
Sequence analysis

An introduction to deep learning on biological

sequence data: examples and solutions

Vanessa Isabell Jurtz1, Alexander Rosenberg Johansen2,

Morten Nielsen1,3, Jose Juan Almagro Armenteros1, Henrik Nielsen1,

Casper Kaae Sønderby4, Ole Winther2,4,* and Søren Kaae Sønderby4,*

1Department of Bio and Health Informatics, 2Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Lyngby, Denmark, 3Instituto de Investigaciones Biotecnológicas, Universidad

Nacional de San Martı́n, Buenos Aires, Argentina and 4Department of Biology, University of Copenhagen,

Copenhagen, Denmark

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 13, 2017; revised on July 27, 2017; editorial decision on August 14, 2017; accepted on August 22, 2017

Abstract

Motivation: Deep neural network architectures such as convolutional and long short-term memory

networks have become increasingly popular as machine learning tools during the recent years.

The availability of greater computational resources, more data, new algorithms for training deep

models and easy to use libraries for implementation and training of neural networks are the drivers

of this development. The use of deep learning has been especially successful in image recognition;

and the development of tools, applications and code examples are in most cases centered within

this field rather than within biology.

Results: Here, we aim to further the development of deep learning methods within biology by pro-

viding application examples and ready to apply and adapt code templates. Given such examples,

we illustrate how architectures consisting of convolutional and long short-term memory neural net-

works can relatively easily be designed and trained to state-of-the-art performance on three biolo-

gical sequence problems: prediction of subcellular localization, protein secondary structure and

the binding of peptides to MHC Class II molecules.

Availability and implementation: All implementations and datasets are available online to the sci-

entific community at https://github.com/vanessajurtz/lasagne4bio.

Contact: skaaesonderby@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning is a specialization of computer science closely

related to pattern recognition, data science, data mining and artifi-

cial intelligence (William, 2009). Within the field of machine learn-

ing, artificial neural networks, inspired by biological neural

networks, have in recent years regained popularity (Schmidhuber,

2015). Their most recent success began with the development of

effective methods to train deep neural networks (networks with

multiple hidden layers), and the coining of the term deep learning

around 2006 (Hinton and Salakhutdinov, 2006; Schmidhuber,

2015). Since then improvements have been made in part enabled by

the access to greater computational resources, especially graphics

processing units (GPU), enabling training of deep neural networks

containing many parameters in reasonable time. Given this, special-

ized neural network architectures like convolutional neural net-

works (CNN) and recurrent neural networks (RNN) with long

short-term memory cells (LSTM) can now be trained efficiently and

have been successfully applied to many problems including image

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3685

Bioinformatics, 33(22), 2017, 3685–3690

doi: 10.1093/bioinformatics/btx531

Advance Access Publication Date: 23 August 2017

Review

https://github.com/vanessajurtz/lasagne4bio
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx531#supplementary-data
https://academic.oup.com/

recognition (Ciresan et al., 2011; Krizhevsky et al., 2012) and nat-

ural language processing tasks such as speech recognition (Geiger

et al., 2014) and language translation (Sutskever et al., 2014).

The successes of neural networks have led to the development of

various programming frameworks to build and train neural net-

works. Examples are PyTorch (http://pytorch.org/), Caffe (http://

caffe.berkeleyvision.org) and TensorFlow (https://www.tensorflow.

org). Our framework of choice here is Lasagne (Dieleman et al.,

2015), a well-established easy to use and extremely flexible light-

weight Python library built on top of the Theano numerical compu-

tation library (Bastien et al., 2016). While most other frameworks

require the user to learn a dedicated programming language,

Lasagne is Python-based and therefore relatively easy to use for bio-

informaticians already programming in Python. Further Lasagne’s

active community ensures that the latest neural network training al-

gorithms and architectures are available to the user.

Within bioinformatics, examples of deep learning applications

include prediction of splicing patterns (Leung et al., 2014), DNA

and RNA targets of regulatory proteins (Alipanahi et al., 2015), pro-

tein secondary structure (Wang et al., 2016) and biomedical image

analysis (Cha et al., 2016; Moeskops et al., 2016). However, the

number of applications is still relatively small, and the application of

deep learning methods within biology is in our view being held back

due to a lack of examples and programming templates with a biolo-

gical background facilitating a head start on the use of these libraries

for non-experts.

Here, we seek to alter this by providing a non-expert introduc-

tion to the field of deep neural networks with application examples

and ready to apply and adapt code templates illustrating how con-

volutional and LSTM neural networks can be successfully de-

signed and trained on biological data to achieve state-of-the-art

performance in prediction of (i) protein subcellular localization,

(ii) protein secondary structure and (iii) peptides binding to Major

Histocompatibility Complex Class II molecules. Implementations of

the methods are available online to be used by non-expert end-users

as templates for developing models to describe a given problem of

interest https://github.com/vanessajurtz/lasagne4bio. The code can

run both on CPU and cuda-enabled GPU. GPU gives of the order of

a 100-fold speed-up.

2 Deep learning background

The traditional neural network architecture is the feed forward neu-

ral network with one hidden layer, in which each input neuron is

connected to each neuron in the hidden layer and each neuron in the

hidden layer is in turn connected to each neuron in the output layer.

A non-linear so-called activation function, most often tanh or sig-

moid, is applied to give the output of a neuron given its input. For

classification problems the number of units in the output layer is

equal to the number of classes. The softmax function is often used

to make the outputs probabilistic, that is given an input the network

assigns a probability to each class. For the prediction of a continu-

ous output, a single linear output neuron is typically used. All con-

nections in the network are directed from input to output, and it is

possible to build deep networks by adding more hidden layers where

each neuron will be connected to each neuron in the following layer.

This type of architecture is visualized in Figure 1A. The hidden layer

of a feed forward neural network is also referred to as a dense layer,

because is fully connected to the previous layer.

In convolutional neural networks (CNNs) information also

flows only from the input to the output, layer by layer. They are

however not fully connected, but instead slide a filter (a set of

weights) over the input that feeds into a different neuron in the

next layer each time it is moved as illustrated in Figure 1B. The fil-

ter will thereby identify features in input irrespectively of where

they appear. This concept is visualized in Figure 1C using the ex-

ample of a convolutional filter detecting a motif in an amino acid

sequence. Pooling such as mean pooling (averaging of nearby pos-

itions) enables the network to become invariant to small local de-

formations in the input. Convolutional neural networks often

consist of many convolutional filters and many convolutional and

pooling layers to enable the network to integrate the information

from the different filters and various levels of abstraction (LeCun

et al., 2015). When applied to biological problems, convolutional

neural networks are ideally suited to locate motifs, for example

in a protein sequence, independent of their position within the

sequence.

Recurrent neural networks (RNNs) are neural network models

for sequential data. In addition to the feed forward connections they

have time-delayed connections between the neurons of a hidden

layer (Graves, 2012). RNNs process the sequence one element at a

time, in biological sequence context one residue after the other. The

information therefore flows both from input to output and along the

sequence. In this way memory is generated and the neural network

gains the ability to store and integrate information from past inputs.

Long short-term memory (LSTM) neural networks are a special type

of RNNs in which the scalar-valued hidden neuron is replaced with

the LSTM memory block. The LSTM memory block is inspired by a

computer memory cell where context-dependent input, output and

forget gates control what is written to, read from and kept in the cell

in each time-step. In this way, it is easier for the network to store a

given input over many time steps.

LSTMs (and in general RNNs) can by construction handle input

sequences of varying length. This makes RNNs highly flexible for

different types of tasks where either the input (many-to-one), the

output (one-to-many) or both are sequences (many-to-many).

Many-to-one is a model to process an entire sequence one amino

acid at a time and then predict whether or not it has a certain biolo-

gical property after having seen the entire sequence (here exemplified

in the prediction of peptide binding to MHCII). The many-to-many

approach, also known as tagging or sequence labeling, can for ex-

ample be used to predict the secondary structure classification of

each amino acid in a protein. Performance can be improved by

changing to the many-to-many bidirectional approach (biLSTM)

where the network processes the input sequence forwards and back-

wards and bases each prediction not just on what came before the

current position but also on what comes after. The same approach

can be used in a many-to-one approach here exemplified in protein

subcellular localization prediction.

For a more detailed explanation of the CNN and LSTM architec-

tures, including the mathematical formulas to calculate the output

and update weights, we refer the reader to textbook ‘Deep Learning’

by Goodfellow et al. (2016).

2.1 Designing your model
In this section, we highlight some of the key issues to consider when

constructing deep neural networks such as how to avoid overfitting

when increasing network size and depth.

3686 V.I.Jurtz et al.

http://pytorch.org/
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org
https://www.tensorflow.org
https://www.tensorflow.org
Deleted Text: ; Cha <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
https://github.com/vanessajurtz/lasagne4bio
Deleted Text: &hx201C;
Deleted Text: &hx201D;

2.1.1 Sequence encoding

When working with biological sequence data the numeric represen-

tation of the data influences model performance. An obvious solu-

tion is to use the so-called sparse or one-hot encoding (see Fig. 1A),

where an amino acid is represented by a vector of the length 20, con-

taining a single one and 19 zeros. The parameters connecting an

amino acid input to the first hidden layer is often called the embed-

ding for that amino acid. Another possibility is to use the BLOSUM

matrix (Eddy, 2004) for encoding, representing each amino acid by

its corresponding row in the BLOSUM matrix. The BLOSUM ma-

trix captures information about which pairs of amino acids are eas-

ily interchangeable during evolution, but it does not capture

information about the evolutionary constraints on a protein family

(i.e. which amino acid positions are highly conserved and which are

variable). This information can effectively be captured in a sequence

profile. A sequence profile has the dimensions protein length times

the number of amino acids and is conventionally generated by run-

ning PSI-BLAST (Altschul et al., 1997) against a reference database.

Encoding protein sequences as such profiles has demonstrated very

helpful for prediction of for instance secondary structure (Jones,

1999).

2.1.2 Regularization and training

Regularization techniques aim to prevent overfitting and are espe-

cially relevant for large models containing many parameters. Before

applying regularization techniques it is important to partition the

dataset carefully dealing with data redundancy and set up the neural

network training using cross-validation (further detailed in the

Supplementary Material). Dropout (Hinton et al., 2012) reduces

overfitting by introducing discrete noise during training. For every

training input the output of each hidden unit is set to zero with a cer-

tain preselected probability. Batch normalization (Ioffe and Szegedy,

2015) re-parameterizes the hidden unit activation in order to in-

crease convergence speed but also makes the output stochastic, cre-

ating a regularizing effect. Appropriate weight initialization (Glorot

and Bengio, 2010) and gradient optimization techniques [e.g. Adam

(Kingma and Ba, 2015)] also influence the overall performance.

Combining ensembles of 5–10 models initialized with different ran-

dom seeds usually leads to a substantial increase in performance.

2.1.3 Attention

In standard many-to-one RNNs, the last hidden state is most often

used as input to a downstream network. However, when certain

subparts of the input sequence contain most of the predictive infor-

mation, this approach is suboptimal. Here, it will be beneficial to

add attention weighting (Bahdanau et al., 2015; Jaderberg et al.,

2015) (as illustrated in Fig. 2B). Attention is implemented by learn-

ing a context dependent normalized weight for each hidden state of

the input sequence. The input to the downstream network is then

the weighted average over all hidden states. This normalized weight

is computed in two steps: (i) a one hidden layer dense network takes

each hidden state of the RNN as input and (ii) passes these network

outputs through a softmax function. In one of the examples shown

later, we use such attention to visualize and identify parts of a pro-

tein sequence that are important for subcellular localization

prediction.

2.1.4 Pooling

Max-pooling provides a way of reducing the input or hidden layer

size by selecting only the maximally activated neuron from a

Fig. 1. (A) Feed forward network. Amino Acids C, A, D, A, D are encoded as

‘one-hot’ vectors with a 1 at the position corresponding to the amino acid

type (A, C or D), and zero otherwise. (B) Convolutional neural network. A filter

(blue) is slid over the input sequence. The filter here has a length of three

amino acids. At each position the filter has a preference for different amino

acid types. The filter output is calculated by taking the sum of the element-

wise product of the input and the filter position-specific weights. Each time

the filter is moved, it feeds into a different hidden neuron in the hidden layer,

here visualized in the f1 row. Multiple filters will give multiple inputs to the

next layer {f1, f2, f3, . . .}. (C) A filter can be visualized as a sequence motif.

This helps to understand which amino acids the filter prefers at each se-

quence position. When the filter is slid over the input sequence, it functions

as motif detector and becomes activated when the input matches its prefer-

ence. For example, this filter has negative output for sub-sequences ADC and

positive for DCD

Fig. 2. (A) Schematic illustration of subcellular localization classification.

(B) The neural network architecture used to predict the subcellular localiza-

tion of proteins. (C) Visualization of the positions within the protein amino

acid sequence that have high importance for the prediction of subcellular lo-

calization. Sequence position importance is determined by an attention func-

tion and the middle part of the protein sequences have been cut out in order

to align N- and C-terminus. The different subcellular localization classes

are shown on the y-axis. (D) Table of the A-LSTM performance compared to

the state of the art sequence driven SVM prediction method MultiLoc.

(E) Visualization of convolutional filter. For this filter charged amino acids will

suppress the output (blue, red) while hydrophobic amino acids will increase

the output (black). (C) and (D) are adapted from (Sønderby et al., 2015)

Deep learning on biological sequence data 3687

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx531#supplementary-data
Deleted Text: s
Deleted Text: (
Deleted Text:))
Deleted Text: -
Deleted Text: 1
Deleted Text: 2

number of neighboring neurons. Alternatively mean pooling can be

performed where the mean activation is calculated among neighbor-

ing neurons. Pooling is often used in convolutional neural networks

(LeCun et al., 2015). To make a convolutional neural network inde-

pendent of the input sequence length, global max-pooling can be

applied where only the maximally activated neuron of the input or

hidden layer is selected for each of the convolutional filters. In this

way, the number of hidden neurons generated by the convolutional

filters is equal to the number of filters and not influenced by the in-

put sequence length.

3 Example biological applications

To demonstrate the usefulness of the CNN and LSTM neural net-

work architectures for machine learning on biological data, we have

applied the framework to three important biological problems: sub-

cellular localization, protein secondary structure and peptide bind-

ing to MHC Class II (MHCII) molecules. The details of the data,

models and training and testing procedure are described in the

Supplementary Material. Note, however that not all problems are

equally suited for analyses using deep neural network methods (the

limiting factor in most cases being the amount of data available),

and that definition of optimal network architectures (guided by bio-

logical insights) and training protocols is as important for a success-

ful application as the choice of deep learning method. An in-depth

coverage of these themes is however beyond the scope of this manu-

script. However, a generally good starting architecture for machine

learning on biological sequence data has an input-to-output struc-

ture as shown in Figure 2B: Encoded seq-to-CNN-to-biLSTM-to-

Attention-to-Dense-to-Output. Dependent upon the problem at

hand, one may omit architecture elements or introduce skip connec-

tions as shown in Figure 3B. In the online material, we have included

Jupyter Notebook implementations of different models starting

from a simple dense feed forward model up to a full model including

CNN, LSTM and attention to illustrate the contribution of each

architectural element. This is discussed in more detail below.

3.1 Subcellular localization
In eukaryotes, proteins are either secreted from the cell or sorted

into numerous different cellular sub-compartments such as e.g. nu-

cleus, cytoplasm and Golgi (see Fig. 2A). For some locations, the

proteins are known to contain specific sequence motifs, where the

best understood signal is the N-terminal signal peptide in proteins

belonging to the secretory pathway. However, other subcellular

compartments are also known to contain weaker signals such as the

nuclear localization signal in nuclear proteins, membrane crossing

alpha-helices in membrane proteins or KDEL-type retention signals

for endoplasmic reticulum proteins (Lodish et al., 2016).

The task of predicting protein sorting or subcellular localization

has attracted large interest in the bioinformatics field (Emanuelsson

et al., 2007) and can be generally stated as a sequence to multi-class

prediction problem. The state of the art data driven approach for pre-

diction of subcellular location of proteins is MultiLoc (Höglund et al.,

2006), which is based on support vector machines (SVM) taking into

account N-terminal targeting regions, amino acid composition and

protein sequence motifs. The SherLoc2 method (Briesemeister et al.,

2009) combines the sequence-based MultiLoc method with text min-

ing approaches and the inclusion of Gene Ontology (GO) terms to im-

prove performance.

We have implemented four models (see online Jupyter

Notebooks) starting from a simple feed forward (FNN) dense model

up to the full model including CNN, LSTM and attention architec-

ture visualized in Figure 2B and called A-LSTM in the following.

We apply these models to a reduced version of the subcellular local-

ization dataset to illustrate the effect of hyper parameter choices and

network architecture on predictive performance and running times.

In this example, the model with the lowest performance was FFN,

with a classification accuracy fraction (Acc) of 0.757. The CNN and

CNN-LSTM models followed with an accuracy of 0.783 and 0.814,

respectively. Finally, the model with the highest accuracy was the

A-LSTM with Acc¼0.830. If we evaluate the performance for the

different prediction classes for the four models, we do not see large

differences for the classes characterized with many proteins (data

not shown). However, the A-LSTM demonstrates improved per-

formance for classes characterized with very few examples, such as

ER, Golgi apparatus, lysosome and vacuole. The main drawback of

the models using LSTM layers compare to the FFN and CNN is the

training time. On average, LSTM models take 10 to 12 s per epoch,

whereas FFN takes 0.3 s and CNN takes 2.5 s. This could be a limit-

ing factor with more data or a more complex architecture. In the re-

mainder of the section, we discuss the findings for A-LSTM trained

on the entire MultiLoc dataset.

In the subcellular localization problem, the position of the sorting

signal is often of interest to the biologists. LSTM neural networks

combined with an attention function are ideally suited to solve this

task. The model presented here is a modified and improved version of

the one presented by Sønderby et al. (2015). The architecture of our

A-LSTM neural network is visualized in Figure 2B and is based on a

convolutional layer followed by a bi-directional LSTM. Additionally,

we applied an attention function after the LSTM allowing us to assign

an importance to each position in a protein sequence with regards to

subcellular location. Here, we calculate the activations of the LSTM

memory blocks (hidden state) for each position in the protein se-

quence, and apply the attention function to determine the importance

of each hidden state (giving an indication of the importance of the

underlying position in the input sequence). Next, we calculate the at-

tention weighted sum of all hidden states that are used as input to a

dense feed forward neural network with one hidden layer and soft-

max output to obtain the final prediction of subcellular localization.

All models were trained on the same dataset as the MultiLoc method

described above.

The reasoning behind this choice of architecture is based upon

the following idealized flow of information from discriminative sub-

sequences to classification: The CNN filters deal with the issue of se-

quence alignment, and provide a learned filter-bank sensitive to

specific sequence motives. When such a motif is present somewhere

in the sequence, it will lead to an increased absolute input to the

LSTM at that position. The biLSTM layers will integrate this infor-

mation locally both forward and backward in the sequence and the

attention function uses its learned context awareness to pass the dis-

criminatory information from these RNN hidden states on to the

dense layer and then to the softmax classification.

A-LSTM achieved an accuracy of Acc¼0.914, outperforming the

MultiLoc method which had an Acc¼0.767. SherLoc2 outperformed

our models with an Acc¼0.93. However, SherLoc2 is not purely se-

quence data driven but also includes text-mining approaches, and we

hypothesize extending our A-LSTM ensemble in that way would im-

prove performance further.

In Figure 2C, we illustrate where in the sequence the A-LSTM

model assigns weight for proteins belonging to different subcellular

compartments. Sequences from the compartments ER, extracellular,

lysosomal and vacuolar have clearly marked N-terminal signal pep-

tides. Chloroplast and mitochondrial proteins also have N-terminal

3688 V.I.Jurtz et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx531#supplementary-data
Deleted Text: second
Deleted Text: econds
Deleted Text: econds
Deleted Text: ,

sorting signals. For the plasma membrane category, we observe that

some proteins have signal peptides, while the model generally

focuses on sections, presumably transmembrane helices, scattered

across the rest of the protein sequence with some overabundance

close to the C-terminus. Cytoplasmic and nuclear proteins do not

have N-terminal sorting signals, and we see that the attention is scat-

tered over a broader region of the sequences. Figure 2D gives an ex-

ample of a convolutional filter that prefers hydrophobic amino

acids.

3.2 Secondary structure prediction
After translation, proteins fold into a 3-dimensional structure,

known as the tertiary structure (Fig. 3A). Knowledge of a protein’s

structure can help to understand its function. Therefore de novo pre-

diction of protein structure from sequence is a problem of great bio-

logical interest (Dill and MacCallum, 2012). An important step in

the prediction of tertiary protein structure is the prediction of the

secondary structure, the local conformations of the peptide back-

bone. There are three main classes of secondary structure: alpha-

helix, beta-strand and coil. These can be further divided into 8

classes (Kabsch and Sander, 1983) (3 sub-classes of helix, 2 sub-

classes of strands and 3 sub-classes of coil).

Secondary structure prediction is a many-to-many problem or

sequence-tagging problem because we predict the secondary struc-

ture class for each amino acid in the protein sequence. The state of

the art sequence-based method to solve this problem is DeepCNF

(Wang et al., 2016) which is based on a combination of deep convo-

lutional neural networks and conditional neural fields.

The architecture of our neural network to predict secondary is

shown in Figure 3B and is a combination of convolutional and

LSTM neural networks (Sønderby and Winther, 2014). The atten-

tion step is omitted here because the information in input and output

to a high degree is co-located. Using either a CNN layer and/or a

skip layer makes no large difference for this application. Here, we

report the CNN plus skip results. An ensemble of neural networks

was trained on the same data as DeepCNF. The performance of our

neural network ensemble is given in Figure 3C and reaches a Q8 ac-

curacy of 0.702, thus outperforming DeepCNF.

3.3 Predicting peptides binding to MHC class II

molecules
MHC class II molecules (MHCII) are an essential part of the adap-

tive immune system and involved in the detection of extracellular

pathogens. They present peptides derived from proteins of the extra-

cellular environment to T-helper cells (see Fig. 4A). A peptide can

only be recognized by a T cell, i.e. be a T cell epitope, if it is able to

bind an MHCII

molecule expressed by the host (Roche and Furuta, 2015). When

interested in predicting an immune response to pathogens, the pre-

diction of peptides binding to MHCII molecules is an important

step, since only a small fraction of all peptides are able to bind to

MHCII molecules (Castellino et al., 1997). Peptides binding to

MHCII molecules can differ greatly in length greatly since the bind-

ing cleft of the MHCII molecules is open on both sides, allowing the

peptide to extend beyond the binding cleft. Further, the binding core

of a peptide, which has a length of approximately nine amino acids,

can be located anywhere within the peptide (Nielsen et al., 2010).

The state of the art method for predicting peptide binding to

MHCII molecules is NetMHCIIpan-3.0 (Karosiene et al., 2013),

which relies on an ensemble of feed forward neural networks trained

by an algorithm tailored to the problem (Andreatta et al., 2011;

Nielsen and Lund, 2009).

Here, we trained an ensemble of CNNs and LSTMs to predict

peptide binding to MHCII molecules. The LSTM is uni-directional

and attention is omitted because the peptide sequences are so short.

The neural network architectures are visualized in Figure 4B. All

models were trained on the dataset and dataset partitions used to de-

velop the NetMHCIIpan method. An ensemble of CNNs and

LSTMs achieved performance on par with NetMHCIIpan-3.0 on

both testing and evaluation data. Further, combining feed forward

nets trained in the NetMHCIIpan fashion with CNN and LSTM net-

works to form a consensus method significantly improved perform-

ance. Figure 4C shows the performance of the consensus method for

individual MHCII molecules in the evaluation set.

4 Discussion

The regained interest in deep neural network architectures within

machine learning fields such as image and speech recognition is only

Fig. 3. (A) Visualization of the task of secondary structure prediction based on

the protein amino acid sequence. (B) A flowchart showing the succession of

different layers in our neural network model to predict protein secondary

structure. The skip connection is implemented by concatenating the output of

the CNN layer with amino acid input. (C) Performance of our model compared

to the state of the art DeepCNF (Wang et al., 2016) method

Fig. 4. (A) MHCII molecules present peptides derived from the extracellular

environment to T-helper cells. Here we predict which peptides are able to

bind a given MHCII molecule, which is an important step on the way to iden-

tifying T-cell epitopes. (B) The CNN (left side) and LSTM (right side) architec-

tures used to predict peptide binding to MHCII molecules. (C) Performance

per MHCII allele of NetMHCIIpan-3.0, CNNþLSTM and the consensus

method (NetMHCIIpan-3.0 and CNNþ LSTM) on the evaluation set

Deep learning on biological sequence data 3689

Deleted Text: C
Deleted Text: 9
Deleted Text:
Deleted Text:

slowly spreading into biology and bioinformatics. One potential

cause of this is the lack of examples or code templates tailored to

bioinformatics problems combined with the notion that the imple-

mentation and training of deep learning methods is complicated and

computationally challenging. Here, we have aimed to help overcome

these barriers by demonstrating how simple code can easily and ef-

fectively be developed to train CNN and LSTM neural network

models to predict properties of important biological problems. We

have done this for three distinct biological problems: predictions of

subcellular localization, secondary structure and peptide binding to

MHCII molecules, and in all cases demonstrated state of the art

performance.

We have performed all model development and evaluation using

the Lasagne library. However, our findings are general and we ex-

pect comparable results could have been obtained using any of the

currently available frameworks for deep learning.

The applications we have chosen are all described by protein

data. It is however clear that the framework is equally suited to

work on any type of sequence data, for example nucleotide se-

quences (Leung et al., 2014). Others have also applied similar mod-

els to images of biological or medical relevance (Cha et al., 2016;

Moeskops et al., 2016).

Funding

This work has been supported by the the National Institute of Allergy and

Infectious Diseases, National Institutes of Health, Department of Health

and Human Services under Contracts HHSN272201200010C and Novo

Nordisk Foundation. We thank the NVIDIA Corporation for the donation

of Titan X GPUs.

Conflict of Interest: none declared.

References

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Andreatta,M. et al. (2011) NNAlign: a web-based prediction method allowing

non-expert end-user discovery of sequence motifs in quantitative peptide

data. PLoS One, 6, e26781.

Bahdanau,D. et al. (2015) Neural Machine Translation by Jointly Learning to

Align and Translate. Proceedings of International Conference on Learning

Representations (ICLR), arXiv preprint arXiv:1312.6077.

Bastien,F. et al. (2016) Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints.

Briesemeister,S. et al. (2009) SherLoc2: a high-accuracy hybrid method for pre-

dicting subcellular localization of proteins. J. Proteome Res., 8, 5363–5366.

Castellino,F. et al. (1997) Antigen presentation by MHC class II molecules: in-

variant chain function, protein trafficking, and the molecular basis of di-

verse determinant capture. Hum. Immunol., 54, 159–169.

Cha,K.H. et al. (2016) Urinary bladder segmentation in CT urography using

deep-learning convolutional neural network and level sets. Med. Phys., 43,

1882.

Ciresan,D. et al. (2011) A committee of neural networks for traffic sign classi-

fication. In: The 2011 International Joint Conference on Neural Networks.

IEEE, pp. 1918–1921.

Dieleman,S. et al. (2015) Lasagne: First release. doi: 10.5281/zenodo.27878.

Dill,K.A. and MacCallum, J.L. (2012) The protein-folding problem, 50 years

on. Science, 338, 1042–1046.

Eddy,S.R. (2004) Where did the BLOSUM62 alignment score matrix come

from? Nat. Biotechnol., 22, 1035–1036.

Emanuelsson,O. et al. (2007) Locating proteins in the cell using TargetP,

SignalP and related tools. Nat. Protoc., 2, 953–971.

Geiger,J.T. et al. (2014) Robust speech recognition using long short-term

memory recurrent neural networks for hybrid acoustic modelling. In:

Interspeech ISCA Singapore.

Glorot,X. and Bengio,Y. (2010) Understanding the difficulty of training deep

feedforward neural networks. In: Proceedings of the International

Conference on Artificial Intelligence and Statistics (AISTATS’10). Society

for Artificial Intelligence and Statistics.

Goodfellow,I. et al. (2016) Deep Learning. http://www.deeplearningbook.org.

Graves,A. (2012) Supervised Sequence Labelling with Recurrent Neural

Networks, Springer, Berlin, Heidelberg.

Hinton,G.E. et al. (2012) Improving neural networks by preventing

co-adaptation of feature detectors.

Hinton,G.E. and Salakhutdinov, R.R. (2006) Reducing the dimensionality of

data with neural networks. Science, 313, 504–507.

Höglund,A. et al. (2006) MultiLoc: prediction of protein subcellular localiza-

tion using N-terminal targeting sequences, sequence motifs and amino acid

composition. Bioinformatics, 22, 1158–1165.

Ioffe,S. and Szegedy,C. (2015) Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. Proceedings of the

32nd International Conference on Machine Learning, pp. 448–456.

Jaderberg,M. et al. (2015) Spatial Transformer Networks.

Jones,D.T. (1999) Protein secondary structure prediction based on

position-specific scoring matrices. J. Mol. Biol., 292, 195–202.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure:

pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers, 22, 2577–2637.

Karosiene,E. et al. (2013) NetMHCIIpan-3.0, a common pan-specific MHC

class II prediction method including all three human MHC class II isotypes,

HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 65, 711–724.

Kingma,D. and Ba,J. (2015) Adam: A Method for Stochastic Optimization,

Proceedings of International Conference on Learning Representations

(ICLR), arXiv preprint arXiv:1412.6980.

Krizhevsky,A. et al. (2012) ImageNet Classification with Deep Convolutional

Neural Networks. In: Pereira, F. et al. (eds) Advances in Neural Information

Processing Systems 25. Curran Associates, Inc., pp. 1097–1105.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–444.

Leung,M.K.K. et al. (2014) Deep learning of the tissue-regulated splicing

code. Bioinformatics, 30, i121–i129.

Lodish,H. et al. (2016) Molecular Cell Biology. 8th ed. W. H. Freeman,

New York.

Moeskops,P. et al. (2016) Automatic segmentation of MR brain images with a

convolutional neural network. IEEE Trans. Med. Imaging., 35, 1252–1261.

Nielsen,M. et al. (2010) MHC class II epitope predictive algorithms.

Immunology, 130, 319–328.

Nielsen,M. and Lund,O. (2009) NN-align. An artificial neural network-based

alignment algorithm for MHC class II peptide binding prediction. BMC

Bioinformatics, 10, 296.

Roche,P.A. and Furuta,K. (2015) The ins and outs of MHC class II-mediated

antigen processing and presentation. Nat. Rev. Immunol., 15, 203–216.

Schmidhuber,J. (2015) Deep learning in neural networks: An overview.

Neural Netw., 61, 85–117.

Sønderby,S.K. et al. (2015) Convolutional LSTM networks for subcellular

localization of proteins. In: Dediu, A.-H. et al. (eds) Algorithms for

Computational Biology. Springer International Publishing, New York, pp.

68–80.

Sønderby,S.K. and Winther,O. (2014) Protein Secondary Structure Prediction

with Long Short Term Memory Networks. arXiv: 1412.7828

Sutskever,I. et al. (2014) Sequence to Sequence Learning with Neural

Networks. In: Ghahramani, Z. et al. (eds) Advances in Neural Information

Processing Systems. Curran Associates, Inc., New York, pp. 3104–3112.

Wang,S. et al. (2016) Protein secondary structure prediction using deep convo-

lutional neural fields. Sci. Rep., 6, 18962.

William,L.H. (2009) Machine Learning-Encyclopedia Britannica. Encyclopædia

Britannica, Inc.

3690 V.I.Jurtz et al.

http://www.deeplearningbook.org

