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• We propose a family of quantum correlation measures for bipartite quantum systems.
• We extend previous approaches by using quantum unified entropies.
• The measures are invariant under addition of an uncorrelated ancilla.
• We give some relationships between total and semiquantum correlations.
• We obtain analytical results for pseudopure, Werner and isotropic states.
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a b s t r a c t

We introduce quantum correlation measures based on the minimal change in unified
entropies induced by local rank-one projective measurements, divided by a factor that
depends on the generalized purity of the system in the case of nonadditive entropies. In this
way, we overcome the issue of the artificial increasing of the value of quantum correlation
measures based on nonadditive entropies when an uncorrelated ancilla is appended to
the system, without changing the computability of our entropic correlation measures
with respect to the previous ones. Moreover, we recover as limiting cases the quantum
correlation measures based on von Neumann and Rényi entropies (i.e., additive entropies),
for which the adjustment factor becomes trivial. In addition, we distinguish between total
and semiquantum correlations and obtain some inequalities between them. Finally, we
obtain analytical expressions of the entropic correlation measures for typical quantum
bipartite systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum correlations lie at the heart of the difference between classical and quantum worlds. Two paradigms, at least,
address this issue beyond the usual entangled–separable distinction [1]. For instance steering correlations, the origins
of which can be found in the seminal works by Einstein, Podolsky and Rosen [2] and by Schrödinger [3], have recently
been formulated in an operational way [4]. These correlations intermediate between entanglement and nonlocality (i.e., a
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violation of Bell inequalities [5]). Moreover it is possible to identify quantum correlations even in separable states. This has
been firstly observed by Ollivier and Zurek [6] and by Henderson and Vedral [7], who derived the quantum discord as a
signature of quantum correlations in bipartite systems. The original definition of discord relies on the difference between
two extensions of the classical mutual information to the quantum case. A generalization of discord using entropic forms
other than von Neumann entropy [8], naively replacing it by general entropies like Rényi [9] or Tsallis [10] ones, as proposed
in Ref. [11], fails as it has been shown in Refs. [12,13].

Here,we aim to obtain quantumcorrelationmeasures byusing general entropic forms, namely (q, s)-entropies (or unified
entropies) [14,15]. To avoid the difficulty discussed in Refs. [12,13], we follow an alternative approach inspired by the work
of Luo [16]. We propose as quantum correlation measures the minimal change in unified entropies induced by a local rank-
one measurement, divided by a factor that depends on the generalized purity only in the case of nonadditive entropies (this
adjusting factor becomes trivial for additive entropies). Several quantum correlation measures discussed in the literature,
like [17–29] among others, are particular cases of (or close to) our proposal (see Refs. [30] for recent reviews of quantum
correlations). Indeed, the case of trace form entropies [31], which are nonadditive (except for the von Neumann case), has
been dealt with in Refs. [22–24] and deserves a particularmention. These entropic quantum correlationmeasures artificially
increase when an uncorrelated ancilla is appended to the system (the geometric discord [20] has the same issue, as it
has been pointed out in Ref. [32]). The nonadditivity of trace form entropies is the cause of this problem. We solve this
drawback in the case of (q, s)-entropies by introducing a generalized purity factor, similarly to what has been done with
the geometric discord, that is, dividing it by the purity [25]. In this way, we obtain a family of (q, s)-entropic measures
of quantum correlations that are invariant under the addition of an uncorrelated ancilla, both in the cases of additive and
nonadditive entropies. We notice that the computability of our entropic quantum correlation measures remains equal to
the previous ones [22–24], since the adjustment factor is simply the trace of a power of the density operator.

The outline of the work is as follows. Our proposal and main results are given in Section 2. In 2.1, we present a review
of the notion and some properties of the unified (q, s)-entropies and majorization, and we introduce a family of entropic
measures of disturbance due to a projective measurement. In 2.2, we present the general entropic quantum correlation
measures by quantifying disturbances due to local projectivemeasurements, distinguishing between total and semiquantum
correlations. Besides, we provide basic properties that justify our proposal. In 2.3, we find a lower bound for the entropic
quantum correlations in terms of generalized entanglement entropies. In 2.4, we give some interesting inequalities between
total and semiquantum measures. Typical examples where we apply our correlation measures are given in Section 3, and
finally some conclusions are drawn in Section 4.

2. Entropic measures of quantum correlations

2.1. Unified entropies, majorization and (q, s)-disturbances

Let a quantum system be described by a density operator ρ, that is, a trace-one positive semidefinite operator acting on
an N-dimensional Hilbert space, HN . The quantum unified (q, s)-entropies for the state ρ are defined as [14,15]

S(q,s)(ρ) =
(Tr ρq)s − 1
(1 − q)s

, (1)

for entropic indices q > 0, q ≠ 1, and s ≠ 0. The limiting case q → 1, for any s, corresponds to von Neumann entropy [8],

lim
q→1

S(q,s)(ρ) ≡ S(ρ) = − Tr ρ ln ρ, (2)

while for vanishingly small s, the quantum versions of Rényi entropies [9] are recovered,

lim
s→0

S(q,s)(ρ) ≡ SRq (ρ) =
ln Tr ρq

1 − q
. (3)

Besides, setting s = 1 gives rise to the quantum versions of Tsallis entropies [10],

S(q,1)(ρ) ≡ STq (ρ) =
Tr ρq

− 1
1 − q

. (4)

Another interesting subfamily is that obtained with q = 2, as the entropies S(2,s)(ρ) are directly related to the purity of the
state, Tr ρ2; in particular SR2 (ρ) = − ln Tr ρ2 and ST2 (ρ) = 1 − Tr ρ2.

A feature of (q, s)-entropies is their nonadditive character [14], which is reflected in the sum rule for product states
ρA

⊗ ρB acting on a Hilbert space HNA ⊗ HNB ,

S(q,s)(ρA
⊗ ρB) = S(q,s)(ρA)+ S(q,s)(ρB)+ (1 − q)s S(q,s)(ρA)S(q,s)(ρB). (5)

Notice that in the cases q = 1 or s = 0, one recovers the additivity of von Neumann and Rényi entropies.
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A closely related concept to entropy is that of majorization (see e.g. Ref. [33]). Let us consider two density operators ρ
and σ , and let the probability vectors p and q be formed with the eigenvalues of ρ and σ , respectively, sorted in decreasing
order. Then ρ is majorized by σ , denoted as ρ ≺ σ , when

n
i=1

pi ≤

n
i=1

qi ∀ n = 1, . . . ,N − 1, and
N
i=1

pi =

N
i=1

qi = 1, (6)

where N = max {rank ρ, rank σ } and rank denotes the rank of a density operator. Notice that if rank ρ ≤ rank σ we
complete the vector p with 0 entries to have the same length as q, and vice versa. This has no impact in the value of the
unified entropies due to the expansibility property.

It can be shown that (q, s)-entropies preserve the majorization relation (see e.g. Refs. [15,34]), that is,
if ρ ≺ σ then S(q,s)(ρ) ≥ S(q,s)(σ ), (7)

with equality if and only if ρ and σ have the same eigenvalues. We observe that the reciprocal does not hold in general,
which means that majorization is stronger (as an order relation) than entropic behaviour for a single choice of the entropic
indices.

Now, using the Schur-concavity (7) it is straightforward to show that (q, s)-entropies are lower and upper bounded:

0 ≤ S(q,s)(ρ) ≤
N (1−q)s

− 1
(1 − q)s

, (8)

where the first inequality is obtained for pure states, whereas the second one for the maximally mixed state ρ∗
=

I
N .

It can be shown that the eigenvalues of a density operator ρ are invariant under arbitrary unitary transformations U , in
otherwords ρ andUρUĎ have the same eigenvalues. Hence the (q, s)-entropies are invariant under unitary transformations,

S(q,s)(ρ) = S(q,s)(UρUĎ). (9)
Moreover, we show below that the change in entropy due to local measurements plays a key role in order to quantify

quantum correlations. Let us recall the action of any bistochastic map over an arbitrary state. A bistochastic (or completely
positive, trace-preserving unital) map E can be written in the Kraus form as E(ρ) =


k EkρE

Ď
k with both sets of positive

operators

EĎkEk


and


EkE

Ď
k


summing up to the identity (see e.g. Ref. [35]). Notice that this map leaves the maximally

mixed state, ρ∗, invariant, i.e., E(ρ∗) = ρ∗. It can be shown that E(ρ) ≺ ρ if and only if E is a bistochastic map [36]. In other
words, for bistochastic maps the final state E(ρ) is more disordered (in terms of majorization) than the initial state ρ. As a
consequence of this ordering and the Schur-concavity of the (q, s)-entropies, we have

S(q,s)(E(ρ)) ≥ S(q,s)(ρ), (10)
where the equality is attained if and only if E(ρ) = UρUĎ.

Hereafter, we are only interested in rank-one projective measurements without postselection, that is, a set of orthogonal
rank-one projectorsΠ = {Pi = |i⟩⟨i|}, where PiPi′ = δii′Pi and

N
i=1 Pi = I , being {|i⟩} an orthonormal basis of HN . The state

after a rank-one projective measurementΠ is equal toΠ(ρ) =
N

i=1 PiρPi =
N

i=1 pi|i⟩⟨i| with pi = ⟨i|ρ|i⟩. As projective
measurements are particular cases of bistochasticmaps,we have also an inequality similar to (10) forΠ . Thus, we propose to
use the difference of quantum (q, s)-entropies between the final and initial states (adequately rescaled by a factor depending
on the generalized purity) as a signature of the disturbance of the state of a system due to the measurement, that is

DΠ(q,s)(ρ) =
S(q,s)(Π(ρ))− S(q,s)(ρ)

(Tr ρq)s
. (11)

For any choice of the entropic indices this quantity is nonnegative, and vanishes if and only if the measurement does not
disturb the state, i.e.,Π(ρ) = ρ, which happens when measuring in the basis that diagonalizes ρ. Notice that the rescaling
factor plays no role for von Neumann and Rényi entropies, which correspond to the cases of additive entropies. Below we
clarify the importance of rescaling with (Tr ρq)s when dealing with quantum correlation measures based on nonadditive
entropies.

Finally, notice that two interesting cases arise from definition (11). The first one consists in considering the vonNeumann
entropy, in this case the disturbance can be recast as the quantumrelative entropy (or quantumKullback–Leibler divergence)
between ρ andΠ(ρ), that is

DΠ(1,s)(ρ) ≡ DΠ (ρ) = S (ρ ∥ Π(ρ)) , (12)
where S(ρ ∥ σ) = Tr (ρ(ln ρ − ln σ)) is the quantum relative entropy. The second one comes from evaluating (11) for
Tsallis entropy with entropic index equal to 2, for which the disturbance expresses in terms of the Hilbert–Schmidt distance
between ρ andΠ(ρ) divided by the purity of ρ,

DΠ(2,1)(ρ) ≡ DΠ2 (ρ) =
∥ρ −Π(ρ)∥2

Tr ρ2
, (13)

where ∥A∥ =
√
Tr AĎA is the Hilbert–Schmidt norm of operator A.
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2.2. Quantum correlations from disturbance due to a local projective measurement

Let us consider a bipartite quantum system AB with density operator ρAB acting on a product finite dimensional Hilbert
space,HNAB = HNA ⊗HNB , whereNAB

= NANB. Following Ref. [16], we consider the local rank-one projectivemeasurements
(without postselection), ΠA

= {PA
i ⊗ IB}, ΠB

= {IA ⊗ PB
j } and ΠAB

= {PA
i ⊗ PB

j }, where

PA
i


and


PB
j


are two sets

of orthogonal rank-one projectors that sum to the identity, IA and IB, respectively. Then, the resulting states after these
measurements are

ΠA(ρAB) =


i

PA
i ⊗ IB ρABPA

i ⊗ IB =


i

pAi P
A
i ⊗ ρB|i, (14)

ΠB(ρAB) =


j

IA ⊗ PB
j ρ

ABIA ⊗ PB
j =


j

pBj ρ
A|j

⊗ PB
j , (15)

ΠAB(ρAB) = ΠA
◦ΠB(ρAB) = ΠB

◦ΠA(ρAB)

=


ij

PA
i ⊗ PB

j ρ
ABPA

i ⊗ PB
j =


ij

pABij P
A
i ⊗ PB

j , (16)

where ρB|i
=

TrA

PAi ⊗IBρAB


pAi

with pAi = Tr

PA
i ⊗ IBρAB


, ρA|j

=
TrB


IA⊗PBj ρ

AB


pBj
with pBj = Tr


IA ⊗ PB

j ρ
AB


and pABij =

Tr

PA
i ⊗ PB

j ρ
AB


. According to Luo [16], these states are called classical–quantum (CQ), quantum–classical (QC) and

classical–classical (CC) correlated states with respect to the local measurements ΠA, ΠB and ΠAB, respectively. A state is
said CQ correlated if there is a local projectivemeasurement over A that does not disturb it, i.e.ΠA(ρAB) = ρAB; analogously,
a QC correlated state satisfies ΠB(ρAB) = ρAB, while CC correlated states are those that obey ΠAB(ρAB) = ρAB. All these
states are separable (i.e., nonentangled), as they are convex combinations of product states [1]; however we recall that not
all separable states are of the forms (14)–(16). Moreover, the sets formed by all CQ, QC and CC correlated states, denoted as
ΩA,ΩB andΩAB, respectively, are not convex in contrast to the set of separable states. Notice thatΩA andΩB are the sets of
zero quantum discord states with respect to HNA and HNB respectively [20,37], and thatΩAB

= ΩA
∩ΩB [26]. In the sequel,

for the sake of brevity, we will use L to denote either A or B (but not AB), and K when we consider A, B, or AB.
Now, we can use (11) to quantify the disturbance due to the local projective measurementΠK ,

DΠ
K

(q,s)(ρ
AB) =

S(q,s)

ΠK (ρAB)


− S(q,s)(ρAB)

Tr(ρAB)q
s . (17)

We refer to DΠ
L

(q,s) as unilocal disturbances, whereas DΠ
AB

(q,s) are called bilocal disturbances.
In order to obtain a measurement-independent signature of quantum correlations, one takes the minimum of the

disturbances (17) over the set of local measurements, that is

DK
(q,s)(ρ

AB) = min
ΠK

DΠ
K

(q,s)(ρ
AB). (18)

The following properties justify our proposal (18) as measures of quantum correlations:

(i) nonnegativity: DK
(q,s)(ρ

AB) ≥ 0 with equality if and only if ρAB
∈ ΩK . Accordingly, DL

(q,s) are semiquantum correlation
measures (with respect to HNL ), whereas DAB

(q,s) are total quantum correlation measures;
(ii) invariance under local unitary operators:DK

(q,s)(U⊗V ρAB UĎ
⊗V Ď) = DK

(q,s)(ρ
AB), whereU and V are unitary operations

over A and B respectively; and
(iii) invariance when an uncorrelated ancilla is appended to the system: DK

(q,s)(ρ
AB

⊗ρC ) = DK
(q,s)(ρ

AB) for bipartitions A|BC
or B|AC (for the bipartition AB|C the quantum correlation measures naturally vanish).

The first property is a direct consequence of majorization relation between the states after and before local projective
measurements. The second one can be proved from the definition of our measure, Eq. (18), noting thatΠK (U ⊗ V ρAB UĎ

⊗

V Ď) = U ⊗V Π̃K (ρAB)UĎ
⊗V Ď, with Π̃K

= UĎ
⊗V ĎΠK U ⊗V , and recalling the invariance of (q, s)-entropies under unitary

transformations. The third property is more subtle and it is related to the sum rule (5) of the (q, s)-entropies. Indeed, the
generalized purity factor


Tr(ρAB)q

s plays a crucial role to fulfill this property in the case of nonadditive entropies, without
affecting the complexity of computability of the measures. In general, this property has not been taken into account in the
literature of nonadditive entropic measures of quantum correlations. For instance, entropic quantum correlation measures
based on the difference of trace form entropies,1 i.e., Sφ(ρ) = Trφ(ρ) with φ concave and φ(0) = 0 [31], have been
dealt with in Refs. [22,24]. However, these measures are not invariant when an uncorrelated ancilla is appended to the
system, except for the von Neumann case. This is direct consequence of nonadditivity of trace form entropies. For a more

1 Notice that (q, s)-entropies reduce to a trace form only if s = 1 (Tsallis entropies).
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general discussion about necessary and reasonable conditions of quantum correlation measures, see Ref. [38]. Moreover,
our semiquantum correlation measures can be also interpreted as a quantum deviation from the Bayes rule in a way similar
to that discussed in Ref. [24].

We remark that our quantum correlation measures include some important cases already discussed in the literature.
The first one consists in evaluating (18) for the von Neumann entropy. In this case we reobtain the so-called information
deficit [18], which can be rewritten in terms of the minimal relative entropy over the setsΩK [19],

DK (ρAB) = min
ΠK

S

ρAB

∥ΠK (ρAB)


= min
χAB∈ΩK

S

ρAB

∥χAB . (19)

The second one arises when evaluating (18) for the Tsallis entropy with entropic index equal to 2. This case is close to the
geometric discord [20],

DK
G(ρ

AB) = min
χAB∈ΩK

∥ρAB
− χAB

∥
2. (20)

Indeed, using the expression of DK
G in terms of local projective measurements given in Ref. [21], we obtain

DK
2 (ρ

AB) =

min
ΠK

∥ρAB
−ΠK (ρAB)∥2

Tr(ρAB)2
=

DK
G(ρ

AB)

Tr(ρAB)2
. (21)

Notice that DK
G is not invariant when an uncorrelated ancilla is appended to the system [32]. The purity rescaled factor

solves this issue [25], although there is not the unique way to do it (see e.g. Refs. [25,39]). Finally, notice that in the case
of Rényi entropies, which have recently been introduced in Ref. [27], our measure fulfills the desired invariance property
when appending an uncorrelated ancilla to the system.

2.3. Lower bound of (18) and its relation with entanglement

First, let us note that since QC, CQ and CC correlated states (14)–(16) are separable, they fulfill some general entropic
separability inequalities (see e.g. Ref. [34]),

S(q,s)(ΠK (ρAB)) ≥ max

S(q,s)(TrAΠK (ρAB)), S(q,s)(TrBΠK (ρAB))


. (22)

On the other hand, the corresponding final reduced states are

TrAΠA(ρAB) = ρB and TrBΠA(ρAB) = TrBΠAB(ρAB) =


i

pAi P
A
i = ρA

diag, (23)

TrBΠB(ρAB) = ρA and TrAΠB(ρAB) = TrAΠAB(ρAB) =


j

pBj P
B
j = ρB

diag (24)

where ρL
diag denotes the diagonal of ρL in the basis underlying by {PL

i }. Since ρ
L
diag ≺ ρL (see e.g. Ref. [35]) and due to the

Schur-concavity of the (q, s)-entropies, inequality (22) reduces to

S(q,s)(ΠK (ρAB)) ≥ max

S(q,s)(ρA), S(q,s)(ρB)


. (25)

Thus, plugging (25) into (17) to lowerbound DΠ
K

(q,s)(ρ
AB) and taking the minimum, we obtain that the quantum correlation

measures are lower bounded, as follows

DK
(q,s)(ρ

AB) ≥ max


S(q,s)(ρA)− S(q,s)(ρAB)

Tr(ρAB)q
s ,

S(q,s)(ρB)− S(q,s)(ρAB)
Tr(ρAB)q

s

. (26)

Notice that this lower bound could be nontrivial only for entangled states; indeed, the right hand side of (26) is negative for
separable states. A similar result has already been obtained in the case of trace form entropies [22].

Now, let us consider a pure state ρAB
= |Ψ AB

⟩⟨Ψ AB
|. Let us suppose that

|ψAB
⟩ =

n
k=1


λk|kA⟩ ⊗ |kB⟩ (27)

is the Schmidt decomposition of |ψAB
⟩ (n ≤ min{NA,NB

} and {|kL⟩} are an orthonormal set). Thus, it can be shown that
the reduced states ρA

= TrB |Ψ AB
⟩⟨Ψ AB

| and ρB
= TrA |Ψ AB

⟩⟨Ψ AB
| have the same unified entropy and, as a consequence,

the lower bound (26) reduces to S(q,s)(ρA) = S(q,s)(ρB) for pure states ρAB. Moreover, this bound is saturated when
the local measurements are taken on the Schmidt basis. After these measurements, i.e., choosing the local projectors as
PL
k = |kL⟩⟨kL| (completed to obtain NL projector), the state is given by ΠK (ρAB) =


k λkP

A
k ⊗ PB

k , with unified entropies
S(q,s)(ΠK (ρAB)) = S(q,s)(ρA) = S(q,s)(ρB). Therefore, we obtain that for pure states the entropic quantum correlation
measures become a generalization of the entanglement entropy,

DK
(q,s)(ρ

AB) = S(q,s)(ρA) = S(q,s)(ρB), (28)
which for the von Neumann entropy reduces to the standard one [40].
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2.4. Inequalities between total and semiquantum correlations

It is possible to find some interesting inequalities between total and semiquantum correlations when bilocal
disturbances, DΠ

AB

(q,s)(ρ
AB), are rewritten in terms of unilocal disturbances,

DΠ
AB

(q,s)(ρ
AB) = DΠ

A

(q,s)(ρ
AB)+ πΠ

A

(q,s) D
ΠB

(q,s)(Π
A(ρAB)), (29)

DΠ
AB

(q,s)(ρ
AB) = DΠ

B

(q,s)(ρ
AB)+ πΠ

B

(q,s) D
ΠA

(q,s)(Π
B(ρAB)), (30)

where πΠ(q,s) =


Tr(Π(ρAB))q

Tr(ρAB)q

s
(for sake of brevity, we omit the dependence of this factor on the state). This quantity, πΠ(q,s) ,

is nonnegative but it can take values below or above 1, depending on the value of the entropic index q. As Π(ρ) ≺ ρ, we
have that Π(ρ)q ≺ ρq if q ≥ 1, whereas, ρ ≺ Π(ρ) holds if 0 ≤ q < 1. Thus, πΠ(q,s) ∈ (0, 1] if q ≥ 1, else πΠ(q,s) ≥ 1. In
particular, for Rényi entropies the factor is always equal to 1.

Now, let us consider two possible measurement scenarios:

• ΠAB
0 = ΠA

0 ◦ ΠB
0 is a bilocal measurement that minimizes the total quantum correlation measure, i.e., D

ΠAB
0

(q,s)(ρ
AB) =

DAB
(q,s)(ρ

AB),

• ΠAB
1 = ΠA

1 ◦ΠB
1 , whereΠ L

1 optimizes the unilocal disturbances, i.e., D
ΠL

1
(q,s)(ρ

AB) = DL
(q,s)(ρ

AB).

Applying Eqs. (29)–(30) to both scenarios, we obtain

DAB
(q,s)(ρ

AB) = D
ΠA

0
(q,s)(ρ

AB)+ π
ΠA

0
(q,s) D

ΠB
0

(q,s)(Π
A
0 (ρ

AB)) = D
ΠB

0
(q,s)(ρ

AB)+ π
ΠB

0
(q,s) D

ΠA
0

(q,s)(Π
B
0 (ρ

AB)), (31)

and

D
ΠAB

1
(q,s)(ρ

AB) = DA
(q,s)(ρ

AB)+ π
ΠA

1
(q,s) D

ΠB
1

(q,s)(Π
A
1 (ρ

AB)) = DB
(q,s)(ρ

AB)+ π
ΠB

1
(q,s) D

ΠA
1

(q,s)(Π
B
1 (ρ

AB)). (32)

Using thatDAB
(q,s)(ρ

AB) ≤ D
ΠAB

1
(q,s)(ρ

AB) (and the analogous relations for the unilocal disturbances) on Eqs. (31)–(32) respectively,
it can be shown that DAB

(q,s)(ρ
AB) is lower and upper bounded as follows,

DAB
(q,s)(ρ

AB) ≥ max{DA
(q,s)(ρ

AB)+ π
ΠA

0
(q,s) D

ΠB
0

(q,s)(Π
A
0 (ρ

AB)),DB
(q,s)(ρ

AB)+ π
ΠB

0
(q,s) D

ΠA
0

(q,s)(Π
B
0 (ρ

AB))}, (33)

DAB
(q,s)(ρ

AB) ≤ min{DA
(q,s)(ρ

AB)+ π
ΠA

1
(q,s) D

ΠB
1

(q,s)(Π
A
1 (ρ

AB)),DB
(q,s)(ρ

AB)+ π
ΠB

1
(q,s) D

ΠA
1

(q,s)(Π
B
1 (ρ

AB))}. (34)

In particular, given that the nonoptimal unilocal disturbances in (33) are nonnegative,wenaturally obtain that total quantum
correlation is greater than or equal to the semiquantum ones,

DAB
(q,s)(ρ

AB) ≥ max{DA
(q,s)(ρ

AB),DB
(q,s)(ρ

AB)}. (35)

This result can be also obtained more directly from the fact that S(q,s)(ΠAB
0 (ρ

AB)) ≥ S(q,s)(Π L
1(ρ

AB)). Notice that (35) is in
accordance with the inclusion relations among the sets of CQ, QC and CC correlated states, i.e.,ΩAB

= ΩA
∩ΩB

⊂ ΩL.
Moreover, noting that 2DΠ

AB

(q,s)(ρ
AB) ≥ DAB

(q,s)(ρ
AB) + DΠ

AB

(q,s)(ρ
AB) ≥ 2DAB

(q,s)(ρ
AB) we can deduce from Eqs. (31)–(32) the

following inequality for the sum of semiquantum correlations:

DAB
(q,s)(ρ

AB)+∆0 ≥ DA
(q,s)(ρ

AB)+ DB
(q,s)(ρ

AB) ≥ DAB
(q,s)(ρ

AB)+∆1, (36)

where we defined the quantities∆i := D
ΠAB

i
(q,s)(ρ

AB)− π
ΠB

i
(q,s) D

ΠA
i

(q,s)(Π
B
i (ρ

AB))− π
ΠA

i
(q,s) D

ΠB
i

(q,s)(Π
A
i (ρ

AB)), with i = 0, 1.
Notice that for CQ and QC correlated states, one has∆1 = 0,Π L

1 being defined by the set {PL
i } so that it does not disturb

the joint state. Finally, notice that for CC correlated states, all quantities in (36) vanish. Therefore, from these observations
together with (35), we obtain

• if DA
(q,s)(ρ

AB) = 0, then DAB
(q,s)(ρ

AB) = DB
(q,s)(ρ

AB),
• if DB

(q,s)(ρ
AB) = 0, then DAB

(q,s)(ρ
AB) = DA

(q,s)(ρ
AB),

• if DAB
(q,s)(ρ

AB) = 0, then DA
(q,s)(ρ

AB) = DB
(q,s)(ρ

AB) = 0.

Furthermore, a triangle-like inequality between total and semiquantum correlations,

DA
(q,s)(ρ

AB)+ DB
(q,s)(ρ

AB) ≥ DAB
(q,s)(ρ

AB), (37)

is trivially satisfied for CQ, QC and CC correlated states. The validity of the triangle-like inequality (37) in the general case
relies on the sign of∆1. If∆1 ≥ 0∀ρAB, the inequality is generally true. On the contrary, if∆1 < 0 for some ρAB then it could
be the case that the inequality does not hold for those states.
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Fig. 1. Minimal differences between DΠ
A

(q,s)(ρ
AB) and πΠ

A

(q,s) D
ΠA

(q,s)(Π
B(ρAB)) computed for 103 random local projective measurements ΠA(B) , using Tsallis

entropies (left inset) and Rényi entropies (right inset). Each line corresponds to a random two-qubit state. Notice that a wide range of values of the
entropic index, q, yields negative values for these differences, implying a violation of the contractivity property under local projective measurements
(see relations (38)–(39) and text for details). For q = 1 both measures converge to the von Neumann-based one, which fulfills the contractivity property.
The same happens for Tsallis with q = 2, corresponding to the Hilbert–Schmidt distance. Interestingly, in the Tsallis case we have been unable to find a
counterexample to the mentioned contractivity for q ∈ (1, 2) (shaded region of the left inset).

Although the most general conditions for the validity of the triangle-like inequality (37) are hard to analyze, we can link
the validity of (37) with a kind of local contractivity property of the unilocal disturbances. Specifically, let us assume as valid
the following inequalities:

π
ΠB

j
(q,s) D

ΠA
i

(q,s)(Π
B
j (ρ

AB)) ≤ D
ΠA

i
(q,s)(ρ

AB), (38)

π
ΠA

j
(q,s) D

ΠB
i

(q,s)(Π
A
j (ρ

AB)) ≤ D
ΠB

i
(q,s)(ρ

AB). (39)

Then, we have

π
ΠB

1
(q,s) D

ΠA
1

(q,s)(Π
B
1 (ρ

AB)) ≤ D
ΠA

1
(q,s)(ρ

AB) = DA
(q,s)(ρ

AB), (40)

π
ΠA

1
(q,s) D

ΠB
1

(q,s)(Π
A
1 (ρ

AB)) ≤ D
ΠB

1
(q,s)(ρ

AB) = DB
(q,s)(ρ

AB), (41)

and, replacing any of these relations in (32), we obtain

D
ΠAB

1
(q,s)(ρ

AB) ≤ DA
(q,s)(ρ

AB)+ DB
(q,s)(ρ

AB). (42)

Finally, recalling that DAB
(q,s)(ρ

AB) ≤ D
ΠAB

1
(q,s)(ρ

AB), it follows the triangle-like inequality (37).
Thus, we are able to link the validity of the triangle-like inequality, for all states and any entropic indices, with a

kind of contractivity under local projective measurements of unilocal disturbances (38)–(39). Indeed, for von Neumann
entropy, inequalities (38)–(39) are particular cases of contractivity under trace-preserving completely positive maps of the
quantum relative entropy [41]. Otherwise, for Tsallis entropy of entropic index 2, inequalities (38)–(39) are particular cases
of contractivity under projective measurements of the Hilbert–Schmidt distance [42]. Therefore, in both cases the triangle-
like inequality is satisfied (notice that for the latter, this result has been proved in an alternative way [26]). Unfortunately,
the local contractivity is not valid for general entropic functionals. Indeed, we show that is the case for a wide range of the
entropic index of the Rényi and Tsallis entropies in Fig. 1.

3. Examples

3.1. Mixtures of a pure state and the maximally mixed one

An interesting example where the computations can be carried out analytically involves the family of pseudopure states,
given by mixtures of an arbitrary pure state, |ψAB

⟩ ∈ HNA ⊗ HNB , with the maximally mixed state, yielding

ρAB
p = (1 − p)

IAB

NAB
+ p|ψAB

⟩⟨ψAB
|, (43)

with 0 ≤ p ≤ 1 (remind that NAB
= NANB). The spectrum of ρAB is given by the eigenvalue (1 − p)/NAB

+ p, with
multiplicity 1, and the eigenvalues (1 − p)/NAB, with multiplicity NAB

− 1. The measurements that optimize both the
unilocal and the bilocal quantifiers are unique (do not depend on the entropic form) and are given by the local Schmidt
basis [22]. This entropic-independent measurement fact is not a universal property, but depends on the particular states. In



G.M. Bosyk et al. / Physica A 462 (2016) 930–939 937

this case, measuring in the Schmidt basis yields a final spectrum that is majorized by any other spectrum corresponding to
any other measurement, implying the entropic-independent optimization. After the measurement, the spectrum is given
by the eigenvalue (1 − p)/NAB, with multiplicity NAB

− n, and the eigenvalues (1 − p)/NAB
+ pλk with 1 ≤ k ≤ n, where n

is the Schmidt number and λk the square of Schmidt coefficients (27). Using Eq. (18), we obtain

DK
(q,s)(ρ

AB
p ) =

1
(1 − q)s


 (N

AB
− n)(1 − p)q +

n
k=1

[1 + (NABλk − 1)p]q

(NAB − 1)(1 − p)q + [1 + (NAB − 1)p]q


s

− 1

 (44)

for the generalized quantum correlations of pseudopure states. It is remarkable that, in this particular case and given the
collapse of the semiquantum and total quantifiers, the triangle-like inequality (37) holds for themost general (q, s)-entropic
forms.

In particular, when |ψAB
⟩ is a maximally entangled state, with NA

= NB
= N , states ρAB

p constitute a family of isotropic
states, ρ I

p. In that case, ∀k, λk = N−1, n = N , and the generalized quantum correlations are

DK
(q,s)(ρ

I
p) =

1
(1 − q)s


(N2

− N)(1 − p)q + N[1 + (N − 1)p]q

(N2 − 1)(1 − p)q + [1 + (N2 − 1)p]q

s

− 1


. (45)

Specializing this for Tsallis and Rényi entropies one obtains, respectively,

DK
(q,1)(ρ

I
p) =

1
1 − q

1
N2q


N(1 − p + Np)q − (1 − p + N2p)q(N − 1)(1 − p)q


, (46)

DK
(q,0)(ρ

I
p) =

1
1 − q

ln

N(1 − p + Np)q + (N2

− N)(1 − p)q

(1 − p + N2p)q + (N2 − 1)(1 − p)q


. (47)

3.2. Werner and isotropic states

Although isotropic states are particular cases of Eq. (43), i.e., mixtures of a pure state and the maximally mixed one,
we aim to show that both isotropic [43] and Werner states [1], due to their symmetries, are independent of the local
measurements performed. A Werner state is an N × N dimensional bipartite quantum state that is invariant under
local unitary transformations of the form U ⊗ U , with U an arbitrary unitary acting on N dimensional systems, that is,
ρW

= U ⊗ UρUĎ
⊗ UĎ. On the other hand, an N ×N-dimensional isotropic state is invariant under arbitrary local unitaries

of the form U ⊗ U∗, that is, ρ I
= U ⊗ U∗ρUĎ

⊗ (U∗)Ď. They can be parametrized, respectively, as

ρW
x =

N − x
N3 − N

I +
Nx − 1
N3 − N

F , (48)

with F =


ij |ij⟩⟨ji|, 1 ≤ i, j ≤ N , x ∈ [−1, 1], and

ρ I
y =

1 − y
N2 − 1

I +
N2y − 1
N2 − 1

|ψ+
⟩⟨ψ+

|, (49)

with |ψ+
⟩ =

1
√
N

N
i=1 |ii⟩ and y ∈ [

1
N2 , 1]. Notice that both definitions of isotropic states – the one derived from Eq. (43)

and the one given by Eq. (49) – coincide under the identification p =
N2y−1
N2−1

and |ψAB
⟩ = |ψ+

⟩.
To see that any local measurement yields the same disturbance over these families of states, let us consider ΠA

1 as the
optimal unilocal measurement over A. Any other local measurement is achieved by a unitary transformation over ΠA

1 as
ΠA

V = V ⊗ IBΠA
1 V Ď

⊗ IB, with V an arbitrary unitary over A. Then, using the invariance properties of Werner states,
the action of ΠA

V is ΠA
V (ρ

W ) = V ⊗ V ΠA
1 V Ď

⊗ V Ď. Analogous results hold for isotropic states and measurements over
B. Invoking the unitary invariance of (q, s)-entropies one has that the minimum in (18) is attained for any local projective
measurement. To prove that nothing changes when considering bilocal measurements, it is sufficient to observe that after
any local measurement the state becomes a CC correlated state. Thus, given that the total disturbance can be computed via
the partial disturbances (see Eqs. (29)–(30)), the total quantum correlations are equal to the semiquantum ones.

In order to find an explicit formula of the generalized correlations, it is easier to measure on the standard basis (the ones
used to define F in Werner states and |ψ+

⟩ in isotropic states), readily obtaining

DK
(q,s)(ρ

W
x ) =

1
(1 − q)s

×

 2[(N − 1)q(x + 1)q + (N − 1)(N − x)q]

2(N − 1)q(x + 1)q + (N − 1)


N − x +
1
2Nx −

1
2

q
+


N − x −

1
2Nx +

1
2

q
s

− 1

 (50)
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and

DK
(q,s)(ρ

I
y) =

1
(1 − q)s


N


(N − 1)(1 − y)q +


1 − y + Ny −

1
N

q
(N2 − 1)qyq + (N2 − 1)(1 − y)q

s

− 1

 . (51)

Again, it is interesting to observe that these families of states are among the ones that satisfy the triangle-like inequality
(Eq. (37)) for any (q, s)-entropy.

4. Concluding remarks

In thisworkwe address the problemof quantifying quantumcorrelations beyonddiscord. Specifically, following Ref. [16],
we obtain entropic measures of bipartite quantum correlations by quantifying the system’s states disturbance under local
measurements. Our measures are based on very general entropic forms given by the quantum (q, s)-entropies [14,15]. As
a consequence, we obtain quantum correlation measures, which include as particular cases or are close to several other
measures previously discussed in the literature [17–27]. Our main contribution is to propose such quantum correlation
measures based on quantum unified (q, s)-entropies that are: (i) nonnegative and vanish only for QC, CQ and CC correlated
states, (ii) invariant under local unitary operators, and (iii) invariant under the addition of an uncorrelated ancilla. Regarding
the last property,we show that for q ↛ 1or s ↛ 0, that iswhen the (q, s)-entropies are nonadditive, it is necessary to rescale
the disturbances by a generalized purity factor in order to avoid undesirable effects of previous entropic based correlation
measures [22–24].

Moreover, we distinguish between total and semiquantum correlations, and we naturally obtain that the former are
greater than the latter. In addition, we show that a triangle-like inequality is fulfilled for certain families of states, namely
QC, CQ and CC correlated states, as well as, Werner and Isotropic states, for any entropic measures. In the general case,
we only prove this for the von Neumann and Tsallis with entropic index of order 2, which follows from the contractivity
property under a projective measurement of quantum relative entropy and Hilbert–Schmidt distance, respectively. We
provide numerical counterexamples where the local contractivity property of unilocal disturbances fails in a wide range
of the entropic index of Rényi and Tsallis entropies, but it remains open if the triangle-like inequality is fulfilled for other
entropic measures.

Finally, we provide analytical expressions of the entropic correlation measures for pseudopure, Werner and isotropic
states. For these families of states, the optimal measurement of unilocal and bilocal disturbances is independent of the
entropic form.
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