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Abstract
We studied the hydrogen atom as a system of two quantum particles in different confinement
conditions; a spherical-impenetrable-wall cavity and a fullerene molecule cage. The motion
refers to the center of spherical cavities and the Schrödinger equation is solved by means of a
generalized Sturmian function expansion in spherical coordinates. The solutions present different
properties from the ones described by the many models found in the literature, where the proton
is fixed in space and only the electron is considered as a quantum particle. Our results show that
the position of the proton (i.e. the center of mass of the H atom) is very sensitive to the
confinement condition, and could vary substantially from one state to another, from being
sharply centered to being localized outside the fullerene molecule. Interchange of the localization
characteristics between the states when varying the strength of the fullerene cage and mass
occurred through crossing phenomena.

Keywords: confined atoms, fullerene, hydrogen

(Some figures may appear in colour only in the online journal)

1. Introduction

Being the simplest atomic system, hydrogen is one of the
most extensively studied elements in the periodic table. The
atom has a relatively simple mathematical description through
the analytical solution of the two-body Schrödinger equation,
which enables comprehension of its electronic structure, its
quantum states, its discrete nature of energy levels, and other
related properties. From the experimental side, it has been
bombarded with electrons [1], protons [2, 3] and photons
[4, 5], combined with other chemical elements and, more
recently [6, 7], confined in fullerene structures.

The wave functions which theoretically describe these
processes are usually obtained from the hydrogen-like
Schrödinger equation, by considering separately the center of
mass and relative coordinates [8]. The problem maps to a
central field problem for a reduced mass μ particle, and since
μ is very similar to the electron mass, it is usually interpreted
as if it were the electron, and the nucleus were fixed at the
center of the coordinate system. The quantum behavior of the
center of mass is not generally considered, since the inter-
esting properties, such as ionization energies or the excited

state structure, only depend on the relative coordinate
dynamics.

The same approach is sometimes applied when atomic
confinement is modeled [9–12], where the proton is generally
considered as an infinitely massive particle fixed in space,
acting as a Coulomb center for the electrons clamped some-
where in the box [13, 14]. In the case where the proton is not
centered, the separation of coordinates is not possible, as
discussed by Tanner [15] and Amore (and Fernández) [16] for
a harmonic oscillator. The way to deal with such a system
while keeping two-body simplicity is to consider the electron-
wall interactions of a spherical box or fullerene molecule
through boundary conditions [17] or central potentials [18]
respectively, as a function of the radial coordinates. The
movement of the nucleus can then be considered perturba-
tively [13], or in the Born–Oppenheimer approximation,
where the energy value of the system as a function of its
coordinates defines a potential energy surface (PES) through
which it moves [19].

An alternative way is to consider the system as a three-
body problem, consisting of a proton, an electron and a
confinement cavity. A first approximation to the ground state
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solution of the hydrogen atom in an infinitely massive sphe-
rical box was introduced by Fernández [20], who performed a
variational calculation with a very simple trial function, which
seems to be adequate for strong confinement, i.e. Rc(radius
cage)<1 a.u. Better results have been found in a more recent
calculation with a generalized Hylleraas basis set of four
linear parameters and three exponentials [21], where mean
values of some observables were given for the ground state as
a function of the confinement radius.

In this work we extend the study of the confined
hydrogen atom with a moving nucleus to the case of endo-
hedral confinement. We emphasize the analysis to the loca-
lization of the proton, identifying the confinement conditions
which are (and are not) compatible with the usual atom-
centered models. The solution of the Schrödinger equation is
obtained by means of a configuration interaction (CI)
approach with generalized Sturmian functions, in the coor-
dinates which locate the proton and electron from the center
of the confinement cage.

The paper is organized as follows: in section 2 we
introduce the driven equations for the system and the math-
ematical tools we used to solve them. In section 3 we show
convergence of the calculations. We present results for the
ground state of the hydrogen atom and describe localization
phenomena of the atom for some confinement conditions. The
finite mass of the confinement molecule and crossing phe-
nomena between the states as a function of the interactions
strength and molecular mass is described. Finally, a summary
and some concluding remarks are given in section 4. Hartree
atomic units  = = =( )m e 1e are used throughout this
paper.

2. Theory

We consider the confined hydrogen atom as a system of two
quantum particles inside a spherical cage of radius Rc, where
the center of the sphere is considered as the center of the
coordinate system. The Hamiltonian can be written as:

m m
l

= - - - + + -
▿ ▿

▿ ▿ ( ) ( )

( )

H
m

U r U r
r2 2

1
.

1

e

e

p

p
e p e e p p

ep

2 2

c

where the sub-index e (p) denotes the relative coordinate and
reduced mass associated to the electron (proton)-cage pair,
where mc is the mas of the cavity and rep is the electron–
proton distance, while λ is the strength of the interaction (i.e.
l = 1 for hydrogen). We study two cases, the particles inside
a spherical box with impenetrable walls, and a model of
endohedral fullerene confinement. In the first case, we take

= =U U 0e p and impose the boundary condition
Y =( )r r, 0e p for re or rp equal or greater than Rc. Also we
considered =m1 0c which corresponds to infinite mc.

In the second case, the confinement is associated with a
fullerene cage considered to be finite or infinitely massive
( m 720c times mp). For the electronic potential we use the

well given by Connerade et al [18]:

 = - < + D{( ) ( )U r U r r r0
0 otherwise

2e
0 c c

where rc and Δ are the inner radius and the thickness of the
shell, respectively. We use the values deduced by Xu et al
[22] (rc=5.75 a.u. and D = 1.89 a.u.), which are specific
for a C60 molecule. On the other hand, the value of U0 is
changed in order to explore the general physics of the system.
In a physical picture, this value can actually be changed; for
example modifying the number of atoms of the molecule and
therefore the fullerene structure. Within this model, mc can
take finite values as we show in the results.

It follows that the complex physics involved in the
chemical processes for -H C60 are not included in this
model. Indeed, the interaction of the proton with the fullerene
cage should be different from Ue because of the different
physical properties, principally its mass, charge and indis-
tinguishablity with other constituent particles of the molecule.
However, since the proton has the opposite electron’s charge,
it is naturally suggested to consider, as a first approximation
to more elaborate models, the choice = -( ) ( )U r U rp e . This
election also takes into account, on average, the H–C repul-
sive core effect at short distances, typical of inter-atomic
potentials. On the other side, the active electron bounded to
the well acts as an attractive potential for the proton at large
distances, through the Coulombic interaction. Independently
of the veracity of the proposed interaction, the present model
will allow us to discover and understand some interesting
properties of the collective quantum dynamics of two parti-
cles with quite different masses.

2.1. Sturmian expansion

In order to have a spatial representation of the eigenstates we
use the Sturmian basis, which satisfies the equation:

b-  + - Y = - Yn n n
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )

m
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together with the physical boundary conditions:
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3

i

Y = =n ( ) ( )r Rr 0 for , 5i i ci

where = ∣ ∣r ri i , n = { }n l m, ,i i i i and =i e p, .
The Sturmian basis results from (3) and the conditions

(4) and (5), by taking the energy E as an externally fixed
parameter and bn as the eigenvalue to be determined (here ν

stands for all quantum numbers) [23]. V is any atomic-type
potential which depends only on the distance ri and satisfies

=( )V r 0i for >r Ri c.
Equation (3) is separable in spherical coordinates as

usual:
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and we only have to solve for ( )P rn l i,i i
:
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where Tr is the radial kinetic energy operator:

= - +
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The boundary condition (4) ensures the regularity of the
Sturmian functions, while the boundary condition (5) depicts
the confinement. For the spherical box case, Rc is the radius of
the cage; while for endohedral fullerene confinement it is
chosen to be large enough to affect negligibly the wave
functions which are localized by the fullerene potential.

As is usual in uncorrelated CI calculations, we use a
partial-wave expansion for the Coulomb interaction:
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where >r ( <r ) is the greater (smaller) between re and rp. The
eigenfunctions of the Hamiltonian given by equation (1) can
be written as:
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and n = { }l l n n, , ,e p e p . Note that we use the spherical bi-
harmonics  l l

L M
,
,

e p
, which are eigenfunctions of the total angular

momentum operator and its projection along the ẑ axis with
quantum numbers L and M respectively.

By means of the Galerking method and standard algebra
packages [24] we obtain solutions for the coefficients na L M,

and eigenenergies E [23].

3. Results

3.1. Convergence properties of the expansion

The convergence of the wave functions with the number of
radial configurations included in the expansion can be ana-
lyzed through the ground-state energy. Here we consider the
hydrogen atom ( =U 00 ) in a spherical box of radius =R 10c

a.u., as a function of the radial basis elements per coordinate.
Since partial wave convergence will be analyzed later, here
we restrict our study to the = =l l 0e p component, corresp-
onding to the L=0 partial-wave term. We will use two basis
sets. One is the box-based Sturmians SFb (i.e. =U 0i and
=V 1i , =i e p, ) which depend only on the value of Rc, the

distance at which homogeneous conditions are imposed. This
is the basis we will use in the next section, where the depth of
the potential U0 and the Coulomb interaction strength λ will
be varied.

Before we present our results, we would like to stress that
the Sturmian functions can be defined to efficiently represent
a particular state [23]. In order to show this, we propose as an
example a second basis which gives better results with
smaller basis elements than the SFb. This optimal basis SFo is

defined through =U 0i , = a- -V r ei i
r1 i i ( =i e p, ),

= = -E E 0.5e p and a a= =2 1p e in equation (3). The
potentials and parameters we have just defined were chosen
based in our previous experience [23] and performing few
variational iterations. A deeper optimization can also be
performed in all parameters and functional space of poten-
tials Vi.

In table 1 we show the ground state energies of the
s-wave ( = =l l 0e p ) confined H atom as a function of the
number of radial states per coordinate. In this analysis we use

=R 10c a. u. in order to have acceptable convergence with
small SFb basis sets. For the results of the next sections we set

=R 20c a. u. in order to reduce effect of the confinement at
large distances on the evaluated states. We have checked that
the spatial distribution of the states for larger values of Rc

remain mainly unchanged. We clearly see that the optimized
basis is much more efficient than the unoptimized one.
However, the disadvantage of optimization is that it has to be
performed for each individual state in an iterative procedure.
Here we reach, with the SFo, convergence of the radial
expansion for the ground state of the system until the 6th
decimal figure by using 25 radial functions per coordinate,
while for the same size the SFb basis gives only up to the
first one.

Deeper values of the energy can be obtained by adding
angular terms. This is done through bi-spherical harmonics, in
the same fashion as for the SFb and SFo basis sets. The
expected energy for the ground state will be close to −0.5,
which is a little bit higher due to the finite size of the basis and
the confinement effects. If we were dealing with a H atom
modeled as a single neutral particle in a box, the amount of
the total energy associated with the confinement effect would
be p + ´ -( )R m m2 2.7 10e p

2
c
2 5, i.e., the exact ground-

state energy of the system. However, as we will see, the true
state corresponding to a two-particle wave function is very
different in shape if we look at the center-of-mass distribu-
tion, which almost equals the proton’s distribution. That is
why we cannot estimate a priori the confinement energy of
the composed system.

Table 1. Convergence analysis for the = =l l 0e p ground state of the
confined hydrogen atom as a function of radial functions per particle
nmax with the box based (SFb) and ‘sophisticated’ (SFo) radial
Sturmians.

Ground-state energy

nmax SFb SFo

5 −0.2905806409 −0.4470251209
10 −0.3729047660 −0.4663337297
15 −0.4130974121 −0.4672219778
20 −0.4353883725 −0.4672434215
25 −0.4485486681 −0.4672446242
30 −0.4565116034 −0.4672448546
35 −0.4613104686 −0.4672448585
40 −0.4641220711 −0.4672449074
45 −0.4656910723 −0.4672448904
50 −0.4665127698 −0.4672449113
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In table 2 we show the energy values of the ground state
energy of the system as a function of the maximum number of
pairs (l l,e p) for the s-wave solution ( =l le p), when the
number of radial functions per coordinate is 20 (note that the
values for =l 0max are the same as the value for =n 20max )
in table 1. We clearly see an improvement in the energy value
when increasing lmax.

As we are not introducing the relative coordinate rep in
our expansion, the convergence of the energy is much less
efficient than in the case of the generalized Hylleraas series,
since with fewer basis functions, the Hylleraas expansion
gives better results. Moreover, if one considered the spherical
coordinates we use, the Kato cusp conditions [25] would be
found in the angular coordinates. This sharp behavior cannot
be reached with spherical harmonics. However, the CI calc-
ulation with a large number of configurations is more com-
plete, in the sense that a great variety of distributions can be
described with it. In fact, the eigenvalue calculation which
gives the last element of table 2 corresponds to an expansion
with ´ ´ + =( )20 20 7 1 3200 basis elements, which
gives rise to the same number of eigenstates. In our case we
do not know the distribution we are going to find, so the basis
must be general and not optimized for hydrogenic states.

3.2. Ground state 1S: spatial distribution

Let us now study how the confinement influences the wave
functions, and determine the particle’s spatial distribution.
Starting with the spherical box considered in the previous
section, we vary the interaction between the particles through
the λ parameter (shown in equation (1)) and the strength U0

that describes the interaction with the fullerene cage, taking
into account only s-wave partial wave terms. The results are
summarized in figure 1.

The first solution is obtained by setting l = =U 00 (top
left), and corresponds to the box-based behavior in each
coordinate. The uncorrelated Hamiltonian is separable in
spherical coordinates, the solution is exact and can be
described by a single product of Sturmian functions. When
the C60 potential model is turned on to =U 10 (l = 0) (top
right), the electron moves to the well while the proton, which

sees a repulsive barrier, stays in the external region. It is still
contained by the walls at Rc, but if an infinite radial domain
were used, its spatial distribution would be that of an
unbounded particle. If the Coulomb potential is turned on in
the absence of the fullerene well, (l = 1 and =U 00 ), both
particles get close to the center of the sphere, as is shown in
the bottom-left part of figure (1). This appears to be a strange
behavior, since the global H system is neutral, and it would be
expected the distribution of a particle of mass +m me p inside
a spherical well for the center of mass of the H atom, which is
practically coincident with the proton position. Instead, we
find a very sharp wave function; a product of the interaction
of the complex two-particle system with the boundary. In
order to understand this behavior, we have to take into
account that the proton is much heavier than the electron, and
its confinement is less expensive from an energetic
standpoint.

Since the ground state lacks nodal curves [26] and must
be null at the surface of the confining sphere, we supposed
that the wave function would be a decreasing function of the
electronic coordinate, having its maximum at the center of the
sphere. This is true for small Rc, where confinement energy
becomes more important than Coulomb interaction [27]. Such
distribution would act as a potential energy surface (PES) for
the proton, giving a distribution centered at its minimum (the
maximum of the electronic distribution) with a very small
width because of its mass. Now we can argue that the elec-
tronic distribution of this particular state would be the one that
adjusts to a proton located at the center of the coordinates
[9, 10, 15, 17], as many models established. We have
increased the value of the cage radius up to R 100 a.u.c and
found the same centered distribution.

The plot of the bottom-right part of figure 1 corresponds
to the ground state of two interacting Coulomb particles in the
presence of the C60 potential (l = 1 and =U 10 ). In this case
the wave function describes the electron in the well while the
proton, attracted by the electron and repelled by the potential,
is located in the internal part of the fullerene cage. This result
shows a significant difference with the models of endohedral
confinement with the centered atom.

3.3. Behavior of the spectrum

To deepen the understanding of the results, let us analyze the
energy spectrum for different values of U0, with and without
Coulomb interaction. Several of these statements are con-
clusions drawn from the analysis of both spectra graphs as
several charts of wave functions for different conditions,
analogous to those shown in figure 1.

The energies are shown in figure 2, where we plot them
in increasing order for the s-wave model ( = =l l 0e p ) in a
calculation with 50 radial functions per coordinate, making a
total of 2500 states. Here we use box based Sturmians ( =U 0i

and =V 1i , i=1, 2 and =R 20C in (7)), so that all uncor-
related calculations (l = 0) are exact solutions. These are
represented with black circles, and their values, obtained from

Table 2. Convergence analysis for ground state of the confined
hydrogen atom as a function of the maximum number of partial
waves (lmax) added when using 20 radial functions per coordinate,
with the box based (SFb) and ‘sophisticated’ (SFo) radial Sturmians.

Ground-state energy

lmax SFb SFo

0 −0.4353883725 −0.4672434215
1 −0.4748432442 −0.4878532032
2 −0.4843652580 −0.4922149011
3 −0.4884665735 −0.4934791747
4 −0.4907433951 −0.4939416245
5 −0.4921976351 −0.4941458680
6 −0.4932104410 −0.4942489924
7 −0.4939553268 −0.4943062823
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the calculation, can also be determined by the expression:

p p= + = +( ) ( ) ( )E E E n R m n R m2 2 , 12p e e e p p
2

c
2 2

c
2

the ground state having energy equal to E=0.012343 a.u.
and corresponds to = =n n 1e p . These energies are obtained
just by adding the energies of two non-interacting particles of
masses me and mp confined in an impenetrable spherical box.

The first 50 states correspond to the case =n 1e and
= ¼n 1, 2, ,50p , the small difference between them being a

consequence of the mass value of the proton. A jump appears
at the state number 51, which corresponds to the case

= =( )n n2, 1e p , followed by the = = ¼( )n n2, 2, 3, ,50e p

states, and so on. We must clarify that the jump between the
=n 1e and =n 2e would be unnoticed if a minimum number

of proton states were included such that
 n m m3 73p p e , which follows from equation (12).
A similar structure appears when correlation or other

values of U0 are considered. Coulomb interaction (red
squares) with =U 00 changes the nodal structure, laying the

= =( )n n2, 1e p state of energy −0.118891 a.u. in the 15th
place (instead of the 51th) and moving down the whole set of
values, the jump being now unobserved. For higher energies
the Coulomb interaction becomes relatively less important
than the confinement, and the slope of the curve (actually, a
quadratic behavior) tends to that of the uncorrelated case. The
ground-state energy is −0.447973 a.u., which is close to the
ground state of the free hydrogen system.

With l = 0 and =U 0.40 (dark green triangle down), the
first energy values are lower than for the =U 00 case. On the
one hand, this behavior is in accordance with the attractive
effect of the C60 potential on the electron. On the other hand,
it is repulsive for the proton and the effect should be the
contrary. As we mentioned, the proton localization, in this
case outside the repulsive barrier, is less expensive from an
energetic point of view, while the bound energy of the elec-
tron in the well dominates. The = n 1 2e ‘jump’ occurs
now between the 44th and 46th places, with the 45th eigen-
value in a transition region, and corresponds to electron states
which are bound for =n 1e and unbound for =n 2e . The
same happens with =U 10 (magenta diamonds), with a bigger
jump, since the effect of the potential is higher, still having
only one electron bound state.

When l = 1 and =U 0.40 (blue triangle left), it corre-
sponds to the confined H@C60 model. The ordered energies
present a structure which seems to be an admixture of the
ones discussed above. We see that the energies of the first and

Figure 1. Spatial distributions of the ground states of the e-p system under different confinement conditions which are simulated by varying
the strength of the interactions through the values of λ and U0 (see text).

Figure 2. Energy value versus its order of appearance for the e-p
system under various confinement conditions. Box conditions are
imposed at =R 20c and two parameters describe the Coulomb (Cb)
and the fullerene potential (C60) interactions. (Black) circles:
l = =U 0;0 (red) squares: l = 1 and =U 0;0 (green) diamonds:
l = 0 and =U 1;0 (magenta) down triangles: l = 0 and =U 1;0

(blue) up triangles: l = 1 and =U 0.4;0 (orange) left triangles:
l = 1 and =U 10 .

5
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second states are practically unchanged from the =U 00 case.
This is because the wave function is centered and without
overlapping the well. The Coulomb structure breaks, and they
follow states with the electron bounded to the well and the
proton inside and outside it. The 50th to 59th states mostly
have distributions in which the electron−proton pair is
bounded and ‘glued’ to the surface from the inner side, while
in the 60th both particles are outside the fullerene. For
l = =U 10 (orange upwards triangle) the structure is similar,
with a Coulomb structure (from state 44th to 60th) and lower
ground state. In this case the ground-state energy is lower
than −0.5 a.u., corresponding to the situation where the
electron is in the well (lower right of figure 1). There exists,
however, a state with energy −0.446197 a.u. which has
almost the same probability distribution as the ground state
for =U 00 . This state is in the 46th place, and consequently
has a complex (hidden) nodal structure which is not present in
the ground state for =U 00 .

The interchange of properties in the probabilities between
different eigenstates when a parameter of the equation is
changed, is related to what is called crossings of energies, and
will be discussed in the next section.

3.4. Crossing phenomena

The behavior of the electronic energy levels as a function of
the magnitude of the fullerene potential has been studied in
depth for a confined helium model [26]. In particular, the
phenomenon of ‘mirror collapse’, where the wave functions
interchange their characteristic probability distribution while
keeping its position in the ordered list of eigenvalues and
conserving its nodal structure. Without making an exhaustive
description of the behavior of the states around each crossing,
we want to show that the same kind of phenomena presents
here the endohedrally confined hydrogen atom with a moving
nucleus. This time we also show what happens when we vary
the mass of the fullerene cage while keeping the magnitude of
the C60 potential fixed.

Figure 3 shows the evolution of the negative energy
levels as a function of U0. We see that the ground state energy
is not equal to −0.5, but higher. In this case we use SF20 b per
radial coordinate and =l 2max . This is because of the con-
finement and also the finite size of the partial wave and radial
expansions. Although the energy values are not too precise
with these basis dimensions, the results are representative
enough for the understanding of the phenomena we want to
describe.

We can observe an avoided crossing between the first
two energy levels as a function of U0, which occurs around

=U 0.470 . In the inner box of figure 3, we see a magnifica-
tion of this crossing, and at figure 4 the density plots of the
two-dimensional probability distributions for both states at
the left and right of the crossing, where the interchange of
probabilities occurring is clearly shown. In this case, the
ground-state behavior corresponds to the atom centered at the
cage in a typical ‘free’ hydrogen distribution, while in the first
exited state the bounded pair is located close to the surface,
with the proton and the electron within and inside the C60

potential, respectively.
To understand this behavior, we have to note that for

small values of U0 the ground state has practically no overlap
with the fullerene well, so its energy does not depend on U0.
The first excited state corresponds to the case where the
electron lies in the well and the proton is around it. Again,
localization of the proton is less expensive from a kinetic
energy point of view, and it tends to locate as close to the
electron as possible, without overlapping the repulsive region.
The energy of the first exited state linearly decreases with U0

at 0.45, and at =U 0.470 it encounters the ground-state
energy. At the same time, the ground state pair starts to move
to the well gradually since its configuration there has the same
energy as at the center of the cage. As the states become

Figure 3. Evolution of the negative energy levels of the confined
hydrogen atom as a function of U0.

Figure 4.Mirror collapse between the first two states of the confined
H system for the evolution of the energy values as a function of the
potential U0. Inner boxes show the spatial distribution of the two
states at the left and right sides of the crossing (the abscissa
corresponds to the electron radial coordinate and the ordinate to the
proton one), where it can be seen that the spatial distribution of the
particles becomes interchanged.
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quasi-degenerate, their nodal structure is maintained, with the
ground state never having nodal surfaces. The crossing is
‘avoided’, i.e. the states never have exactly the same energy
value for a fixed U0.

A striking distribution appears for ¹U 00 , and corre-
sponds to a bound state where the proton is mostly outside the
fullerene. The distribution mixes through the crossing struc-
ture of figure 3 and is amplified in the upper inner box. It
corresponds to the 4th and 5th excited states, having an
energy close to −0.573 (lower than the hydrogen bound
state). In figure 5, the spatial distribution for the 4th state is
shown and is related to a bound state of the system in which
the proton distribution is outside the fullerene cage. Crossing
appears close to =U 0.5750 and is shown in figure 3. Note
that, asymptotically, the field in which the proton moves is
Coulombic. As is known for potentials with asymptotic
Coulomb tails [28], there exists an infinite number of bound
states. We estimate that there exists an infinite number of
states with these characteristics for the proton distribution (i.e.
located outside the fullerene cage).

Finally, we vary the mass of the fullerene molecule in
search of crossings, from (nonphysical) values 1 a.u. to

´1.44 10 a.u.6 (the order of magnitude of the exact value for
fullerene molecule). We found that all the crossings occur at
mass values which are small compared to the mass of the C60

fullerene or other species Cn. However, we found a situation
we think is interesting to describe, and which could be present
in confinement of heavier atoms or molecules. Figure 6 shows
the crossing between the 5th and 6th energy levels when m3

varies from 660 to m770 e.
In this particular case, the localization of the particles

(shown in the inner boxes) also becomes interchanged and
corresponds to the case where the atom localize inside the C60

potential. The distribution of both states represents very dif-
ferent situations for the proton distribution, one where the
proton has an oscillating inner distribution in the region
r 4p , and the other glued to the fullerene surface from the

inner side (4  r 6p ).

4. Conclusions

We have studied the confinement of the hydrogen atom in a
spherical cavity through a quantum mechanical model which
considers both electron and proton dynamics. We have con-
sidered the case of a spherical well of impenetrable walls and
a fullerene, C60, which was modeled as a spherical barrier,
attractive for the electron and repulsive for the proton. The
dynamics were driven by the solutions of the three-body-like
Schrödinger equation, where the motion of the particles is
described in the coordinates which locate them with respect to
the center of the spherical cavity. The solution was obtained
by using the generalized Sturmian functions method.

The wave functions showed behavior that differs sub-
stantially from the many models found in the literature, where
the proton is fixed at the center of the coordinate system, or
moves perturbatively in the Born–Oppenheimer approx-
imation. In the moving nucleus case, the states showed a
different proton distribution for each energy level, being the
bound state with the proton located outside the fullerene, one
of the more curious situations which manifested the com-
plexity of the system. For a fullerene potential which was
deep enough to keep the electron bounded at least in one
state, we can argue that the asymptotic interaction for the
proton corresponded to an attractive Coulombic tail, which
supported infinitely many bound states [28], in particular
Rydberg states.

The spectrum of the system in the moving nucleus case
was much more dense than that given for the fixed nucleus.
The ‘new’ levels were associated with the dynamics of the
proton, and can be understood by considering the distance
between the energies for a confined particle decreasing with
the inverse of the mass.

Apart from the complexity of the moving nucleus sys-
tem, we found one match with the fixed nucleus model for the
ground state of weak fullerene wells. In that case, the proton
located at the center of the molecule, and the same happened

Figure 5. Three-dimensional plot for the 4th excited state of the
confined hydrogen atom, of energy −0.573 for =U 0.5750 .
Distribution shows the proton localized outside the fullerene
structure.

Figure 6.Mirror collapse between the two first states of the confined
H system for the evolution of the energy values as a function of the
fullerene mass m3. Their properties become interchanged when the
C60 mass varies from 660 to 740 electron mass.
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for the rigid sphere. The corresponding distribution of the
center of mass of the atom was very different to the box
ground state of a neutral particle. It reflected how different the
dynamics of a simplified model could be from a composite
system.

Finally, we found crossing phenomena for the spectrum
as a function of the parameters of the equation. By varying the
magnitude of the fullerene well, we found many avoided
crossings, while by changing the fullerene mass, we found
only one. These are the preliminary results of a more
exhaustive search for crossings which will include the var-
iation of radius of the fullerene well. This change of radius
would actually happen if the vibrational modes of the carbon
structure were considered. The results will be part of an
forthcoming publication.
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