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Stochasticity is an ingredient that may allow the breaking of the frozen-in law in the reconnection

process. It will first be argued that the non-ideal effects may be considered as an implicit way to

introduce stochasticity. Yet there also exists an explicit stochasticity that does not require the invo-

cation of non-ideal effects. This comes from the spatial (or Eulerian) chaos of magnetic field lines

that can show up only in a truly three-dimensional description of magnetic reconnection since the

two-dimensional models impose the integrability of the magnetic field lines. Some implications of

this magnetic braiding, such as the increased particle finite-time Lyapunov exponents and increased

acceleration of charged particles, are discussed in the frame of tokamak sawteeth that forms a labo-

ratory prototype of spontaneous magnetic reconnection. A justification for an increased reconnec-

tion rate with chaotic vs. the integrable magnetic field lines is proposed. Moreover, in 3D, the

Eulerian chaos of the magnetic field lines may coexist with the Eulerian chaos of velocity field

lines, that is more commonly named the turbulence. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972544]

I. INTRODUCTION

Seventy years ago, the concept of reconnection was sug-

gested by Giovanelli1 to explain the particle acceleration in

solar flares. Since then, the mechanism of magnetic recon-

nection has been a remarkably active and puzzling subject of

research.

Magnetic reconnection can be defined, in a minimal

way, as a sudden rearrangement of the magnetic field that

converts the magnetic energy into plasma energy. It is indeed

now thought to be at the core of many space physics phe-

nomena as the trigger that releases the energy from the mag-

netic field.2,3 For instance, the magnetic reconnection has

been identified to be the underlying mechanism behind the

complex astrophysical phenomena such as the solar flares,

magnetospheric substorms,4 or gamma-ray bursts. Apart

from those space manifestations,7 magnetic reconnection has

also become a major concern in magnetic confinement fusion

devices. It is at play in a generic phenomenon of tokamak

plasmas known as sawteeth, diagnosed for the first time in

the early 1970s.5 In this regime, quantities like the core

plasma density or temperature undergo a slow rise before

suddenly crashing on a periodic basis, so that the resulting

time trace of these quantities resembles the edge of a saw.

The crash phases coincide with a rearrangement of the

magnetic field lines and the expulsion of heat and particles

from the plasma core. The basic picture of the sawtooth mag-

netic reconnection frame is represented in Figure 1. This

sawtooth regime, in which the central tokamak plasma suf-

fers almost a periodic abrupt heat and particle rearrange-

ments along with impulsive magnetic field reorganizations,

can be considered as a prototype of finite-B (or general) mag-

netic reconnection, since the toroidal magnetic field may be

viewed as a guide field.

Some fundamental issues remain to be clarified and

understood to fully unveil the mechanisms behind the

magnetic reconnection.6 In particular, for a magnetic

reconnection to be possible, the electrons have at some

point to get free from magnetic slavery, according to the

von Steiger’s formulation6 so that the frozen-in law may

be broken. Yet the reason why and how this may happen is

unclear. In this article, it will be argued that stochasticity

may be considered as one possible ingredient through

which this may be realized in the magnetic reconnection

process.

Two ways of having stochasticity in the magnetic field

will be discussed. First, it will be argued that non-ideal

effects may be considered as a “hidden” way to introduce

stochasticity. However, there is some accumulating experi-

mental and numerical evidence that this effect may not by

itself prove sufficient to account for the fastness of mag-

netic reconnection. Then, the remaining part of this study

will be devoted to the role and importance played by

another source of stochasticity, namely, by the spatial

chaos of magnetic field lines. This will be shown to neces-

sitate a three-dimensional magnetic description. The far-

reaching impact of magnetic field lines being chaotic will

be illustrated by numerical simulations of test bed models

of tokamak sawteeth. It will be shown that the particle

acceleration about the crash (reconnection) phase is more

efficient and realistic in the case with spatially stochastic

magnetic field lines.
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II. NON-IDEAL EFFECTS AND STOCHASTICITY

Neglecting the displacement current in the Maxwell-

Ampère equation compared to the electric current due to

moving charges and using Ohm’s law, which is recalled to

be a phenomenological relationship stating the proportional-

ity of the electric current and electric field in the fluid refer-

ence frame, yields the induction equation

@B=@t ¼ r� ðu � BÞ þ kr2B; (1)

where u(x, t) stands for the velocity field and k for the mag-

netic diffusivity of the fluid. It is meaningful to note that the

induction equation (1) bears a formal analogy with the vor-

ticity equation, obtained by taking the curl of the Navier-

Stokes equation in the case of a barotropic fluid with uniform

density

@x=@t ¼ r� ðu � xÞ þ �r2x: (2)

Here x ¼ r� u denotes the vorticity field and � the kine-

matic viscosity. However, because x is related to u, Eq. (2)

is nonlinear while Eq. (1) is linear in B.

Equations (1) and (2) are of the form of convection-

diffusion partial differential equations. The diffusion part is

an invitation to connect the solution to the expectation value

of some random walk. Indeed, let us remind that a Fokker-

Planck equation, that is of the type of a diffusion equation,

written (here in 1D for simplicity) as

@P x; tð Þ
@t

¼ � @

@x
F xð ÞP x; tð Þ
� �

þ 1

2
D
@2P x; tð Þ
@x2

; (3)

describes the time evolution of the probability density func-

tion of the velocity of a particle under the influence of drag

forces and random forces, as in Brownian motion, according

to the Langevin equation

dx

dt
¼ F xð Þ þ g tð Þ: (4)

Here the noise g is a Gaussian white noise with correlations

hgðtÞgðt0Þi ¼ Ddðt� t0Þ and P is the probability distribution

Pðx; tÞ � hdðx� xðtÞÞig; (5)

where x(t) is the solution of the Langevin Eq. (4) and thus

depends on the noise g, and h…ig is an average with respect

to the noise.

Historically in this process, Chorin8 produced a seminal

work by proposing to solve the deterministic vorticity equa-

tion (2) in two space dimensions, that takes the form of a

Fokker-Planck equation, through a stochastic approach.

Recently, a stochastic formulation of the incompressible

Navier-Stokes equation was derived in the thesis by Iyer9

that rigorously provided an interpretation of viscous fluids as

ideal inviscid fluids plus the Brownian motion. An historical

account of the main results obtained between those two

works may be found there. Lately, similar results have been

derived in the incompressible amplified, magnetohydrody-

namic (MHD), frame by Eyink.10 In particular, he showed

that the viscous and resistive incompressible magnetohydro-

dynamic (MHD) equations were equivalent to having some

stochastic conservation laws, and that similar results could

be obtained in more refined non-ideal models, such as the

Hall MHD and two-fluid plasma models with incompressible

velocities.

The physical picture that emerges from those results in

the frame of the induction equation (1) is the following. The

magnetic field lines at any given initial time may be viewed

as being frozen to the stochastic fluid flows and thus become

themselves stochastic. The deterministic magnetic field at

any point at a later time is the random ensemble average (or

the expectation value) of the magnetic field vectors that are

advected to that point by the stochastic flows. It is in this

sense that it was written in the introduction that non-ideal

effects, such as the resistive effects that are introduced in a

phenomenological way through the Ohm’s law, may be

viewed as an implicit way to introduce stochasticity. This

stochastic interpretation, related to the diffusion term in Eq.

(1), takes place irrespective of the space dimension chosen in

the modeling. However, the recurrent problem with this pic-

ture is that it predicts timescales for magnetic reconnection

that are usually far longer than the realistic timescales, at

least if one restricts the non-ideal effects simply to resistive

effects, which is a crude assumption.

Indeed, let us consider the well-known (two-dimen-

sional) Sweet-Parker model11,12 for magnetic reconnection

using the frame of resistive magnetohydrodynamics. The

Lundquist number, S, that denotes the order of magnitude of

the ratio between the resistive to the Alfven timescale, is of

the order 1014 in the solar corona. In this case, the timescale

for magnetic reconnection obtained for the Sweet-Parker

model is the geometric mean of the resistive and Alfven

timescales, of the order of 107 s, that is of the order of three

FIG. 1. In certain tokamak operational conditions, axisymmetry breaks and

a macroscopic magnetic island is linearly destabilized resulting in a change

of the magnetic field topology. This is a well-known laboratory occurrence

of spontaneous magnetic reconnection. The early (linear) stage is repre-

sented in the figure showing some snapshot of the intersection of magnetic

field lines with some tokamak poloidal cross-section. Some points are

highlighted to emphasize the region of separatrices.
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months, whereas the typical timescale for solar flares is

about less than 1 h.

Yet, it will now be shown that there exists a generic

intrinsic stochasticity of magnetic field lines in 3D space that

does not require the invocation of non-ideal effects.

III. HAMILTONIAN FORMULATION OF MAGNETIC
FIELD LINES

Everyone who attended physics classes in high school

has in mind a picture of magnetic field lines from the classi-

cal experiment of iron filings aligning on them after being

sprinkled on a sheet of paper held over some magnet. It hap-

pens that, at each given time, these magnetic field lines may

be viewed as trajectories of an Hamiltonian system.13,15 This

comes from the single universal property of the magnetic

field, namely, its divergence-free, or solenoidal, nature. This

property is obviously more general than the induction equa-

tion, that is a MHD equation and thus relies on a fluid model-

ing of the plasma, although diluted hot plasma physics is

generically kinetic, and on the Ohm’s law that is a phenome-

nological approximation.

Considering an arbitrary parametrization x ¼ xðkÞ
¼ ðx1ðkÞ; x2ðkÞ; x3ðkÞÞ of the magnetic field lines, Cary and

Littlejohn14 showed that the variational principle

d
ð

dkA xð Þ � dx

dk
¼ 0;

is identical to a dynamical variational principle. Indeed, the

Cary-Littlejohn Lagrangian amounts to the Lagrangian of a

massless particle in a magnetic field. Consequently, the

equations of magnetic field lines, that are the resulting Euler-

Lagrange equations

r� Að Þ � dx

dk
¼ B� dx

dk
¼ 0;

were established to derive from a Hamiltonian system.

One can then choose the parameter k as a combination

of the coordinates to eliminate it. For instance, if the field

lines move in the direction of say, x3, one may take k¼ x3.

The magnetic field lines at each given time may then be

viewed as trajectories of a Hamiltonian system H of the

(non-canonical) variables (x1, x2, x3).

Yet, the chaos theory tells us that the minimal number

of degrees of freedom required then for the possible emer-

gence of chaos is three. Therefore, two-dimensional models,

or models in which the effective dimension is reduced due to

some symmetry, can only have integrable magnetic field

lines, whereas three-dimensional models may potentially

exhibit some spatially chaotic magnetic field lines.

The fact that magnetic field lines are generically chaotic

in 3D space has important consequences in the representa-

tion of the problem of magnetic reconnection: a magnetic

field line in a bounded 3D domain may wander and never

close. Consequently, the classical smooth pictures of 2D pro-

jections of the reconnection of magnetic field lines could be

wrong and misleading. Generic 2D Poincar�e sections of

magnetic field lines should generically display some stochas-

tic component.

Let us finally comment on the role of the geometry. In

toroidal devices for magnetic confinement fusion, magnetic

field lines are dominantly along the toroidal direction and

the poloidal cross-sections form natural Poincar�e sections.

This is obviously no longer valid usually in the astrophysi-

cal context. However, the absence of natural cross-sections

does not affect the validity of the Hamiltonian formulation

of magnetic field lines coming from the divergence-free

property of the magnetic field. As emphasized in Ref. 16,

the Hamiltonian description of magnetic field lines is gen-

eral and can be obtained independent of the geometry of

field lines or the particular coordinate system used. The

Hamiltonian formalism is useful in that it allows to connect

to some of the nicest achievements of twentieth century’s

mathematical physics, accompanying the Kolmogorov-

Arnold-Moser theory, some of which emanating from the

plasma physicists (the Reader is referred to Ref. 17 for a

recent review).

IV. THE EXAMPLE OF SAWTEETH

We shall now turn to the example of sawteeth in toka-

mak plasmas to investigate the impact of the spatial chaos of

magnetic field lines on the reconnection features. Some evi-

dence of the existence of spatially chaotic magnetic field

lines in the collapse reconnection phase in sawteeth has been

presented elsewhere through extensive numerical studies.21

Indeed, using a realistic frame for the time evolution of the

electromagnetic field in sawteeth, our numerical results

pointed to the necessity of having stochastic magnetic field

lines to reproduce the experimental evolution of some heavy

test particles during the reconnection phase. Our focus will

be here on the impact of this spatial chaos on the dynamical

behaviour and acceleration of charged particles during the

sawtooth crash.

A. Electromagnetic description of the magnetic
reconnection in tokamaks

In the toroidally shaped fusion devices, the double

poloidal and azimuthal periodicity is used to Fourier decom-

pose the fields on the m poloidal and n toroidal components.

The winding of the equilibrium axisymmetric magnetic field

as a function of the minor radius, r, is measured by the so-

called q-profile, with q(r) ’ r/R�Btor/Bpol, with R denoting

the major radius. Sawtooth cycles are initiated in situations

where the tokamak plasmas become linearly unstable to the

m¼ 1, n¼ 1 internal mode. This necessitates that the q-pro-

file be less than one in the plasma center. In the typical

course of a sawtooth cycle, the n¼ 1 mode appears first,

being linearly triggered, with the dominant poloidal harmon-

ics m¼ 1. This means that the associated magnetic island

starts to grow. Then, n¼ 2 and later n¼ 3 modes are nonli-

nearly triggered.18,19

Much of the ignorance and incompleteness of the under-

standing of magnetic reconnection comes from the difficulty

to diagnose it with a sufficient resolution either in space or in

laboratory magnetic confinement devices. For instance, in

tokamak plasmas, it is only possible to access the experimen-

tal to the toroidal (n) spectrum of the magnetic perturbations

without resolving it poloidally. Numerical simulations of

122905-3 Firpo et al. Phys. Plasmas 23, 122905 (2016)



reconnection in astrophysical plasmas and sawteeth are also

notably difficult since these problems involve a wide range of

space and time scales. Because our objective is to single out

the effect of the spatial chaos of the magnetic field lines, we

have used a different framework. From the electromagnetic

point of view, the sawtooth collapse phase is associated to an

abrupt variation of the magnetic field perturbation for some

tens of Alfvèn times. This collapse phase will be modeled

using two electromagnetic sets: one in which helical symme-

try is assumed and only m¼ n modes are retained making the

problem two-dimensional and the one in which one allows for

some additional m 6¼ n modes so that the problem is truly

three-dimensional and the stochasticity may show up above

some thresholds in the mode amplitudes. The associated per-

turbations of the electric field have been computed using an

ideal MHD hypothesis. This ideal treatment for the electric

field is an approximation to the real electric field that enables
to have the magnetic perturbations as the single set of control
parameters, so that we can focus on the impact of the mag-

netic chaos. Indeed the flow velocity u(r, t) that serves to

express the electric field as Eðr; tÞ ¼ �uðr; tÞ � Bðr; tÞ may

be related to the time derivative of the mode displacements

nm;nðr; tÞ that parameterize the magnetic field lines.

In this framework, extensive numerical simulations of

the time evolution of collections of test particles during the

sawtooth collapse phase have been performed20,21 solving

the equations of motion

m
d2r

dt2
¼ q

dr

dt
� u r; tð Þ

� �
� B r; tð Þ: (6)

In the present study, the test particles, of mass m and charge

q, were either impurity ions or protons. We chose to use

here, the nickel ions as impurity ions to reproduce the condi-

tions of some tokamak experiments.22

B. The two classes of magnetic models

As previously said, two classes of models for the time

behavior of the magnetic mode amplitudes nmn
0 ðtÞ around the

sawtooth crash were chosen.

In the first class (C2D), that serves as a reference, only

modes having the same helicity have been retained. The con-

servation of helicity ensures that the effective dimensionality

of these models is two: magnetic field lines derive from

Hamiltonians depending solely on a radial variable and on

the helical angle h� /.

In the second class of models (C3D), this restriction is

lifted, and the effective dimensionality is three. Practically

speaking, the (m, n) modes involved are the (1, 1) and (2, 2)

modes in C2D models while they are the (1, 1), (2, 2), (2, 1),

(3, 2), and (4, 3) modes in C3D models, the last two modes

being subdominant compared to (2, 1). The two classes of mod-

els are represented in Figure 2. Poincar�e sections are used to

probe the chaos of the magnetic field lines at some given time.

C. From Eulerian magnetic to Lagrangian particle
chaos

The spatial chaos of the magnetic field lines may not be
sufficient to imply that the motion of charged particles in

these fields is chaotic. Therefore it is desirable to quantify

chaos at the level of the charged particles and answer the

question: How do the chaotic properties of the magnetic field

lines transfer to the plasma particles during the sawtooth

crash? As shown below, a proper indicator will be provided

by the local (maximal) finite-time Lyapunov exponent

(FTLE). Let us note that this is only a qualitative indicator of

chaos in the sense that the true indicator, namely, the maxi-

mum Lyapunov exponent being strictly positive, is only

defined asymptotically in time. A FTLE of an integrable sys-

tem may appear strictly positive due to its evaluation in a

finite time. In the numerical simulations, we used the nickel

ions as charged test-particles to compute the FTLE in both

an integrable (C2D) and a chaotic (C3D) model of magnetic

field lines for the sawtooth reconnection collapse phase.

At time t0¼ 0, let us consider an arbitrary point r0. A

nickel particle put initially in this point will be located after

the crash time T at a position rðr0; v0; TÞ � KT
v0
ðr0Þ obtained

from the integration of the equation of motion (6) and the

additional data of the initial velocity v0. For clarity, let us

assume that at time t0 all particles have the same velocity v0,

so that one can use the short-hand notation KT(r0). Let us

consider any arbitrarily oriented infinitesimal displacement d
r0. A particle put initially at the point r0 þ dr0 will have

deviated after a time interval T from a particle initially put at

point r0 by the perturbation vector (up to Oðkdr0k2Þ second

order terms)

dr Tð Þ ¼ KT r0 þ dr0ð Þ � KT r0ð Þ ¼
dKT r0ð Þ

dr
dr0: (7)

Its norm is then kdrðTÞk ¼ hdr0;Mðr0; TÞdr0i1=2
, where

M r0; Tð Þ �
dKT r0ð Þ

dr

� �†

dKT r0ð Þ
dr

; (8)

is a symmetric matrix. If kMðr0;TÞ
max denotes its larger eigen-

value, then the FTLE at point r0 with a finite integration

time T, rTðr0Þ, is defined through

maxdr0 6¼0

kdr Tð Þk
kdr0k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM r0;Tð Þ

max

q
� erT r0ð ÞT : (9)

The numerical computation of the FTLE field is shown in

Fig. 3. For the parameters chosen, it follows from the inspec-

tion of Figure 3 that two nickel particles initially separated

by say, 1 mm will be separated after the 200 ls (near-)crash

phase by at most a few centimeters with the non-chaotic

model (a) of B lines, versus by distances as large as 20 m,

that is a toroidal excursion, in the chaotic case (b). In the

case of integrable magnetic field lines, the FTLE is then

globally smaller than in the case of chaotic magnetic field

lines. The local maxima of the FTLE field in the 2D case

with integrable magnetic field lines come from the region of

the magnetic x-point and separatrices.

Let us explore more closely the connection between the

Eulerian properties of the magnetic field and the Lagrangian

properties of the particle motions. The linearization of the

equations of motion (6) about some reference trajectory r(t)
yields

122905-4 Firpo et al. Phys. Plasmas 23, 122905 (2016)



m
d2dr

dt2
¼ q

ddr

dt
� B r; tð Þ þ q

dr

dt
� u r; tð Þ

� �
� dr:rj r;tð ÞB

�qdr:rj r;tð Þu� B r; tð Þ: (10)

In the right hand side of Eq. (10), the second term

involves the Jacobian of the magnetic field and the third

term, the Jacobian of the velocity field. In 3D, the magnetic

field lines, as well as the velocity field lines, may become

spatially chaotic. This Eulerian chaos of velocity field lines

is sometimes taken in the fluid mechanics community as the

definition of turbulence.23,24 In this case, space gradients are

of the order of the local spatial exponentiation rates of these

fields. In 2D, these are null, yet some space discontinuities

FIG. 3. Numerical FTLE rT field for

the nickel motion plotted in a poloidal

cross-section using (a) the integrable

and (b) the stochastic models for mag-

netic field lines, as shown in Fig. 2, are

associated to the crash phase. Time

zero is chosen as in Fig. 2(a) and

T¼ 200 ls. The scale unit is s�1.

FIG. 2. (a) Model for the time behavior of the mode amplitudes nmn
0 ðtÞ around the sawtooth crash. The two-dimensional integrable model (C2D) consists in

retaining only the (1, 1) and (2, 2) modes. The three-dimensional model (C3D) takes also the (2, 1), (3, 2), and (4, 3) modes. Poincar�e sections of the B lines in

the integrable scenario are plotted in (b1) at the crash onset when t¼ 100 ls, (b2) in the middle of the crash for t¼ 125 ls. The corresponding plots for the sto-

chastic C3D model are in (c1) and (c2).

122905-5 Firpo et al. Phys. Plasmas 23, 122905 (2016)



(e.g., due to shocks) associated with large space gradients

may promote the spreading of the charged particles whatever

the space dimension.

V. IMPACT OF THE CHAOS OF MAGNETIC FIELD
LINES ON RECONNECTION OBSERVABLES

A. Chaos or stochasticity?

Let us start by some clarifying point. It is sufficient for

the magnetic field lines to be locally chaotic that a small sub-

set of magnetic modes be destabilized. As the amplitudes of

these modes grow, the Chirikov resonance-overlap25 eventu-

ally occurs, signifying the onset of large scale chaos between

the nonlinear resonances.26 One usually speaks of stochastic-

ity when there is a large spectrum of excited modes and

when the phase space does no longer possess any remnant of

coherent structures. Stochasticity refers to pure noise

whereas the phase space of chaotic systems may be modeled

by a mixture of stochastic and coherent components. It is

however sufficient to have the chaotic magnetic and/or

velocity field lines to impact the evaluation of macroscopic

observables. In order to motivate this statement, let us, for

instance, consider the rate of energy transfer between the

magnetic field and the plasma.

B. Justification for an increased reconnection rate
with chaotic B lines vs. the regular B lines

The rate of energy transfer from the magnetic field to

the plasma at time t is

s tð Þ ¼
ð ð ð

j r; tð Þ � E r; tð Þd3x

¼ 1

l0

ð ð ð
u r; tð Þ � j r; tð Þ � B r; tð Þ

� �
d3x;

using the ideal MHD approximation. Approximating the

plasma equation of motion by the collisionless MHD

equation

q
du r; tð Þ

dt
¼ j r; tð Þ � B r; tð Þ � rp r; tð Þ; (11)

we have then

s tð Þ ¼ 1

l0

ð ð ð
u r; tð Þ � q

du r; tð Þ
dt

þrp r; tð Þ
� �

d3x

¼ d

dt

1

l0

ð ð ð
1

2
qu2d3x

� �
þ 1

l0

ð ð ð
u � rpd3x:

Our aim is to compare the rate of energy transfer from

the magnetic field to the plasma in the case where the mag-

netic field lines are chaotic, so that the Hamiltonian model

governing the magnetic field lines possesses some ergodic

component (or chaotic sea), with the case where the mag-

netic field lines are regular.

In doing this comparison, we consider a stage in the

reconnection process at the border of chaos, i.e., just prior to

the onset of nonlinearities. Then the convective term ðu � rÞu
remains negligible, and the inertia term may be neglected.18

We consider this stage when the displacement n keeps growing

at a constant rate (with u � @n=@t constant) and the Laplace

force is balanced by the pressure gradient in (11). Then we

consider the two options for the subsequent evolution of the

system. One in which we allow for the (local) emergence of

the chaos of magnetic field lines in the reconnection zone and

the one in which we assume that magnetic field lines remain

regular everywhere.

Let us denote by sc(t) the rate of energy transfer in the

first chaotic configuration and by sr(t) its counterpart in the

regular case. Basically, we shall assume that magnetic field

lines are almost identical in both cases except within the

reconnection zone, denoted by Vrec, in which the magnetic

chaos may develop about the separatrices, and we shall

neglect the possible discrepancies in the velocity field u(r, t)
between the two cases. We have then

scðtÞ � srðtÞ ¼
ð ð ð
Vrec

uðr; tÞ � frpðr; tÞjc �rpðr; tÞjrgd3x:

(12)

At equilibrium, Eq. (11) yields

Bðr; tÞ � rpðr; tÞ ¼ 0: (13)

The fulfilment of this equality requires that the pressure gra-

dient vanishes identically in the space region of the magnetic

ergodic component, meaning that the pressure be constant in

this region. (Let us note that this is indeed in agreement with

the results of some sophisticated experimental tokamak diag-

nostics that do indicate that the pressure (and electron tem-

perature) profiles flatten in the reconnection zone just before

the sawtooth collapses.27) In this situation, the difference

(12) between the rates of energy transfer to the plasma in the

chaotic versus the regular magnetic cases becomes

scðtÞ � srðtÞ ’ �
ð ð ð
Vrec

uðr; tÞ � rpðr; tÞjrd3x: (14)

In the reconnection region Vrec (see Fig. 1), the transverse

gradients are large and the plasma gradients must remain

finite to be physical. The velocity u is dominantly and rigidly

directed towards the reconnection layer zone, that is in the

direction opposite to the magnetic island. The plasma pres-

sure is high in the tokamak core and low about the tokamak

edges, so that the gradient pressure is in the direction oppo-

site to the velocity u in the domain Vrec. This leads to the

prediction, derived within the sawtooth example, that the

introduction of some local chaos of the magnetic field lines,

inducing the creation of some ergodic component, enhance

the rate of energy transfer from the magnetic field to the

plasma with

scðtÞ > srðtÞ: (15)

C. Particle acceleration in the collapse reconnection
phase

Some numerical simulations on large collections of test

charged particles have been performed in order to measure

the variation of particle energies in various electromagnetic

122905-6 Firpo et al. Phys. Plasmas 23, 122905 (2016)



models during the sawtooth collapse phase. As already said,

the timescale for the sawtooth collapse in tokamaks is of the

order of 100 ms.

In order to measure the impact of the chaos of magnetic

field lines, all other things being equal, we used as, in Sec.

IV, two different sets of magnetic field lines with the same

amount of non-axisymmetric magnetic perturbation dB/B in

both cases. More precisely, in a first class of models (C2D),

the integrability of magnetic field lines is ensured by using

an electromagnetic field perturbation with only m¼ n modes,

typically consisting of the (1, 1) mode and possibly also of

the (2, 2) mode. In the second class of models (C3D), the

electromagnetic model for the non-axisymmetric perturba-

tion includes (m, n) modes with m 6¼ n, so that the magnetic

field lines become globally chaotic above some thresh-

old25,26 in the magnetic field perturbation dB/B. In the case

when the m¼ n¼ 1 and m¼ 2, n¼ 1 modes are retained, this

occurs when the magnetic islands associated to the (1, 1)

mode and to the (2, 1) mode overlap. Before this threshold in

the (C3D) cases, there exists already some phase space

zones, bounded by KAM tori, with ergodic components in

the region of the separatrices and mostly about the x-points.

This means that, within a three-dimensional modeling, the

chaos of magnetic field lines linked to the excitation of plas-

moids first emanates in the reconnection zone. Typically the

area of the chaotic sea or ergodic component is a growing

function of dB/B in this case.

Figure 4 represents the time evolution of the modes

composing the magnetic perturbation associated to the toka-

mak sawtooth crash with a) integrable magnetic field lines

and b) with some chaos of magnetic field lines in the recon-

nection region (q¼ 1 surface). In those two electromagnetic

models for the sawtooth collapse, the dynamics of 10 � 106

test protons have been integrated being initially and uni-

formly distributed in the reconnection zone (about q¼ 1). At

initial time, i.e., just before the sawtooth collapse, all the pro-

tons were taken to have the same energy E0¼ 4 keV, and

their initial velocities were isotropically distributed.

The energy distribution of protons at the end of the saw-

tooth collapse is represented in Figure 5. Despite the smallness

of the duration of the collapse phase, this figure shows a

significant difference in the energy distribution of protons at the

end of the collapse between the magnetic integrable and the

chaotic cases. In the chaotic (b) case, the variance of the energy

distribution is measured to be about three times larger than in

the integrable (a) case. This means that protons have been more

heated during the collapse phase in the case with chaotic mag-

netic field lines.

If the magnetic mode amplitudes are reduced, being for

instance reduced to the fourth of the case just considered in

Figure 4, this differential heating is strongly attenuated as

seen in Figure 6. Figure 7 shows the intermediary case in

which the mode amplitudes of Figure 4 are rescaled by one

half. On all cases, the variance of the energy distribution is

always larger in the case (b) with a magnetic perturbation

composed of the (1, 1) and (2, 1) modes compared with the

integrable case a) with the (1, 1) and (2, 2) modes, although

the ratio of the perturbation dB/B is the same in both cases.

In the case of Figure 6, there is no large scale chaos, i.e., no

resonance overlap between the (1, 1) and (2, 1) modes and

the ratio of the energy variance between case (b) and case

FIG. 4. Time evolution of the magnetic mode amplitudes during the sawtooth reconnection collapse with a magnetic perturbation composed of (a) (1, 1) and

(2, 2) modes, (b) (1, 1) and (2, 1) modes. In both cases, the magnitude of the magnetic field perturbation dB/B is identical.

FIG. 5. At the onset of the collapse (t¼ 0 in Fig. 4), an ensemble of protons

are uniformly distributed in the reconnection region (about the q¼ 1 surface)

all having the same energy E0. Displayed in the Figure is their energy distribu-

tion at the end of the sawtooth collapse for the cases (a) and (b) of Fig. 4. The

scale is logarithmic along the y-axis. 10� 106 of protons have been used.
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(a) is 1.5. This ratio goes to 2.2 in Figure 7 and to 2.8 in

Figure 5 suggesting a noticeable impact of the chaos of

magnetic field lines on particle heating during the collapse

reconnection phase.

VI. CONCLUSION

The present study has been devoted to the relationships

between magnetic reconnection and stochastic properties. In

the first part, it has been recalled that the dissipative term

associated with plasma resistivity in the evolution (induc-

tion) equation of the magnetic field could be equivalently

interpreted as a stochastic (noise) term in a corresponding

Langevin equation approach for the evolution of magnetic

field lines. However, in most physical situations, the time-

scales given by a simple resistive interpretation of magnetic

reconnection are far larger than the measured ones so that

there is a general agreement that one needs to search for

additional ingredients to explain the fastness of magnetic

reconnection.

Leaving apart the potential non-ideal effects other than

resistivity, we have introduced in the second part of this

study another source of stochasticity, coming from the spa-

tial (or Eulerian) chaos of magnetic field lines. This may

only show up in a three-dimensional description of magnetic

reconnection, since any two-dimensional description will

force the integrability of magnetic field lines. In the situation

of spontaneous magnetic reconnection, in which reconnec-

tion initiates from an instability and the formation of plas-

moid(s), the reconnection region contains magnetic x-points

and is prone to the development of chaos. The impact of this

introduction of chaotic magnetic field lines in the reconnec-

tion zone has been investigated. A general theoretical esti-

mate of differences of the rate of energy transfer from the

magnetic field to the plasma between the cases of integrable

and chaotic magnetic field lines has been presented. This

indicates that the rate of energy transfer is larger when mag-

netic field lines become chaotic in the reconnection zone

compared to the integrable case.

Simulations also reveal that the chaotic magnetic field

lines can efficiently mix charged particles so that there must

be an intimate connection in plasmas undergoing magnetic

reconnection between turbulence at the fluid level (i.e.,

velocity field being non laminar) and turbulence in the mag-

netic field (magnetic field lines being chaotic at each given

time).

Finally, the tokamak sawteeth forms a unique frame in

which a conclusive answer to the longstanding problem of

the fastness of (spontaneous) magnetic reconnection could

someday be reached. Even if the reconnection zone is tiny

which makes in-situ measurements almost impossible, con-

trarily to space situations, the space compactness of the pro-

cess naturally solves the difficult problem of the boundary

conditions in the astrophysical situations. A dialog between

the magnetic reconnection communities in astrophysical and

laboratory plasmas should certainly push forward the field.

The implication of the results presented here to the recent

outcomes of some 3D magnetic reconnection dedicated

experiment28 should also be explored.

ACKNOWLEDGMENTS

Some financial support from the ECOS-MINCyT

Research Grant No. A09E02 is gratefully acknowledged.

This work was carried out within the framework of the

French Research Federation for Fusion Studies.

1R. G. Giovanelli, Nature 158, 81 (1946).
2J. Birn and E. R. Priest, Reconnection of Magnetic Fields (Cambridge

University Press, Cambridge, UK, 2007).
3E. G. Zweibel and M. Yamada, Annu. Rev. Astron. Astrophys. 47,

291–332 (2009).
4V. Angelopoulos, J. P. McFadden, D. Larson, C. W. Carlson, S. B. Mende,

H. Frey, T. Phan, D. G. Sibeck, K.-H. Glassmeier, U. Auster et al.,
Science 321, 931–935 (2008).

5S. Von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev. Lett. 33, 1201

(1974).
6R. von Steiger, Front. Phys. 1, 6 (2013).
7A. Retin�o, D. Sundkvist, A. Vaivads, F. Mozer, M. Andr�e, and C. J. Owen,

Nat. Phys. 3, 235–238 (2007).
8A. J. Chorin, J. Fluid. Mech. 57, 785–796 (1973).
9G. Iyer, “A stochastic Lagrangian formulation of the incompressible

Navier-Stokes and related transport equations, Ph.D. thesis,” (University

of Chicago, 2006).
10G. L. Eyink, J. Math. Phys. 50, 083102 (2009).
11E. N. Parker, J. Geophys. Res. 62, 509, doi:10.1029/JZ062i004p00509

(1957).
12P. A. Sweet, in Electromagnetic Phenomena in Cosmical Physics, edited

by B. Lehnert (Cambridge University Press, New York, 1958), p. 123.

FIG. 6. Same as in Figure 5 for one fourth of the magnetic mode amplitudes

of Figure 4 with a collection of ten millions of protons.

FIG. 7. Same as in Figure 5 for one half of the magnetic mode amplitudes of

Figure 4 with a collection of 10 � 106 of protons.

122905-8 Firpo et al. Phys. Plasmas 23, 122905 (2016)

http://dx.doi.org/10.1038/158081a0
http://dx.doi.org/10.1146/annurev-astro-082708-101726
http://dx.doi.org/10.1126/science.1160495
http://dx.doi.org/10.1103/PhysRevLett.33.1201
http://dx.doi.org/10.1038/nphys574
http://dx.doi.org/10.1017/S0022112073002016
http://dx.doi.org/10.1063/1.3193681
http://dx.doi.org/10.1029/JZ062i004p00509


13A. H. Boozer, Phys. Fluids 26, 1288 (1983).
14J. R. Cary and R. G. Littlejohn, Ann. Phys. 151, 1–34 (1983).
15P. J. Morrison, Phys. Plasmas 7, 2279–2289 (2000).
16M. S. Janaki and G. Ghosh, J. Phys. A: Math. Gen. 20, 3679–3685 (1987).
17D. F. Escande, Plasma Phys. Controlled Fusion 58, 113001 (2016).
18M.-C. Firpo and B. Coppi, Phys. Rev. Lett. 90, 095003 (2003).
19M.-C. Firpo, W. Ettoumi, R. Farengo, H. E. Ferrari, P. L. Garc�ıa-Mart�ınez,

and A. F. Lifschitz, Phys. Plasmas 20, 072305 (2013).
20W. Ettoumi, see http://www.theses.fr/2013EPXX0100 for thèse de l’Ecole
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