their use substantially
improves the convergence of the expansion for many configuration–interaction calculations,
as shown, for instance, in [1, 8, 9].

Positive energy Sturmian functions, on the other hand, are useful for scattering problems,
because one can generate functions having the same energy as the physical scattering particle
(the same wave-number) and the same asymptotic boundary condition (for example, outgoing-
or incoming-wave condition). Moreover, positive Sturmian functions with standing-wave
boundary conditions form a continuum basis set with an infinite and continuum spectrum
[10, 11]. Although a finite-size basis can be developed such that the spectrum discretizes,
regularization of the wavefunctions often leads to potentially divergent functions, unless the
energy itself becomes complex. This makes them impractical to use in scattering problems.

Complex energy Sturmian functions can be obtained by performing a complex scaling
rotation. As an example of applications in scattering problems, we can mention those of
Piraux’s group using the J-matrix method. Such functions are used within time-independent
and time-dependent approaches to solve the Schrödinger equation for calculations of single
and double photoionization of helium [12] as well as ionization–excitation of neutral atoms
[13].

Sturmian basis sets obtained for general potentials are very scarce in the literature because
there are only a few two-body potentials that admit closed-form solutions. Some examples were
discussed by Rawitscher [14–17], and by Macek and Ovchinnikov [18, 19]. However, the most
widely used Sturmian functions (most of the references given above employ them) are called
Coulomb Sturmian functions (CSF); they are obtained as discrete solutions of Schrödinger’s
equation with a pure Coulomb interaction. Since each one of these basis elements belongs to
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a different charge eigenvalue, their individual asymptotic behavior is different, and hence they
are not particularly appropriate and efficient.

Very recently our group extended the work of Rawistcher and proposed several methods
[20–22] to generate discrete sets of functions having a unique behavior at large distances. The
set possesses only asymptotically outgoing (or incoming) waves, all with the same wavenumber
corresponding to the physical scattering energy; moreover, all the basis functions are required
to be regular at the origin, and differ from each other by the number of nodes within the inner
region. The energy is not the only parameter that determines the asymptotic behavior of the
basis functions. In our attempt to generalize the use of Sturmian basis functions, we introduced
generalized Sturmian functions (GSF) (see, for example, [14, 22, 23]), in which two potentials
are included in the Schrödinger equation. One potential—called the auxiliary potential—is, in
general, a long-range one that determines the asymptotic behavior of all the basis set elements.
The other is a short-range potential—called the generating potential—which accounts for the
dynamics of the inner region, where the two particles interact strongly with each other.

The proposal presented here is essentially an extension of the work of Goscinsky [5] to
general energies (real positive and complex). When performing the extension, some doubts
can arise regarding the validity of the solutions of a Sturm–Liouville problem, which involve
not only positive (or complex) energies but also complex boundary conditions. One recurrent
doubt is whether the GSF are L2, and whether they allow for well-defined matrix elements for
different interaction potentials. Another issue regards completeness and whether GSF possess
a nodal arrangement similar to that established by theory for real functions.

To address some of these issues, in this paper we present a comprehensive study which
demonstrates that such matrix elements are indeed well defined and that the basis functions
fulfill all expected properties of normal Sturmian functions (closure and orthogonality
relations, nodal structure, etc). The whole investigation is exemplified with the solutions
of the Hulthén potential.

In addition, we take the advantage of the fact that the Hulthén potential leads to analytic
Sturmian functions to provide analytic expressions for several matrix elements. As we will
write them in terms of multivariable hypergeometric functions, this study complements
our investigations on multivariable hypergeometric functions connected with atomic physics
problems [24–29].

The rest of the paper is arranged as follows. In section 2, we present the basic theory of
Sturmian functions and some atomic physics applications. In section 3, we introduce Hulthén
Sturmian functions and we provide analytic expressions for the orthogonality relation as well
as for the overlap matrix elements; some properties related to the nodes of the basis functions
are also discussed. In section 4, we exemplify the results by applying the method, and the
proposed basis functions, to the study of a particle scattered by a Hulthén and a Yukawa
potential. For the Hulthén case, expressions for Green’s function, the scattering part of the
wavefunction and the transition amplitude are provided analytically. In section 5, a brief
summary is provided.

Atomic units (� = e = 1) are used throughout.

2. Generalized Sturmian functions

2.1. Basic theory

Generalized Sturmian radial functions are solutions of the non-homogeneous Schrödinger
equation
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[Tl + U (r) − Es] Snl(r) = −βnl V(r) Snl (r), (1)

where Tl = − 1
2μ

d2

dr2 + l(l+1)

2μr2 is the kinetic energy, U (r) is the auxiliary potential, V(r) is a
short-range generating potential which vanishes in the outer region r > RS, μ is the reduced
mass and l the angular momentum. In contrast to the traditional time-independent Schrödinger
equation, where the magnitude of the potential is fixed and its solution leads to the energy
eigenvalues, in equation (1) the energy Es is a fixed parameter and the magnitude βnl become
the eigenvalues. Besides, two boundary conditions supplement the equation. We are seeking
solutions that have a regular boundary condition at the origin Snl(r = 0) = 0. If the auxiliary
potential U (r) is a Coulomb potential, then the Kato cusp condition should also be imposed,
as discussed in [30].

In the outer region r > Rs, where the second boundary condition is imposed, the radial
equation (1) becomes

[Tl + U (r) − Es] Snl(r) = 0. (2)

The solutions of the Sturmian equation then represent a particle of energy Es moving under
the influence of a potential U (r). For a short-range auxiliary potential U (r) (i.e. U (r) also
vanishing in the outer region), the asymptotic solutions of (2) behave as Snl(r → ∞) ∝ e−κr

where κ = √−2μEs for negative energies Es < 0, while Snl(r → ∞) ∝ e±ikr where
k = √

2μEs for positive energies; the sign is associated with outgoing (+) or incoming (−)

waves. For an auxiliary potential U (r) including a Coulomb contribution Z/r and a short-range
potential, the asymptotic form for positive energies has to include the well-known logarithmic
term, i.e. Snl(r → ∞) ∝ e±i(kr−η ln(2kr)) where η = Zμ/k is the Sommerfeld parameter. Since
Es is a fixed parameter and the asymptotic equation (2) does not involve the eigenvalue, all
basis functions Snl(r) have the same asymptotic behavior.

Equation (1), together with the two boundary conditions, defines a Sturm–Liouville
problem. Thus, according to the standard theory, the Sturmian functions conform a complete
basis set [5]: ∑

n

Snl (r
′)V(r) Snl (r) = δ(r − r′), (3)

and obey the following potential-weighted (V(r)) orthogonality relation

Vn′,n = Vn,nδn′,n, (4)

where the general matrix elements are defined through

An′,n =
∫ ∞

0
Sn′l(r) A(r) Snl (r) dr; (5)

this includes, as a subcase, the overlap matrix elements

On′,n =
∫ ∞

0
Sn′l(r)Snl(r) dr. (6)

Note that no complex conjugation appears in these formulae, contrary to the case of the
standard Hilbert space. As we will see, this makes a fundamental difference when dealing
with Sturmian functions possessing scattering asymptotic conditions. The same applies for the
closure relation.

2.2. Applications in atomic physics

Many advantages appear when using GSF in atomic physics. In this subsection, we briefly
review the methodology for both bound and scattering states. For a given interaction potential
V (r), the aim is to solve the Schrödinger equation

[Tl + V (r) − E] �(r) = 0. (7)
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For bound states, the solution �B(r) may be expanded as

�B(r) =
∑

n

anSn,l (r). (8)

Upon replacement in (7), and using (1), we have∑
n

an [V (r) − U (r) − βnlV(r) − E + Es] Snl(r) = 0. (9)

We may choose the auxiliary potential U (r) to be the interaction V (r), so that the first two
terms on (9) cancel each other. Projecting with basis functions Sn′,l(r) from the left, integrating
on the coordinate, using the orthogonality relation (4) and the overlap matrix (6), we get∑

n

[−βnlVn′,nδn′n − (E − Es)On′n]an = 0, (10)

which can be easily solved by standard matrix methods.
For scattering solutions, one may set the full solution as [31] �(r) = �0(r) + �sc(r),

where �0(r) is an asymptotic solution which solves the simplified, potential-free, equation
[Tl − E] �0(r) = 0; the scattering part �sc(r) solves the non-homogeneous differential
equation

[Tl + V (r) − E] �sc(r) = −V (r)�0(r). (11)

Expanding �sc(r) and V (r)�0(r) in Sturmian functions with externally fixed energy Es = E

�sc(r) =
∑

n

anSn,l (r) (12)

V (r)�0(r) =
∑

n

bnV(r)Sn,l (r), (13)

and using equation (1), the radial Schrödinger equation is converted into∑
n

an [V (r) − U (r) − βnlV(r)] Sn,l (r) = −
∑

n

bnV(r)Sn,l (r). (14)

Choosing again U (r) = V (r), only the generating potential remains on the LHS. Projecting
by the left by Sn′,l(r), we end up again with a matrix problem

βn′lan′ = bn′ . (15)

The Sturmian basis functions transformed the operator [Tl + V (r) − E] into a diagonal
matrix whose elements are simply the Sturmian eigenvalues. This can be seen in an alternative
form. Equation (11) can be rewritten as

�±
sc(r) = G±

l V (r)�0(r) (16)

in terms of Green’s function G±
l which is responsible for providing the correct asymptotic

behavior to �±
sc(r). Now, Green’s function satisfies the equation

[Tl + V (r) − E] G±
l (E, r, r′) = δ(r − r′), (17)

and can be expanded in terms of Sturmians functions as follows:

G±
l (E, r, r′) =

∑
n

gnlS
±
n,l (r

′)S±
n,l (r). (18)

Replacing this expansion into (17), using equation (1) and taking U (r) = V (r), we find

−
∑

n

gnlβnlS
±
n,l(r

′)S±
n,l(r)V(r) = δ(r − r′). (19)
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Comparing this expression with the closure relation (3) we see that gnl = −1/βnl . This means
that Green’s function is diagonal in the generalized Sturmian representation. Besides, the
representation is optimized since the asymptotic region is associated with the range of the
generating potential V (r); the asymptotic form is directly given by the correct asymptotic
behavior of the Sturmian functions. This is clear since (1) can be written as

− 1

βnl
S±

n,l (r) = G±
l V(r)S±

n,l (r), (20)

and thus the Sturmian functions are eigenfunctions of the operator G±
l V(r) with eigenvalues

−1/βnl [15–17].
It is clear that for both bound and scattering problems, the Schrödinger equation to be

solved is considerably simplified when using GSF.

2.3. Some additional mathematical considerations

2.3.1. Orthogonality relation. The orthogonality relation (4) can be derived from the
differential equation (1) satisfied by the Sturmian functions. However, this standard approach
is generally presented for real functions with a real variable. In our case, due to the boundary
conditions (for scattering problems) and due also to the fact that the energy might be complex,
the solutions of the Sturm–Liouville problem are complex functions. Consequently, some
doubts (see the next subsection) may appear regarding the mere existence of overlap matrix
elements (and similarly for other matrix elements corresponding to potential interactions,
e.g. the electromagnetic field). Another issue is the validity of the orthogonality and closure
relations. In appendix B of a very interesting paper [10], the author mentioned that for positive
energy, only Sturmian functions corresponding to Coulomb potentials are orthogonal and yield
a delta function. Thus, it is reasonable to have some doubts regarding the orthogonality of
the Sturmian basis functions Sn,l (r) defined above. As mentioned before, starting from the
differential equation it is easy to derive the following expression:

− 2μ (βnl − βn′l )

∫ R

0
Sn′l(r)V(r) Snl (r) dr =

[
Snl(r)

dSn′l(r)

dr
− Sn′l(r)

dSnl (r)

dr

]
R

, (21)

where the limit R → ∞ should be taken. Now, at large distances r > RS where the generating
potential vanishes, the asymptotic behavior of the Sturmian functions is such that the right-
hand side of equation (21) is indeed zero. Thus, for n �= n′ the functions must be orthogonal
even in the case where the boundary conditions and the basis functions are complex. However,
we believe it is instructive to explore the way the orthogonality is achieved. The underlying
mathematical function generating the Kronecker symbol will therefore be investigated in
section 3.1 for Hulthén Sturmian functions. This is of interest from the mathematical point
of view and in connection with the theory of multivariable hypergeometric functions. The
relation like the one to be obtained is similar to many of the formulae provided in, e.g., [32]
and [33] which are extremely useful for many physical–mathematical developments [24–29].

An interesting fact to be noticed is that the orthogonality relation is associated with the
definition of a family of orthogonal polynomials defined on a finite-range coordinate, as now
discussed. For short-range potentials U (r), for example, we can write the Sturmian functions
as Snl(r) = eikrsnl(r). For r > RS, Snl(r) must behave as eikr while at the origin as rl+1. Thus,
the functions snl(r) behave as rl+1 at the origin and go to 1 for large values of the coordinate.
We do not pretend to demonstrate this here but, according to the studies performed by our
group, we know that the functions snl(r) are polynomials. The nodal structure, the way nodes
arrange and other properties support our affirmation. Moreover, we may use a new variable
x = g(r) such that the range r ∈ [0,∞] converts into x ∈ [0, 1], x being associated with the

6
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range of the generating potential V(r). With such polynomials, the orthogonality relation may
be written as ∫ ∞

0
Sn′l(r)V(r)Snl(r) dr =

∫ 1

0
sn′l(x)snl(x)w(x) dx ∝ δn′n (22)

with a given weight function w(x) related to V(g−1(x)) and to the cut-off function appearing
in V(r). This is also supported by our previous work [22, 34] where we used a numerical
discretization, finite differences, to solve the Sturmian equation by transforming it into a
difference equation. The discretization, and the boundary conditions imposed, lead to a set of
orthogonal polynomials. For all hypergeometric-type polynomials it is possible to demonstrate
that the obtained polynomials are the ‘hyperquantized’ version [35] of other families of
polynomials. This has a general character. Some examples have been discussed in publications
in connection with the angular Sturmian function in hyperspherical coordinates [34, 35], with
the Coulomb potential [36, 37] and with general potentials [34].

The definition and investigation of these polynomials is part of our current investigations
and is very important as they provide the tool to perform highly accurate integrations by
quadrature for all the matrix elements required in collision and structure calculations. In
addition, the existence of polynomials of different orders provides a natural nodes order
(on the complex plane); this can be useful to order the Sturmian functions themselves in
applications of structure or collision problems (of course, one should also investigate which
of the basis functions are the most useful for the problem being solved).

2.3.2. Overlap matrix elements. Overlap integrals (6) appear in many types of calculations,
both in scattering and structure problems. When dealing with scattering problems, the Sturmian
functions correspond to positive energy states. We will now show that even in this case, the
overlap integrals On′,n and also other matrix elements An′,n with some operator A(r) (e.g. an
electromagnetic field) are well defined.

The first thing to be noticed in connection with the definition of these matrix elements
is that because there is no complex conjugation when using Sturmian functions, oscillating
exponential factors such as eikr will be present in the integrand (for energy eigenfunctions
they cancel each other). Secondly, for values of r larger than a given point RS all the basis
functions are proportional to eikr (this is for short-range auxiliary potentials; see section 2.1).
This allows us to split the integral (6) as follows:

On′,n =
∫ RS

0
Sn′l(r)Snl(r) dr +

∫ ∞

RS

e2ikr dr. (23)

Since the Sturmian functions are well behaved in the whole finite range [0, RS], the first integral
is always well defined. The second integral can be performed analytically by introducing an
integrating factor e−εr:∫ ∞

RS

e(2ik−ε)r dr = e(−ε+2ik)RS

ε − 2ik
, (24)

where the limit ε → 0 yields a perfectly defined result −e2ikRS/(2ik). Thus, the whole overlap
integralOn′,n is well defined for positive energies. A similar analysis applies to matrix elements
An′n containing extra positive powers of rp (p � 0). This is in contrast with what would happen
for energy eigenfunctions. With the complex conjugation required, the oscillating exponential
factors cancel out and the integration between RS and ∞ would diverge, leading to not well-
defined overlap integrals.

A similar analysis can be performed when the auxiliary potential is a Coulomb potential
U (r) = Z/r. The logarithmic phase appearing in the asymptotic form of the Sturmian functions
can also be integrated leading also to well-defined limits.
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3. The Hulthén Sturmian functions: mathematical properties

Consider the Hulthén potential (it is a particular case of Eckart’s potential)

V(r) = V0
e−r/a

1 + c e−r/a
= V0

x

1 + cx
, (25)

where a > 0 is the screening parameter, c = −1 and V0 < 0; x = e−r/a in the second equality.
The Hulthén potential is of short range: it behaves as a Coulomb potential (−Z/r if one takes
V0 = −Z/a) at small distances and decreases exponentially for large values of r. In contrast
with the Coulomb case, the Hulthén potential allows only for a finite number of bound states.

For l = 0, the energy eigensolutions are known analytically [38]. Those, regular
at the origin, are given by xα

2F1(α − γ , α + γ , 2α + 1; x) with α2 = −2μEa2 and
γ = ia

√
2μ(V0 + E ); 2F1 is the Gauss hypergeometric function. For positive energies,

α = ±ika; outgoing behavior (eikr) is obtained for α = −ika. Bound states correspond to
α−γ = −n (the hypergeometric series reduces to a polynomial of order n in x = e−r/a); hence,
κ = κn = (μV0a)/n − n/(2a) and the energy En = −κ2

n /(2μ) is quantized (n = 1, 2, . . .).
Valid Sturmian l = 0 functions for outgoing (the incoming case can be treated similarly)

scattering conditions can be chosen—in r and x formulations—as

Sn(r) = Nn eikr
2F1(−n,−2iak + n,−2iak + 1, e−r/a) = Nn eikr

2F1(−n, Bn,Cn, e−r/a), (26a)

sn(x) = Nnx−ika pn(x), (26b)

where Bn = −2ika + n, Cn = −2ika + 1 is a fixed value and pn(x) = 2F1(−n, Bn,Cn, x) are
polynomials of order n; for further use, we set An = −n. In (26a), the normalization constant

Nn = (−2iak + n)!

(−2iak)!

√
(−2iak + 2n)

n!
(n)aV0(−2iak + n)
(27)

is such that the functions generate the closure relation (3). The Sturmian functions, as well as
energy eigenfunctions, result from looking for the roots of the Gauss function with respect to
one of its parameters for r = 0; in that way, one can fix either the energy or the magnitude of
the potential. Even when these two sets are similar, they contain completely different physical
information. One of the main differences is, e.g., that Sturmian functions form a discrete
spectra even for positive energies.

At large distances, x = e−r/a → 0 so that 2F1(−n,−2iak + n,−2iak + 1, e−r/a) → 1,
and the asymptotic behavior Snl(r → ∞) ∝ e±ikr is fulfilled. At short distances, for r → 0 the
argument of the Gauss function x → 1. To satisfy regularity at the origin, the whole function
must vanish, requiring thus the zeros of the Gauss function in terms of its parameters. This
leads to an infinite number of eigenvalues:

β(0)
n = −n(−2iak + n)

2μa2V0
(n = 1, 2, . . .) (28)

transforming the Gauss function into a polynomial of order n in the variable x.
Each Sturmian function (26a) is the product of an oscillating exponential eikr multiplied

by a polynomial of order n (this is generally the case for generating potentials of short
range, as mentioned in section 2.3). In our case, the polynomials have a variable x which
varies from 0 to 1. However, moving the energy to the complex plane, one may transform
the exponential variable eikr into an oscillatory exponentially decreasing function; the upper
half-plane corresponds to the outgoing behavior. Moreover, for negative energy, i.e. choosing
a pure imaginary k = iκ (simple analytic continuation), the oscillatory exponential becomes
a decaying exponential e−κr. Thus, for any value of complex energy (on the appropriated
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half-plane), the Sturmian functions Sn(r) are defined as the product of a decaying exponential
times a bound polynomial. In figures 1(a) and (b), we have plotted as a function of r, the real
and imaginary parts of the first four Sn(r) with E = 0.5, μ = 1, a = 4 and V0 = 1. It can
be observed that they differ mostly within the range of the Hulthén potential (plotted in figure
1(a)) and then all acquire the asymptotic behavior imposed by the energy, the outgoing wave
boundary condition and the auxiliary potential (identically zero in this case). This illustrates
how the basis functions are ideally suited to expand correctly the asymptotic domain. The
study of the polynomials is deferred to subsection 3.2 where the nodal structure of the basis
functions is investigated.

The eigenvalues of the problem are the magnitudes β(0)
n of the Hulthén potential. What

we have illustrated is that there exists an infinite and discrete number of potential magnitudes
β(0)

n supporting a state with a given externally fixed energy value E.
The same basic equation results if we allow the auxiliary potential to be a Hulthén potential

with the same range as the generating potential. While the eigenfunctions remain the same,
there is a shift in the eigenvalues given by the magnitude U0 of the auxiliary potential:

βn = β(0)
n − U0. (29)

This result will be employed when we exemplify, in section 4.1, the assertions of section 2.2
with the scattering of a particle by a Hulthén potential.

3.1. The orthogonality relation

According to the study we performed in section 2.3, we only need an expression for Vn,n;
however, we will derive an expression for the general matrix elements Vn′,n, and in particular
for c = −1. The purpose of this is to simply verify, in an alternative way, the fulfillment of the
orthogonality. In addition, we want to explore the type of mathematical functions representing
this orthogonality, i.e. the way the Kronecker symbol is generated.

Using the variable x we have for the matrix elements Vn′,n

Vn′,n = aV0Nn′Nn

∫ 1

0
2F1(An′ , Bn′ ,Cn′ ; x) 2F1(An, Bn,Cn; x)x−2ika(1 − x)−1dx. (30)

The apparent divergence at x = 1 (i.e. r = 0) is removed because of the regularity condition
Sn(r = 0) = 0. To evaluate Vn′,n we use the series definition of the Gauss hypergeometric
functions, and find

Vn′,n = aV0Nn′Nn

∑
l,m

(An′ )l (Bn′ )l

(Cn′ )l l!

(An)m (Bn)m

(Cn)m m!

∫ 1

0
x−2ika+l+m(1 − x)−1 dx. (31)

With the well-known expansion [32]

(1 − x)−1 =
∞∑

s=0

(1)s

s!
(x)s,

the integral Vn′,n is then given by a triple series

Vn′,n = aV0Nn′Nn

∑
l,m,s

(An′ )l (Bn′ )l

(Cn′ )l l!

(An)m (Bn)m

(Cn)m m!

(1)s

s!
Jl,m,s(a, k), (32)

where

Jl,m,s(a, k) =
∫ 1

0
dx x−2ika+l+m+s. (33)

9
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For l + m + s � 0, we have

Jl,m,s(a, k) = 1

−2ika + l + m + s + 1
= (−2ika + 1)l+m+s

(−2ika + 1) (−2ika + 2)l+m+s
. (34)

Thus, Vn′,n may be written as

Vn′,n = aV0Nn′Nn

−2iak + 1
�

(
An′ Bn′ |AnBn|1|−2ika+1
Cn′ |Cn|−|−2ika+2 | 1, 1, 1

)
, (35)

where the three-variable hypergeometric function � is defined as

�
(

An′ Bn′ |AnBn|D|E
Cn′ |Cn|−|F | x, y, z

)
=

∑
l,m,s

(An′ )l (Bn′ )l

(Cn′ )l

(An)m (Bn)m

(Cn)m
(D)s

(E )l+m+s

(F )l+m+s

xl

l!

ym

m!

zs

s!
. (36)

An alternative representation can be obtained using the property

(A)l+m+s = (A + s)l+m (A)s (37)

to replace the expressions (−2ika + 1)l+m+s and (−2ika + 2)l+m+s in (34) and obtain

Vn′,n = aV0Nn′Nn

−2iak + 1

∑
s

(−2ika + 1)s

(−2ika + 2)s

∑
l,m

(An′ )l (Bn′ )l

(Cn′ )l

(An)m (Bn)m

(Cn)m

(−2ika + 1 + s)l+m

(−2ika + 2 + s)l+m

1l

l!

1m

m!

(38)

which results in a single series

Vn′,n = aV0Nn′Nn

−2iak + 1

∑
s

(−2ika + 1)s

(−2ika + 2)s
F122

111

(−2ika+1+s;An′ Bn′ ;AnBn

−2ika+2+s;Cn′ ;Cn

∣∣∣1, 1
)

(39)

of the relatively more familiar two-variable hypergeometric function [33]

F122
111

(
D;An′ Bn′ ;AnBn

E;Cn′ ;Cn
| x, y

)
=

∑
l,m

(An′ )l (Bn′ )l

(Cn′ )l

(An)m (Bn)m

(Cn)m

(D)l+m

(E )l+m

xl

l!

ym

m!
. (40)

We should underline here that since the coefficient An = −n the summations over l and m are
truncated. This means that Vn′,n reduces to a single infinite series over s, and a double finite
summation.

A further alternative, more evaluation oriented, representation can be derived by making
use of the identity [39]

2F1(α, β, γ ; x) = (1 − x)−α
2F1

(
α, γ − β, γ ; x

x − 1

)
, (41)

to recast the integral as

Vn′,n = aV0Nn′Nn

∫ 1

0
2F1

(
An′ ,Cn′ − Bn′ ,Cn′ ; x

x − 1

)
2F1

(
An,Cn − Bn,Cn; x

x − 1

)
× x−2ika(1 − x)n′+n−1 dx. (42)

Inserting the series representation of the Gauss hypergeometric, we find

Vn′,n = aV0Nn′Nn

∑
l,m

(−n′)l(1 − n′)l

(Cn′)l l!

(−n)m (1 − n)m

(Cn)m m!
(−1)l+m

×β(1 − 2iak + l + m, n′ + n − l − m), (43)

where the Euler beta function [38] is given by

β(1 − 2iak + l + m, n′ + n − l − m) =
∫ 1

0
x−2iak+l+m (1 − x)n′+n−1−l−m dx. (44)

This expression can be quickly evaluated with commercial software.

10
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Table 1. Vn,n/(NnNn) elements for n = 1, . . . , 6.

Equation (39) Equation (43) Numerical

−5.000 01E-2 + 1.500 00E-1i −5.000 00E-2 + 1.500 00E-1i −5.000 00E-2 + 1.500 00E-1i
−2.999 99E-2 − 1.000 01E-2i −3.000 00E-2 − 1.000 00E-2i −3.000 00E-2 − 1.000 00E-2i
−2.307 25E-4 − 1.315 38E-2i −2.307 69E-4 − 1.315 38E-2i −2.307 69E-4 − 1.315 38E-2i

6.139 91E-3 − 4.322 94E-3i 6.139 92E-3 − 4.323 01E-3i 6.139 92E-3 − 4.323 01E-3i
4.958 09E-3 + 9.182 12E-4i 4.958 17E-3 + 9.181 84E-4i 4.958 17E-3 + 9.181 84E-4i
2.448 44E-3 + 2.804 82E-3i 2.448 54E-3 + 2.804 86E-3i 2.448 53E-3 + 2.804 86E-3i

Table 2. Vn,n+1/(NnNn+1) for n = 1, . . . , 5.

Equation (39) Equation (43) Numerical

5.58E-8 0.0 <1.0E-17
5.28E-8 0.0 <1.0E-17
7.661E-8 0.0 <1.0E-17
9.49E-8 0.0 <1.0E-17
1.16E-7 0.0 <1.0E-17

In table 1, respectively 2, we give the first six diagonal (respectively five subdiagonal)
matrix elements Vn′,n/(Nn′Nn) evaluated in three different manners: (i) using expression (43);
(ii) using expression (39) with 4000 terms; and (iii) with a conventional numerical radial
integration. We took a = 1 and E = 0.5. Generally subdiagonal elements (and farther away
from the diagonal) are, for a given matrix size, easier to evaluate since they require fewer
terms to add up in the analytical summation and have less oscillations to deal with in the
numerical integration. In all cases, the most reliable set was the one obtained with (43),
with identically zero off-diagonal elements (table 2). The direct numerical integration yielded
diagonal elements in agreement with both analytical methods and a ratio of roughly 14 orders
of magnitude between diagonal and off-diagonal elements (ideally zero). While the three
methodologies work, we found expression (43) to be the most accurate and also time efficient
to implement; the other two yield values correct up to the fourth digit for diagonal terms.
The accuracy of expression (39) depends obviously on the number of terms in the infinite
summation; convergence was observed to be very slow.

The above investigation verified the potential-weighted orthogonality (4) between Hulthén
basis functions.

3.2. Nodal structure

We now turn our attention to the polynomials pn(x) which are Jacobi polynomials. As we did
not encounter any study on the placement of their nodes when the parameters are complex, we
present below an exploratory study which is by no means exhaustive. The first four polynomials
are shown in figures 2(a) and (b), respectively in real and imaginary parts. The whole set has
a node at x = 1, which corresponds to the regularity condition in r = 0. Since they constitute
a complete basis set, a given pn(x) must have exactly n nodes and be bound for any x ∈ [0, 1].

We start by analyzing the behavior of the nodes when we depart from bound states, which
imply real coefficients, and start to consider complex energies. We observed that when the
phase of k is gradually rotated from π/2 (bound states) to 0 (non-decaying outgoing waves) the
number of nodes for a given n does not vary; however, they migrate continuously to the lower
half-plane of the complex plane. The node at the origin (r = 0, x = 1) remains even when
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Figure 1. Sn,0(r) (n = 1 − 4) for angular momentum l = 0, range a = 4 and energy E = 0.5.
The Hulthén potential with V0 = 1 (thicker line) is also shown. The whole set of functions has the
same asymptotic behavior.

the phase of k changes; this is to be expected since the Sturmian functions were discretized
enforcing the regularity there. The remaining nodes acquire a negative imaginary part that gets
more pronounced as the k phase tends to zero and their real parts shift slightly toward smaller
x, as can be seen in figure 3.

We have also studied, for a given k, the placement (ordering) of the pn(x) nodes in the
complex plane. Though the general theory [40] is developed strictly for real polynomials, the
real parts of our complex pn(x) nodes still comply with the ordering properties. That is to
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Figure 2. pn(x) for n = 1, . . . , 4. The separate real and imaginary parts do not constitute two valid
basis sets since some of their nodes may lie outside [0, 1]. For example, the polynomials 	(p2(x))

and 	(p3(x)) have the same number of nodes in the domain considered.

say, if xn, j, xn, j+1, with j = 1, . . . , n, are the real parts of the nodes of a given pn(x), the real
part of a node xn+1, j+1 belonging to pn+1(x) will lie in between the previous two. This can be
observed in figure 4, where we have plotted, for illustration, the complex nodes of the three
polynomials with n = 13, 14, 15.

Finally, we analyzed the nodes of 	(pn(x)) and 
(pn(x)) as separate polynomials. Even
though the zeros lie on the real axis, for some values of n there are nodes which were not
confined to the valid x range [0, 1]. This single fact rules them out as valid basis sets in the
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Figure 3. Position of the first four nodes in the complex plane as the phase of k is rotated from
pure imaginary (nodes on the real axis) to real (nodes traveling gradually to the lower left).
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Figure 4. pn(x), with n = 13, 14, 15, in the complex plane. The real part of the nodes of polynomials
with contiguous n are intercalated.

domain under study [40]. This can be seen in figure 2(a), where 	(p2(x)) and 	(p3(x)) have
in [0, 1] the same number of nodes.

The behavior observed here for the Hulthén case is instructive in the sense that for general
Sturmian functions associated with other potentials, we expect the nodal structure to be similar.
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The nodes will be, for outgoing or incoming asymptotic behaviors, in the complex plane of
the coordinate. Given the fact that the Sturmian functions are generally defined in terms of
polynomials and that they have a natural order, there is then a one-to-one relation between
the order and the number of nodes. This is of crucial importance when using the basis set in
scattering calculations.

3.3. Overlap matrix elements

Analytic expressions can also be obtained for the overlap integrals On′,n. They allow us again
to confirm the validity of the analysis presented in section 2.3, i.e. that they are well defined.
To derive the results, and to allow for an easy extension for other matrix elements An′,n, we
start from the more general integral

Õk′,k
n′,n = Nn′Nn

∫ ∞

0
2F1

(
A′

n′ , B′
n′ ,C′

n′ ; e− r
a
)

2F1
(
An, Bn,Cn; e− r

a
)

ei(k′+k)r−εr dr, (45)

where the primed coefficients A′
n′ , B′

n′ , C′
n′ are allowed to have k′ �= k and where we have

introduced an integrating factor e−εr. For k = k′ and ε → 0, Õk′,k
n′,n reduces to On′,n defined

by (6). Using the series representation of both Gauss functions, we encounter again the integrals
(33) where s = 0 and −2ika is replaced by −i(k + k′)a + εa − 1. Adapting the final result
(39) obtained above for Vn′,n, and taking the limit ε → 0, we immediately find

Ok′,k
n′,n = Nn′Nn

1

−i(k′ + k)
F122

111

(−i(k′+k)a;A′
n′ B′

n′ ;AnBn

−i(k′+k)a+1;C′
n′ ;Cn

∣∣∣1, 1
)

. (46)

Alternatively, we may express this result as a single series of 3F2 hypergeometric functions

Ok′,k
n′,n = Nn′Nn

1

−i(k′ + k)

∑
l

(A′
n′ )l(B′

n′ )l

(C′
n′ )l l!

(−i(k′ + k)a)l

(−i(k′ + k)a + 1)l

× 3F2(An, Bn,−i(k′ + k)a + l,Cn,−i(k′ + k)a + 1 + l; 1). (47)

On the other hand, performing the integration term by term in (45), we get the double
finite sum

Õk′,k
n′,n = Nn′Nn

∑
l,m

(A′
n′ )l(B′

n′ )l

(C′
n′ )l l!

(An)m(Bn)m

(Cn)mm!

a

l + m + aε − i(k′ + k)a
, (48)

the two summations being truncated since An = −n and A′
n′ = −n′. Successive differentiations

of (48) with respect to ε yield matrix elements with extra integer powers of r (p � 0):

∂ pÕk′,k
n′,n

∂εp
= (−1)pNn′Nn

∫ ∞

0
2F1(A

′
n′ , B′

n′ ,C′
n′ ; e− r

a )2F1(An, Bn,Cn; e− r
a )rp ei(k′+k)r−εr dr. (49)

The integration is again easily performed, and taking the limit ε → 0, we obtain[
∂ pÕk′,k

n′,n

∂εp

]
ε→0

= Nn′Nn

∑
l,m

(A′
n′ )l(B′

n′ )l

(C′
n′ )l l!

(An)m(Bn)m

(Cn)mm!

(−1)pap+1 p!

[l + m − i(k′ + k)a]p+1
. (50)

Such expressions allow for a complete study of the Hulthén potential, which is one of the very
few potentials having analytical solutions.

Matrix elements with positive powers rp are mathematically well defined. This is due to
the oscillatory character of the Sturmian functions, as stated in the introduction. However, in
the following example k is taken as purely imaginary (bound states) and k′ purely real for the
sake of numerical simplicity.
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Table 3. Ok,k
n,n/(NnNn) elements for k = k′ = 1 and n = 1, . . . , 6.

Equation (23) Equation (46)

−1.500 00E-1 + 5.000 00E-2i −1.500 00E-1 −5.000 00E-2i
2.000 00E-2 − 6.000 00E-2i 2.000 00E-2 − 6.000 00E-2i
3.946 15E-2 − 6.923 43E-4i 3.946 15E-2 − 6.923 08E-4i
1.729 22E-2 + 2.455 94E-2i 1.729 20E-2 + 2.455 97E-2i

−4.590 88E-3 + 2.479 09E-2i −4.590 99E-3 + 2.479 08E-2i
−1.682 92E-2 + 1.469 15E-2i −1.682 91E-2 + 1.469 12E-2i

Table 4.
〈
k′, n

∣∣r5
∣∣ k, n〉 /(NnNn) for k = i and k′ = 1, and n = 1, . . . , 6, evaluated with equation

(50) and modulus of the relative error obtained by direct numerical integration.

Modulus of the relative error
Equation (50) with numerical integration

4.468 99 − 13.8484i 1.049E-7
7.694 86 − 10.5726i 1.376E-7
9.088 16 − 6.811 41i 1.540E-7
9.106 36 − 3.525 08i 1.792E-7
8.342 33 − 9.997 72E-1i 2.018E-7
7.223 51 + 7.961 83E-1i 2.405E-7

Overlap integrals were calculated numerically for the case k′ = k = 1 and a = 1
and are presented in table 3 for n = 1, . . . , 6; the direct numerical integration (23) and the
hypergeometric representation (46) are seen to be in very close agreement. The validity of result
(50) is illustrated through table 4. We evaluated the diagonal elements of the transition matrix
〈k′, n|r5|k, n〉/(Nn′Nn) with n = 1, . . . , 6 between two basis sets. One of them corresponds to
purely bound states (k = i) and the other one to purely outgoing waves (k′ = 1), both basis
sets being generated with a Hulthén potential with range a = 1.6. Since the values obtained
were identical to within eight figures, the table provides the values of the analytical expression
and the absolute value of the difference with the numerical integration.

4. An application to scattering problems

4.1. The scattering of a particle by a Hulthén potential

In this section, we explicitly solve the scattering of a particle by a Hulthén potential
V (r) = V0

e−r/a

1−e−r/a . The result is of course very well known [38], but we will present here
the closed form solution of the driven Schrödinger equation. We will also provide a closed
form for Green’s function. These results complement the information found in [38] for one of
the very few potentials possessing analytical solutions.

According to the equations presented in section 2.2, we have for l = 0 the following
representation of Green’s function:

G+
0 (r′, r) = 2μa

[(−2ika)!]2

∞∑
n=1

[(n − 2ika)!]2

(n − 2iak)[n(n − 2iak) + 2μa2V0V0]

(2n − 2ika)

n!
(n)

× eikr′
2F1(−n,−2iak + n,−2iak + 1; e−r′/a)

× eikr
2F1(−n,−2iak + n,−2iak + 1; e−r/a), (51)
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where U0 in (29) has been chosen equal to the weight V0 of the interaction potential. This
expression is valid for any energy in the complex plane. Here it is presented for positive
energies, but through analytic continuation we can obtain the expression corresponding to any
value of the energy. This is allowed by the fact that the Sturmian functions, being a discrete
set, form a complete basis for any value of the energy. This representation is equivalent to
the one given for the Coulomb potential [41, 42]. This confirms what we have stated before:
energy and potential-magnitude eigenfunctions are different even when the mathematical
functions are similar. Green’s function (51) is defined as a summation over the discrete
spectra of potential-magnitude eigenfunctions for all energies of the system. This differs
considerably from the energy representation where the continuum part of the spectrum is also
needed.

The scattering-driven equation to solve is given by (11) where the potential V (r) is
the Hulthén potential V(r) defined by (25). The initial state is taken as a free particle
�0(r) = kr j0(kr) = sin(kr) where j0(x) is a spherical Bessel function of zeroth order.
A closed form expression for the function �sc(r) can be easily written, according to the
presentation of section 2.2. Using (13) and (15), the coefficients an of equation (12) are given
by

an = V0

βn

∫ ∞

0
Sn(r)

e−r/a

1 − e−r/a
kr j0(kr) dr. (52)

The integral appearing in the definition of an can be evaluated analytically following a strategy
similar to the one used in the previous sections. After some simplifications, we obtained the
following quite simple representation:∫ ∞

0
Sn(r)

e−r/a

1 − e−r/a
kr j0(kr) dr = − kNn

2μβ
(0)
n

, (53)

where the eigenvalues β(0)
n are defined through equation (28).

The scattered part �sc(r) is then explicitly given by

�sc(r) = −V0k

2μ

∞∑
n=1

1

βnβ
(0)
n

N2
n eikr

2F1(−n,−2iak + n,−2iak + 1; e−r/a). (54)

Finally, taking the asymptotic limit r → ∞, we find the scattering transition amplitude
Tk for the collision process

�sc(r) →
(

−V0k

2μ

∞∑
n=1

1

βnβ
(0)
n

N2
n

)
eikr = Tk eikr. (55)

As an example, we evaluated the transition amplitude for a = 1, k = 0.85 and
V0 = −1 (an attractive potential). The value obtained with the expression of equation (55) is
0.370 388+0.164 27i which is in good agreement with the result of an independent numerical
procedure: 0.370 368 + 0.164 102i and with that given in [38]. In this analytical example (the
Hulthén potential), we were restricted to choose U (r) = V (r) and to use the same values of a
in U (r), V (r) and V(r). In the example shown in the following subsection, we had the freedom
to choose the range of V(r) at the cost of dropping a fully analytical presentation.

4.2. The scattering of a particle by a Yukawa potential

As another application, we study the scattering of a particle by a Yukawa potential
V (r) = e−αr/r (α > 0). Expansions (12) and (13) were performed with the Hulthén Sturmian
functions, having set the auxiliary potential to zero. The range parameter a of the generating
Hulthén potential was chosen equal to that of the interaction potential. Under this condition,
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Figure 5. l = 0 partial wave for the Yukawa potential with E = 0.5 and α = 1. The scattering
function obtained with a Sturmian expansion is undistinguishable from the exact one (numerical).

the Yukawa potential range is slightly shorter due to the factor 1/r present in its expression.
No other optimization was performed. The evaluation of the potential integrals Vn′,n shows
that the Sturmian set is effectively orthogonal. The integrals involving the Yukawa potential
and the expansion of the driven term had to be done numerically (an analytical expression
may be sought after).

Our results for the scattering wavefunction are plotted in figure 5 where we compare the
exact wavefunction for E = 0.5, l = 0, α = 1 and its expansion with 60 Sturmian basis
elements. The differences are barely noticeable. This clearly shows that the complex, and
regular at the origin, basis functions are able to expand the driven term even when this is
purely real. Figure 6 shows the convergence of the real part of the �sc(r) expansion generated
with 20, 40 and 60 basis functions; 20 basis functions basically provide the exact numerical
solution, further elements giving full convergence.

The normalization of the function was fixed so that �0(r) → sin (kr) for r → ∞. This
implies, for the overall function, � (r) = �0 (r) + �sc (r) → eiδ0 sin (kr + δ0) as r → ∞,
with δ0 being the corresponding l = 0 phase shift for the interaction Yukawa potential. The
obtained scattering amplitude is 0.4085 + 0.7869i which may be compared to the accurate
value, 0.4086 + 0.7881i, derived with a separate numerical procedure.

We emphasize that these results do not, by any means, constitute a deep study of
convergence with respect to the parameters involved, as no optimization was performed.
The chief application realm for the Sturmian theory is the three-body problem, for which two-
body fully numerical methodologies do not extend in a straightforward way. The Sturmian
functions contain the correct outgoing asymptotic behavior. This fact makes them suitable
for expansions since the basis will only have to expand correctly a region of a few atomic
units away from the origin. This is opposed to energy-type bases which need to expand
both the near and asymptotic regions, thus requiring more elements and more computational
resources.
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Figure 6. Crest detail of the real part of the scattering function for expansions taken with increasing
number of basis elements (l = 0, E = 0.5, α = 1).

5. Summary

Generalized Sturmian functions satisfying a Schrödinger-like equation, complemented with
two-point boundary conditions, form a complete set of orthogonal functions for any auxiliary
and generating potentials. The first one controls the asymptotic behavior of all the basis
functions. The eigenvalues of the problem are the magnitude of the generating potential which
controls most of the basis function properties. Interestingly, at large distances any type of
boundary conditions can be enforced to the functions: incoming, outgoing or standing-wave
behavior for positive energies, and exponentially decreasing behavior for negative energies.
Even complex energies can be considered and similar behaviors at large distances can be
imposed. In all cases, regularity at the origin was imposed as well.

The standard Sturm–Liouville theory is normally presented for real functions and in
most cases orthogonality and closure issues are presented in that context. In this paper, we
addressed the case of complex parameters and complex boundary conditions, with the purpose
of clarifying some delicate aspects. We considered Sturmian functions corresponding to the
l = 0 Hulthén potential for which analytical solutions exist (the results can be generalized—
in principle—to any potential and any angular momentum l). Such a potential generates a
set of orthogonal polynomials with a weight function involving the generating potential (the
quadrature integration with respect to those polynomials is one of our current topics under
investigation). The orthogonality was demonstrated by direct numerical integration and, also
explicitly, by analytical evaluation. The corresponding integral was expressed in terms of a
multivariable hypergeometric function or, alternatively, in terms of a finite sum more suitable
for numerical implementations. We used both to numerically show that they yield the expected
delta Kronecker-like behavior.

To the best of our knowledge, there are no studies of scattering-like (complex) basis
functions, in particular with respect to the behavior of their nodes. Thus, we performed an
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analysis for the Hulthén Sturmian functions, and found that the eigenvalues can be ordered as
in the standard (real) theory. The trajectory of the nodes can be followed for the different energy
values when they are moved to the complex plane (on the upper plane) from real negative to
real positive. The corresponding complex polynomial set is orthogonal but, individually, the
real and imaginary parts are not.

In addition, we studied analytically the overlap integrals and other matrix elements
including extra powers of the coordinates. We managed to express all of them in terms of
uncommon multivariable hypergeometric functions, and showed that they are well defined.
Numerical validation of mathematical expressions was also presented.

Finally, to illustrate the efficiency of generalized Sturmian functions, we applied them to
describe the scattering produced by a Hulthén and a Yukawa potential.

For the Hulthén case, we took advantage of the analyticity of the Hulthén Sturmian
functions to derive various expressions which complement those given in standard collision
theory [43] and mathematical physics books [38]. We provided a closed form expression for
the l = 0 Green’s function corresponding to any value of the energy. The expression makes
use of the discrete character of the Sturmian spectra which allows for a diagonal representation
in terms of a single series. We obtained a closed form expression for the solution of the driven
equation corresponding to this potential, and for the corresponding transition amplitude.
Analytical results were verified numerically with an independent numerical procedure and
also with those given, e.g., in [38].

For the scattering by a Yukawa potential, our numerical application achieved a more than
fair agreement with the exact solution, using a relatively low number of basis elements. The
efficiency is related to the built-in correct asymptotic behavior of every basis element and to
the appropriate choice of the generating potential range.
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(Säo Paulo: Institute of Theoretical Physics) p 255
[17] Rawitscher G 2011 Phys. Rev. E at press (arXiv:1102.2172)
[18] Macek J H and Ovchinnikov S Yu 1996 Phys. Rev. A 54 544

20

http://dx.doi.org/10.1063/1.1730019
http://dx.doi.org/10.1016/0003-4916(62)90219-1
http://dx.doi.org/10.1016/S0065-2199(08)60206-7
http://dx.doi.org/10.1016/0375-9474(67)90057-7
http://dx.doi.org/10.1016/S0065-3276(03)43006-2
http://dx.doi.org/10.1142/9789812773593
http://dx.doi.org/10.1103/PhysRev.104.1301
http://dx.doi.org/10.1002/qua.21231
http://dx.doi.org/10.1088/0305-4470/31/21/012
http://dx.doi.org/10.1088/0305-4470/36/31/307
http://dx.doi.org/10.1103/PhysRevA.74.063409
http://dx.doi.org/10.1103/PhysRevA.81.042712
http://dx.doi.org/10.1103/PhysRevC.25.2196
http://dx.doi.org/10.1103/PhysRevC.39.440
http://arxiv.org/abs/1102.2172
http://dx.doi.org/10.1103/PhysRevA.54.544


J. Phys. A: Math. Theor. 45 (2012) 015201 M J Ambrosio et al

[19] Ovchinnikov S Yu and Macek J H 1997 Phys. Rev. A 55 3605
[20] Mitnik D M, Colavecchia F D, Gasaneo G and Randazzo J M 2011 Comput. Phys. Commun. 182 1145
[21] Frapiccini A L, Gonzalez V Y, Randazzo J M, Colavecchia F D and Gasaneo G 2007 Int. J. Quantum

Chem. 107 832
[22] Randazzo J M, Frapiccini A L, Colavecchia F D and Gasaneo G 2009 Phys. Rev. A 79 022507
[23] Randazzo J M, Frapiccini A L, Colavecchia F D and Gasaneo G 2009 Int. J. Quantum Chem. 109 125
[24] Ancarani L U and Gasaneo G 2008 J. Math. Phys. 49 063508
[25] Ancarani L U and Gasaneo G 2009 J. Phys. A: Math. Theor. 42 395208
[26] Gasaneo G and Ancarani L U 2009 Phys. Rev. A 80 062717
[27] Ancarani L U and Gasaneo G 2010 J. Phys. A: Math. Theor. 43 085210
[28] Gasaneo G and Ancarani L U 2010 Phys. Rev. A 82 042706
[29] Ancarani L U and Gasaneo G 2011 J. Math. Phys. 52 022108
[30] Randazzo J M, Ancarani L U, Gasaneo G, Frapiccini A L and Colavecchia F D 2010 Phys. Rev. A 81 042520
[31] Newton R G 2002 Scattering Theory of Waves and Particles (New York: Dover)
[32] Srivastava H M and Manocha H L 1984 A Treatise on Generating Functions (Chichester: Ellis Horwood)
[33] Srivastava H M and Karlsson P W 1985 Multiple Gaussian Hypergeometric Series (Chichester: Ellis Horwood)
[34] Gasaneo G, Mitnik D M, Frapiccini A L, Colavecchia F D and Randazzo J M 2009 J. Phys. Chem. A 113 14573
[35] Aquilanti V, Cavalli S and De Fazio D J 1998 Chem. Phys. 109 3792
[36] Aunola M 2003 J. Math. Phys. 44 1913
[37] Aunola M 2005 J. Phys. A: Math. Gen. 38 1279
[38] Morse P M and Feshbach H 1953 Methods of Theoretical Physics vol 1 (New York: McGraw-Hill)
[39] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)
[40] Szego G 1939 Orthogonal Polynomials (Providence, RI: American Mathematical Society)
[41] Maquet A 1977 Phys. Rev. A 15 1088
[42] Shakeshaft R 2004 Phys. Rev. A 70 042704
[43] Newton R G 2002 Scattering Theory of Waves and Particles (New York: Dover)

21

http://dx.doi.org/10.1103/PhysRevA.55.3605
http://dx.doi.org/10.1016/j.cpc.2011.01.016
http://dx.doi.org/10.1002/qua.21220
http://dx.doi.org/10.1103/PhysRevA.79.022507
http://dx.doi.org/10.1002/qua.21686
http://dx.doi.org/10.1063/1.2939395
http://dx.doi.org/10.1088/1751-8113/42/39/395208
http://dx.doi.org/10.1103/PhysRevA.80.062717
http://dx.doi.org/10.1088/1751-8113/43/8/085210
http://dx.doi.org/10.1103/PhysRevA.82.042706
http://dx.doi.org/10.1063/1.3554698
http://dx.doi.org/10.1103/PhysRevA.81.042520
http://dx.doi.org/10.1021/jp9040869
http://dx.doi.org/10.1063/1.1561156
http://dx.doi.org/10.1088/0305-4470/38/6/007
http://dx.doi.org/10.1103/PhysRevA.15.1088
http://dx.doi.org/10.1103/PhysRevA.70.042704

	1. Introduction
	2. Generalized Sturmian functions
	2.1. Basic theory
	2.2. Applications in atomic physics
	2.3. Some additional mathematical considerations

	3. The Hulthén Sturmian functions: mathematical properties
	3.1. The orthogonality relation
	3.2. Nodal structure
	3.3. Overlap matrix elements

	4. An application to scattering problems
	4.1. The scattering of a particle by a Hulthén potential
	4.2. The scattering of a particle by a Yukawa potential

	5. Summary
	Acknowledgments
	References

