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Abstract

Reasoning and change over inconsistent knowledge bases (KBs) is of utmost rel-
evance in areas like medicine and law. Argumentation may bring the possibility
to cope with both problems. Firstly, by constructing an argumentation frame-
work (AF) from the inconsistent KB, we can decide whether to accept or reject
a certain claim through the interplay among arguments and counterarguments.
Secondly, by handling dynamics of arguments of the AF, we might deal with
the dynamics of knowledge of the underlying inconsistent KB.

Dynamics of arguments has recently attracted attention and although some
approaches have been proposed, a full axiomatization within the theory of belief
revision was still missing. A revision arises when we want the argumentation
semantics to accept an argument. Argument Theory Change (ATC) encloses the
revision operators that modify the AF by analyzing dialectical trees –arguments
as nodes and attacks as edges– as the adopted argumentation semantics.

In this article, we present a simple approach to ATC based on propositional
KBs. This allows to manage change of inconsistent KBs by relying upon classi-
cal belief revision, although contrary to it, consistency restoration of the KB is
avoided. Subsequently, a set of rationality postulates adapted to argumentation
is given, and finally, the proposed model of change is related to the postulates
through the corresponding representation theorem. Though we focus on propo-
sitional logic, the results can be easily extended to more expressive formalisms
such as first-order logic and description logics, to handle evolution of ontologies.
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1. Introduction

Dealing with inconsistencies is of utmost importance in areas like medicine
and law. For instance, in law trials, two parties to a dispute present contra-
dictory information in a tribunal, standing in favor or against the dispute (in
criminal trials this is normally the presumption of innocence). The tribunal de-
cision resolves afterwards the dispute upon presented evidence. This shows the
need to consider some kind of paraconsistent semantics in order to appropriately
reason over knowledge bases (KB) containing contradictory information.

For some settings, it will be also necessary to provide services for handling
dynamics of knowledge with capabilities to tolerate inconsistencies from the KB
considered. An interesting one arises in promulgation of laws. This usually
involves a long process in which articles and principles from previous laws, and
even evidence taken from the current state of affairs, may enter in conflict with
articles composing the new law. Imagine a base containing knowledge about
the complete legal system of a nation, including the National Constitution, the
international law, and other political fundamental principles –such as the civil
and penal codes, and other minor local laws. Such KB is required to evolve in a
way that it incorporates the information conforming the new law, ensuring it to
be constitutional. To this end, it is necessary to identify a set of articles and/or
principles to be derogated, or amended, as part of the process of promulgation.

As an example, we will refer in a very brief manner to the Argentinean broad-
casting media law reformed during 2009. The previous media law, promulgated
by the latter de facto regime, empowered the government to regulate the differ-
ent media allowing total control of news. When democracy was restituted, the
regulation of media was extended to private investment groups. As years went
by, these groups took over majorities of types of media, conforming monopolies
in some cases. This brought excessive power to groups with partial interests,
allowing them to manipulate the social opinion about the actual government,
and even to condition politicians, thus striking to national sovereignty. Article
161 of the new media law became one of the most controversial points, since it
forces monopolistic enterprises to get rid of part of their assets in a maximun
period of one year. Some enterprises warned that they would be forced to sell
off their assets at very low prices. This violates article 17 of the National Con-
stitution which speaks about private property rights. Moreover, some members
of the Supreme Court think that article 161 recalls the control over the media
exercised by totalitarian regimes, which would violate article 1 of the National
Constitution. In fact, such situation could evolve to a distrust state on the
principle of legal security. These are just some of the controversial points for
which the new media law keeps being studied by the Argentinean parliament at
the time of this submission.

Belief revision studies the dynamics of knowledge, coping with the problem of
how to change the beliefs standing for the conceptualization of a modeled world,
to reflect its evolution. Revisions, as the most important change operations,
concentrate on the incorporation of new beliefs in a way that the resulting base
ends up consistent. As a simple example of a revision problem, consider the
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following: for many years it was believed that the boiling point of water was
100�. However, later research on the matter proved that this holds only at
standard pressure conditions. Moreover, it was shown that the boiling point
decreases 1� every 285 m of elevation. This new evidence forces the beliefs
to be revised in order to keep it up to date and consistent. Observe however,
that for the aforementioned case of promulgation of laws, it is mandatory to
keep most inconsistencies from the original KB to make it evolve appropriately.
This led us to investigate new approaches of belief revision which operate over
paraconsistent semantics in order to avoid consistency restoration.

Argumentation theory allows to reason over potentially inconsistent KBs.
In general, this is done by replacing the usual meaning of inference from clas-
sical logic by the notion of warrant in argumentation: the process of warrant
evaluates conflicting pieces of knowledge deciding which ones prevail despite
the existence of beliefs in opposition. The notion of warrant is also identified
as the argument’s acceptance criterion corresponding to the adopted argumen-
tation semantics. Thus, from an argumentation framework (AF), a belief α
is warranted if there is an argument supporting α which is accepted by the
adopted argumentation semantics. Among the most influential works on argu-
mentation semantics we may refer to those over graphs of arguments such as
[17, 4]. However, the semantics we adopt follows the idea of dialectical argu-
mentation [29, 13]: dialectical trees are arguments trees built from the AF with
arguments as nodes and attacks as edges. A pair of nodes connected through an
edge stands for a source of inconsistency obtained from the KB considered. The
use of dialectical trees allows to concentrate only on a specific query to build
“on demand” those arguments that are somehow related to the query. Such sort
of semantics allows to construct practical approaches avoiding the analysis of
the complete graph of arguments.

Argument Theory Change (ATC) [30] applies notions from the classical the-
ory of change, and particularly from the Alchourrón, Gärdenfors, and Makin-
son’s well known AGM model of change [1] and Hansson’s Kernel Contractions
[20], to the field of abstract argumentation [17] by relying upon dialectical trees
as the adopted argumentation semantics.1 An argument revision à la ATC re-
vises an AF by an argument seeking for its warrant. To such end, the AF –and
thus the set of arguments obtained from it– is modified in order for the argu-
mentation semantics to accept the new argument. This is the success condition
adopted by ATC approaches. In classical belief revision, a basic set of postulates
is usually specified to characterize a rational behavior of the utilized change op-
erations. Among them, success and minimal change have concentrated much
research. Success specifies the main objective of the change operation, usually,
the acceptance (inference) of the new belief to incorporate. On the other hand,
minimal change ensures as little as possible information to be modified in order
to achieve success. Consequently, for ATC approaches, different criteria of min-

1In abstract argumentation, both the logic for arguments and their inner structure are
abstracted away.
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imal change arise depending on the desired standpoint: the amount of change
can be analyzed with regards to (1) the set of arguments, (2) the dialectical tree
rooted in the revising argument, (3) the set of accepted (warranted) arguments,
or (4) any combination of them.

Among the most relevant uses of ATC, we may refer to hypothetical reason-
ing, dynamics in negotiation, persuasion, dialogues, strategies, planning, and
more. For instance, in scheduling, consider the development of an enterprise’s
task scheduler. Assume employee assignments are managed by an agent inter-
preting a KB. The central authority incorporates new tasks to the KB. An agent
uses this information to decide to which employees should the new requirements
be assigned. Argumentation could deal with such a problem since it would be
necessary to reason over inconsistency, given that conflicts will appear between
the assigned measures of relevance of the different tasks and the current avail-
ability of employees. A new task with a high level of relevance could be sent
to a specific employee for a matter of confidence, provoking the reassignment
of his previous tasks to other employees. ATC can be useful in the definition
of the re-scheduling process by recognizing which assignments enter in conflict
with the new ones for specific employees.

The main objective we pursue in this article is to provide a methodology
capable of changing potentially inconsistent propositional KBs without requiring
consistency restoration. To this end, we will rely upon an AF with a concrete
language for arguments: classical propositional logic. Afterwards, we propose
a novel approach to ATC under the name of dialectic-global model, that revises
the KB (by analyzing the AF built from it), by an argument R, which contains
a minimal set of propositional rules inferring its claim α. The outcome of this
revision is a new (potentially inconsistent) propositional KB which contains the
complete information within R. The new revised KB determines a new AF
whose argumentation semantics accepts α by rendering R undefeated from the
dialectical tree rooted in it. This is achieved by identifying a set of arguments
that should be removed from the AF to renderR undefeated. Thus, pursuing α’s
acceptance may involve not only the addition of R to the original AF, but also
the removal of other arguments from it. However, the removal of arguments from
the AF cannot be done straightforwardly, but as a consequence of the removal
of beliefs from the underlying KB from where the AF is built. This gives rise
to the criterion of minimal change adopted in this work: as little as possible
information from the KB should be modified in order to obtain the revised AF.
Observe that this criterion is the usual one used in classical belief revision, but
a new one regarding ATC, since it only arises when applying ATC to perform
change to an inconsistent KB. This is the unique minimal change criterion we
will adopt to guarantee a rational behavior of the operator proposed, and it is
the main reason by which the dialectic-global model introduced here, constitutes
the simplest and most practical approach to ATC defined so far.

It is important to mention that, unlike typical KB revision models in which
a base is revised by a sentence, in this paper we are concerned with the oper-
ation of revising a base by a giving argument. However, this can be seen as a
specialized sort of base revision in which the KB is revised by a (propositional)
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sentence α along with some (minimal and consistent) explanation set for it,
i.e., an argument in support of α. For instance, for the example given before on
the boiling point of water, one’s beliefs may need to be revised by an assertion
α : Boiling point of water on top of Mount Everest is about 69�. However, ac-
cepting such an assertion (for one knowing only that δ:Boiling point of water is
100� ) should presumably require further justification. Thus, one may provide
the set of knowledge Γ = {β, γ, δ}, where β : Mount Everest is 8,848 m high
and γ : The boiling point decreases 1� every 285 m of elevation. Clearly, the
set Γ conforms an explanation set for α. The use of explanation sets for revising
KBs has been proposed in [18], although with a quite different orientation.

On the other hand, the use of arguments may bring a better alternative to
revise a KB by a piece of information of higher level of conceptual complexity and
structuring. For instance, considering the example given before on promulgation
of laws, the dialectic-global model could revise the legal system by including an
argumentR standing for the new law to be promulgated. In this case, arguments
to be removed from the original AF would contain different articles from other
already promulgated laws. Thus, the new law is ensured to be constitutional by
proposing to derogate other laws or amend them by removing specific articles
which are part of arguments to be removed from the AF. Naturally, removals
from the base are expected to be of less importance than the one for the new
law. That is, laws to be amended should never correspond to the National
Constitution unless the promulgation of the new law is expected to reform it.
In case no minor laws arise to be amended, it is clear that the new one, R
cannot be included as it is and thus, it necessarily needs to be modified to be
accepted by the legal system.

In addition to the model of KB revision we also provide the definition of an
AF revision, a second operation based on the same intuitive foundations and
functional components that define the argument revision. The AF revision op-
eration revises a given propositional AF by an argument in order to obtain a
new AF warranting the new argument. Afterwards, some properties are studied
with the intention to interrelate both revision operations. Since the main ob-
jective of this article is the proposal of the argument revision (for KB revision),
in this article we do not provide the full axiomatization of the AF revision op-
eration. Nevertheless, we do provide an analysis of the AF revision in terms of
the postulates studied for the argument revision. The objective of the proposal
of the AF revision is to give a first standpoint on the revision of propositional
AFs (disregarding the existence of an underlying KB) in accordance to ATC.

This article is organized as follows: Section 2 briefly introduces the AF upon
which we rely to define the dialectic-global model in Section 3. Section 4 intro-
duces a basic set of argumentation postulates which serve to rationalize after-
wards the proposed argumentation model of change through the corresponding
representation theorem. Section 5 introduces the AF revision operation ana-
lyzing its rationality according to the results exposed in Section 4. Section 6
discusses related work and Section 7 points out the concluding remarks. Proofs
and additional theoretical elements are provided in the Appendix.
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2. Argumentation Overview

Intuitively, an argument may be seen as a set of interrelated pieces of knowl-
edge providing support to a claim. We rely on a structure 〈body, claim〉 to
represent arguments, where the body is a consistent and minimal set of beliefs
inferring the claim. The symbol |= will be written to identify the semantic en-
tailment used to obtain inferences from knowledge inside a language L. In this
work, L will be assumed to identify the classical propositional logic. Arguments
will be identified through caligraphic letters A,B, C,D, and R; where R will in
general stand for the root argument.

Definition 2.1 (Argument). An argument B is a structure 〈∆, β〉, where
∆ ⊆ L is the body, β ∈ L the claim, and it holds (1) ∆ |= β, (2) ∆ 6|= ⊥, and
(3) ∄X ⊂ ∆ : X |= β. We say that B supports β.

The idea we follow from argumentation theory is to give support to queries
presented to a (potentially inconsistent) KB through the claim of arguments,
and therefore the information inside those arguments might be interpreted as a
justification for such queries. Hence, we assume the knowledge within the body
of arguments to be included in a propositional KB Σ ⊆ L. For more details on
argumentation based on propositional logic refer to [7].

Observe that claims conform to L since they are not necessarily contained
in Σ but implied by Σ. The domain of arguments from Σ is identified through
the set AΣ. Given a query α ∈ L, an argument B ∈ AΣ is a query supporter if
B supports α. For instance, assuming {p, p → q} ⊆ Σ, the primitive arguments
〈{p}, p〉 and 〈{p → q}, p → q〉, and more complex arguments like 〈{p, p → q}, q〉
and 〈{p → q},¬p ∨ q〉, appear (among others) within AΣ. By means of bd :
AΣ−→2L and cl : AΣ−→L, the body bd(B) and claim cl(B) of an argument
B ∈ AΣ are identified. Like logically equivalent L-formulae, arguments from AΣ

can be also associated through an equivalence relation: two arguments R1 ∈ AΣ

and R2 ∈ AΣ are said to be equivalent, written R1 ≡ R2, when (1) cl(R1) is
logically equivalent to cl(R2), and (2) bd(R1) is logically equivalent to bd(R2).

A counterargument is an argument whose claim poses a justification to dis-
believe in another argument. Counterarguments bring about sources of KB-
inconsistency determined by their bodies: considering two arguments B1 and
B2, argument B2 counterargues B1 iff {cl(B2)}∪ bd(B1) |= ⊥. In this case, B1

and B2 are referred as a conflictive pair. Attacks (or defeats) between arguments
from AΣ are finally adjudicated from conflictive pairs B1 and B2: B2 defeats B1

iff B2 counterargues B1. Argument B2 is said a defeater of B1 (or B1 is de-
feated by B2), noted as B2 →֒B1. Infinite defeaters (common bodies and logically
equivalent claims) of an argument may appear. Thus, we will point to a special
counterargument as representative of all defeaters of an argument, named canon-
ical undercut [7]: B2 is a canonical undercut of B1 iff bd(B1) = {β1, . . . , βn}
and cl(B2) = ¬(β1 ∧ . . . ∧ βn), or equivalently cl(B2) = ¬(

∧

bd(B1)).

Example 1. Assume a KB Σ ⊆ L and a query p. R = 〈{q, (q → p)}, p〉 is a p-
supporter and B1 = 〈{p1, (p1 → p2), (¬p2 ∨ p3), (p3 → ¬p)},¬(q ∧ (q → p))〉 is a
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canonical undercut of R given that cl(B1) = ¬(
∧

bd(R)). (Observe that, bd(B1)
infers ¬cl(R) (i.e., ¬p), and then we can ensure that bd(B1) infers ¬(

∧

bd(R).)
The complete KB Σ and the rest of the arguments built from it that we will
consider are:

Σ =







































q, p1, q1, q2, ¬q3, ¬p4,

(q → p), (p1 → p2),

(¬p2 ∨ p3), (p3 → ¬p),

(q1 → ¬p3), (q2 → ¬q),

(q2 → ¬p2), (¬p2 → p4),

(¬p2 ∨ q3)







































B2 = 〈{q1, (q1 → ¬p3)},¬(
∧

bd(B1))〉,
B3 = 〈{q2, (q2 → ¬q)},¬(

∧

bd(R))〉,
B4 = 〈{(q2 → ¬p2), (¬p2 → p4),¬p4},

¬(
∧

bd(B3))〉,
B5 = 〈{(¬p2 ∨ q3),¬q3},¬(

∧

bd(B4))〉, and
B6 = 〈{(¬p2 ∨ q3),¬q3},¬(

∧

bd(B1))〉.

Every argument given (except for R) is a canonical undercut, but the list is
not exhaustive. Moreover, arguments with the same body can defeat different
arguments depending on their claims, as is the case of B5 and B6. The set of
attacks obtained is: B1 →֒R, B2 →֒B1, B3 →֒R, B4 →֒B3, B5 →֒B4, and B6 →֒B1.

The reasoning methodology is based on the acceptability of some query sup-
porter obtained from AΣ. To this end, the notion of argumentation line [14]
identifies a repeated interchange of arguments and counterarguments. An ar-
gumentation line λ is a non-empty sequence [B1 . . . ,Bn] of arguments from AΣ,
where Bi →֒Bi−1 (1 < i ≤ n). Argument B1 is identified as λ’s root, and Bn,
as λ’s leaf. An argumentation line could be seen as two parties engaged in a
discussion: one standing by the root argument and the other arguing against it.
Consequently, given a line λ, we identify the set of pro (resp., con) arguments
containing all arguments placed on odd (resp., even) positions in λ, noted as
λ+ (resp., λ−). We abuse notation writing B ∈ λ to identify B from λ.

Acceptability conditions are used to build lines free of fallacies, namely ac-
ceptable argumentation lines : (1) the defeated part of an argument cannot ap-
pear twice in the same line, and (2) the set of pro (resp., con) arguments in
a line has no conflicting pairs. For instance, in Example 1, B7 = 〈{p1, (p1 →
p2), (¬p2 ∨ p3)},¬(q1 ∧ (q1 → ¬p3))〉 cannot defeat B2 since it would determine
a cyclic line, violating condition 1). This is so, given that B7’s body was al-
ready defeated by B2 in the line [R,B1,B2] (note that bd(B7) ⊆ bd(B1)). For
details on acceptability conditions, refer to [19]. In addition, canonical lines
are acceptable lines built with a root argument and a sequence of canonical
undercuts. We define the set LΣ identifying the domain of all acceptable and
canonical lines built with arguments from AΣ. Furthermore, an acceptable line
is exhaustive if it cannot be extended with any defeater of its leaf without com-
promising its status of acceptability. Hence, we refer to the subset LΣ ⊆ LΣ
containing only acceptable, canonical, and exhaustive lines. An initial sequence
of arguments in a line λ = [B1, . . . ,Bn] is identified through its upper segment
λ↑[Bi] = [B1, . . . ,Bi], with 1 ≤ i ≤ n. Besides, the proper upper segment of λ
wrt. Bi (i 6= 1) is defined as λ↑(Bi) = [B1, . . . ,Bi−1]. We refer as “upper seg-
ments” to both proper and non-proper ones and will be distinguishable through
the notation (round or square brackets respectively). Note that any upper seg-
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ment of a line constitutes a (possibly non-exhaustive) line by itself, i.e., for any
λ ∈ LΣ and any B ∈ λ, λ↑[B] ∈ LΣ.

A dialectical tree allows to determine whether its root node is to be ac-
cepted or rejected as a rationally justified belief. Such tree is built from a set
of argumentation lines rooted in a common argument.

Definition 2.2 (Dialectical Tree). Given Σ ⊆ L, a dialectical tree T (R)
rooted in an argument R ∈ AΣ is determined by a set X ⊆ LΣ of lines rooted in
R such that an argument C in T (R) is: (1) a node iff C ∈ λ, for any λ ∈ X;
(2) a child of a node B in T (R) iff C ∈ λ, B ∈ λ′, for any {λ, λ′} ⊆ X, and
λ′↑[B] = λ↑(C). The leaves in T (R) are the leaves of each line in X. The set
TΣ identifies the domain of dialectical trees built with lines from LΣ.

Example 2 (Continued from Example 1).
Given the set X ⊆ LΣ of argumentation lines rooted in R

determining the tree T (R) ∈ TΣ (depicted on the right) such
that X = {λ1, λ2, λ3}, where λ1 = [R,B1,B6], λ2 = [R,B1,B2],
and λ3 = [R,B3,B4,B5], are three acceptable canonical lines.
(Arguments taken from Example 1.) Observe that argument B2

is a child of B1 in T (R) given that λ↑
1[B1] = [R,B1] = λ↑

2(B2)
(see Definition 2.2).

Due to canonical lines, a set X ⊆ LΣ of lines rooted in a common argument
is finite, and so is any tree built from X . However, the acceptability condition
of dialectical trees also requires lines to be exhaustive. The bundle set for R
is the set S(R) ⊆ LΣ containing all the acceptable, canonical, and exhaustive
lines from LΣ rooted in R. We say that a dialectical tree T (R) is acceptable if
and only if T (R) is built from a set X ⊆ LΣ (according to Definition 2.2) such
that X = S(R). We identify the domain of all acceptable dialectical trees from
Σ as TΣ ⊆ TΣ. Note that given R ∈ AΣ, the bundle set S(R) is unique, and so
is its corresponding acceptable dialectical tree T (R) ∈ TΣ.

Observation 2.3. T (R) ∈ TΣ is the unique dialectical tree in TΣ rooted in R.

We will slightly abuse notation writing λ ∈ T (R) to identify from any di-
alectical tree T (R) ∈ TΣ a complete line λ, where λ’s root is T (R)’s root and
λ’s leaf is a leaf in T (R). Functions over lines and trees will be generalized
(when necessary) by defining them over LΣ and TΣ. This is done disregarding
their general usage over the domains LΣ ⊆ LΣ and TΣ ⊆ TΣ.

Given a KB Σ ⊆ L, a query supporter R ∈ AΣ is finally accepted (war-
ranted) by the argumentation semantics, by analizing the tree T (R) ∈ TΣ.
This evaluation is obtained by weighting all the information in the tree through
the marking function mark : AΣ × LΣ × TΣ−→M, which defines an accep-
tance criterion by assigning to each argument in T (R) a marking value from
the domain M = {D,U}, where D/U means defeated/undefeated. The mark
of an inner node in the tree is obtained from those of its children (i.e., its
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defeaters) by following some specific marking criterion. We adopt a skep-
tical marking criterion defined as: (1) all leaves are marked U and (2) ev-
ery inner node B is marked U iff every child of B is marked D, otherwise,
B is marked D. This marking is used to implement the DELP (Defeasible
Logic Programming) argumentative machinery [19].2 The warranting func-
tion warrant : TΣ−→{true, false} determines the root’s acceptance verifying
warrant(T (R)) = true iff mark(R, λ, T (R)) = U . Hence, R is warranted from
T (R) iff warrant(T (R)) = true. In such a case, T (R) is referred as warrant-
ing tree. These notions are graphically represented with arguments painted in
grey/white standing for D/U marks. For instance, in Example 2, R is defeated
and thus T (R) is non-warranting.

The following theorem shows that dialectical trees determine a conflict-free
set of warranted arguments. This implies that the adopted argumentation se-
mantics is consistent regarding the claims of warranted arguments. This prop-
erty is developed in detail in Appendix A.

Theorem 2.4. Given Σ ⊆ L, for any pair of arguments R ∈ AΣ and R′ ∈ AΣ,
if both R and R′ are warranted then they are not conflicting.

3. A Dialectic-global Approach to ATC

As already mentioned, ATC defines a revision operator that revises an AF
by an argument, making the necessary modifications to warrant that argument
by analyzing the dialectical tree rooted in it. The core of the change machinery
involves the alteration of some lines in such dialectical tree when it happens to
be non-warranting. Therefore, the objective of altering lines is to change the
morphology of the tree containing them in order to turn it to warranting. In this
article, alteration of lines comes by removing arguments from the AF. However,
arguments cannot be simply removed from AΣ. Instead, they disappear as
a result of removing beliefs from the KB Σ from which arguments are built.
The argumentation lines from a tree to be altered by ATC are identified as
attacking [31]: lines which are somehow responsible for a non-warranting tree.

Definition 3.1 (Attacking Line). A line λ ∈ T (R), with T (R) ∈ TΣ, is
attacking iff for every B ∈ λ it holds:

mark(B, λ, T (R)) =

{

D if B ∈ λ+ or

U if B ∈ λ−

For instance in Example 2, λ3 is attacking. When an altered line turns to
non-attacking, the alteration is called effective. Finally, effectively altering each
attacking line from a tree allows to obtain a new tree –from the revised KB–
warranting its root argument.

2Refer to [31] for details on this and other marking criteria.
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Theorem 3.2. Given the dialectical tree T (R) ∈ TΣ, there is no attacking line
λ ∈ T (R) iff T (R) is a warranting tree.

The alteration of a line λ involves the removal of some argument B ∈ λ,
which prunes the subtree rooted in B out of the dialectical tree, leaving the
upper segment λ↑(B). Only cutting a con argument B ∈ λ− off the line provokes
an effective alteration.

Proposition 3.3. If λ ∈ T (R) is attacking then for any B ∈ λ−, the upper
segment λ↑(B) turns into non-attacking.

In classical belief base revision, a revision operator “∗” is expected to add to
the KB Σ a given belief α ensuring it to be consistently inferred from the revised
KB Σ∗α. Analogously, in argumentation, a revision operator “∗ω” should aim at
incorporating a new argument R (possibly out of the domain AΣ) supporting α,
ensuring it to be accepted by the argumentation semantics from the revised KB,
i.e., R should end up warranted from Σ∗ωR. This is seen later as the success
condition. For this matter, we rely upon the notion of external argument which
is an argument B ∈ AΣ′ such that Σ′ = Σ ∪ bd(B) and B /∈ AΣ. The domain
of external arguments is identified through the set EΣ, moreover we refer to
the set AL to identify the full domain of L-arguments, that is, arguments from
AΣ ∪ EΣ. Thus, we construct an argument revision operation which includes
to the given KB Σ ⊆ L the body of the argument R ∈ AL (included either in
AΣ or EΣ). Afterwards, the acceptable tree T (R) ∈ T(Σ∪bd(R)) is altered by
removing beliefs from Σ. This determines a revised KB Σ∗ωR from which the
tree T ′(R) ∈ T(Σ∗ωR) ends up warranting.

An incision function [20] constructed “globally” to the dialectical tree de-
fines a global incision (Definition 3.5) which determines a set of beliefs to be
removed from Σ. These removals allow to drop arguments from the tree in order
to effectively alter all the necessary lines at once. However, other arguments
containing beliefs to be removed will also disappear. Hence, a line consider-
ing some of those disappearing arguments will be collaterally altered by some
collateral incision. Removing a con argument from an attacking line results in
a non-attacking uppersegment (see Proposition 3.3). Nonetheless, deleting a
pro argument in an argumentation line might lead to a flaw: while attacking
lines keep their attacking condition, non-attacking lines might turn to attacking.
Hence, the revision process should overcome such involuntary alterations by al-
tering not only attacking lines, but also other lines that may turn to attacking
from collateral incisions.

Given T (R) ∈ TΣ, we need to effectively alter it to obtain a warranting
tree. However, since collateral incisions may appear, it makes it difficult to
decide which subset of lines from S(R) should be affected beyond attacking
lines. Hence, the configuration of the global incision will rely on the analysis
of hypothetical trees. These trees are deemed as hypothetical since they would
appear as acceptable dialectical trees only after removing some beliefs from Σ.
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Definition 3.4 (Hypothetical Tree). Given T (R) ∈ TΣ and a subset Ψ ⊆
Σ, the hypothetical tree H(R,Ψ) ∈ TΣ is the (possibly non-acceptable) tree
rooted in R built from the set X1 ∪X2 of lines:

X1 = {λ ∈ T (R) | ∀B ∈ λ : Ψ ∩ bd(B) = ∅}

X2 = {λ↑(B) | λ ∈ T (R) such that (∃B ∈ λ : Ψ ∩ bd(B) 6= ∅)

and (∀B′ ∈ λ↑(B) : Ψ ∩ bd(B′) = ∅)}

Example 3 (Continued from Example 2). With the intention to alter λ3,
B5 may be removed from T (R) by removing ¬q3 from Σ. Nonethe-
less, B5 and B6 are removed since both contain ¬q3. The set
{λ↑

1(B6), λ2, λ
↑
3(B5)} resulting from Definition 3.4, is used for building

the hypothetical tree H(R, {¬q3}) depicted on the right. Note how-
ever, that λ↑

1(B6) /∈ H(R, {¬q3}) since λ↑
1(B6) = [R,B1] which is part

of λ2 = [R,B1,B2].

The usage of hypothetical trees allows to analyze how the incisions would
affect the original tree, recognizing new attacking lines that could arise from
collateral incisions. Consequently, the global incision will progressively include
beliefs in order to effectively alter not only attacking lines, but also other lines
that could turn to attacking by looking into hypothetical trees.

Definition 3.5 (Global Incision). Given the tree T (R) ∈ TΣ, a function σ :
TΣ−→2L is a global incision iff it holds:

1. σ(T (R)) = ∅ iff T (R) has no attacking line.

2. For any λ ∈ T (R), if any of the following are verified,

(a) λ is attacking, or
(b) there exists C ∈ λ such that ∅ 6= σ(T (R)) ∩ bd(C) = Ψ, and λ↑(C) is

an attacking line in H(R,Ψ),

then there is B ∈ λ− such that σ(T (R)) ∩ bd(B) 6= ∅ and for any other
B′ ∈ λ↑(B) it holds σ(T (R)) ∩ bd(B′) = ∅.

3. For any β ∈ σ(T (R)), there is some λ ∈ T (R) verifying either 2a or 2b,
and β ∈ bd(B), for some B ∈ λ.

As stated before, the incision must provide a set of beliefs to remove from the
KB in order to turn a non-warranting tree T (R) into warranting. Condition 1
in Definition 3.5 ensures the incision to be empty only in the case that T (R)
warrants its rootR. This comes from Theorem 3.2, which relates the appearance
of attacking lines to the non-warranting condition of a tree. Consequently, every
attacking line should be altered (cond. 2a), as well as any collaterally incised
line which could be turned to attacking (cond. 2b). This latter condition is
checked upon hypothetical trees. From Proposition 3.3, we know that any upper
segment λ↑(B) is not attacking if it is the case that B ∈ λ−. Therefore, the
consequent of cond. 2 ensures the incision to contain (at least) one belief from
bd(B) in order to effectively alter λ (turning it to non-attacking). Besides, the
alteration of λ from such B is required to be the uppermost alteration, i.e., no
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other argument B′ placed above B in λ should be affected by the incision since
this could compromise the attacking status of the line. Cond. 3 requires the
incision to take beliefs only from arguments in lines that necessarily need to be
altered (by either verifying 2a or 2b).

Notice that the global incision function is not always unique as can be seen in
Example 5. On the other hand, there always exists, at least, one global incision
function as is shown next.

Proposition 3.6. Given the dialectical tree T (R) ∈ TΣ, there is always a global
incision function σ(T (R)) ⊆ L.

Example 4.
Given T (R) depicted on the right, assume β ∈ (bd(C3) ∩ bd(C5)).

Suppose σ(T (R)) takes beliefs from C3, and in particular β ∈
σ(T (R)). In such a case, σ(T (R)) could not consider beliefs from
C6 since it would not be the uppermost incision in λ2 (C5 is over C6

and C5 is collateraly incised, i.e., σ(T (R)) ∩ bd(C5) 6= ∅). There-
fore, in order to alter λ2, σ(T (R)) might also consider beliefs from
C4 (since it is the only alternative in λ2).

By removing the set of beliefs mapped by a global incision over T (R), we
obtain a KB determining a tree rooted in R free of attacking lines, and thus,
from Theorem 3.2, R ends up warranted. Next we define the argument revision
upon the global incision function, allowing to revise an L-KB by an argument
from AL.

Definition 3.7 (Argument Revision). Given Σ ⊆ L and R ∈ AL, an oper-
ator ∗ω is an argument revision iff the operation Σ∗ωR is:

Σ∗ωR = (Σ ∪ bd(R)) \ σ(T (R)), where T (R) ∈ T(Σ∪bd(R))

When necessary we will write Σ∗ωσR to specify that the revision Σ∗ωR is
obtained by effect of a specific global incision function σ.

Example 5. As seen in Example 3, if we assume σ(T (R)) = {¬q3}, Defini-
tion 3.5 would be verified. Hence, the hypothetical tree depicted in Example 3
ends up being the resulting altered tree from T(Σ∗ωR) which warrants the root

argument R. Note that the incision could also be σ(T (R)) = {¬p2 ∨ q3} with
the same resulting altered tree, depicted in Example 3.

A different alternative would be to assume another incision func-
tion such that σ(T (R)) = {q2}. In this case, argument B3 would
be removed. The resulting altered tree (depicted on the right) from
T(Σ∗ωR) warrants R. Note that the incision could also be σ(T (R)) =

{q2 → ¬q} with the same resulting altered tree.

Lemma 3.8. Given Σ ⊆ L, if ∗ω is an argument revision then T (R) ∈ T(Σ∗ωR)

has no attacking lines, for any R ∈ AL.

12



4. Rationality Analysis

Revisions and contractions are usually defined independently with the in-
tention to interrelate them afterwards by setting up a duality. A philosophic
discussion is sustained on the matter of the nature of such independency. Some
researchers assert that there is really no contraction whose existence could be
justified without a revision. In fact, they state that a contraction conforms an
intermediate state towards the full specification of the revision. This is the case
of the ATC revision model. As a consequence, the axiomatization of the revi-
sion presented here was achieved by analyzing the different characters of both
revision and contraction operations from the classical belief revision literature
[1, 20, 21, 22]. The postulates discussed there are studied as a motivation to pro-
pose a basic set of postulates for base revision in argumentation, composed by
the argumentation postulates of success, consistency, inclusion, vacuity, core-
retainment, and uniformity. Next we introduce them one by one, analyzing
their corresponding intuitions. For such matter, we assume revision operators
from classical belief revision “∗” and argumentation “∗ω”, an L-KB Σ, a belief
α ∈ L, and an argument R ∈ AL such that cl(R) = α, pursuing to characterize
the operation Σ∗ωR by analyzing Σ ∗ α.

Success states that the new information α should be satisfied by the revised
KB. This is usually written as Σ ∗α implies α. From the argumentation stand-
point, it may be interpreted as the requirement of warranting the new argument
R which in turn supports α (its claim).

(success) R is warranted from Σ∗ωR

Through consistency, a classical revision operation ensures the revised base to
be consistent always that the new belief to be incorporated is so. That is, Σ ∗α
is consistent if α is consistent. Argumentation theory gives the opportunity to
reason consistently over a potentially inconsistent KB. Hence, there is no need
to restore consistency to the revised KB, indeed this is our main objective: to
manage dynamics of knowledge over inconsistencies. In turn, consistency in
argumentation refers to the adopted semantics, i.e., it should only ensure the
set of warranted arguments to end up free of conflict.

(consistency) For any {B, C} ⊆ A(Σ∗ωR), if B and C are warranted from
Σ∗ωR then B and C are not conflicting.

Consistency is not needed for the representation theorem given that the models
of change in ATC are dependent on the marking criterion which leads to a con-
sistent argumentation semantics (see Appendix). Hence, any model of change
proposed over such skeptical criterion is ensured to guarantee consistency.

Inclusion aims at guaranteeing that no other new information beyond α will
be incorporated. That is, Σ ∗ α ⊆ Σ ∪ α. Its restatement to argumentation is
given by including no more than R’s body.

(inclusion) Σ∗ωR ⊆ Σ ∪ bd(R)
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Inclusion only refers to beliefs in the KB. From the standpoint of the set of
arguments the relation is quite different: new information is added to the KB
with the intention to build R, but in consequence other arguments may appear:
A(Σ∗ωR) 6⊆ AΣ ∪ {R}.

Vacuity captures the conditions under which the revision operation has noth-
ing to do but the sole incorporation of the new information α. This is usually
written as If Σ does not imply ¬α then Σ ∪ α ⊆ Σ ∗ α. Its restatement to
argumentation may be seen as the fact of R being warranted straightforwardly,
with no need to remove any belief. Hence, only the addition of R is required to
obtain a warranting tree rooted in it.

(vacuity) If R is warranted from Σ ∪ bd(R) then Σ ∪ bd(R) ⊆ Σ∗ωR

Through core-retainment [22], the amount of change is controled by avoiding
removals that are not related to the revision, i.e., every belief that is lost serves
to make room for α. This can be written as If β ∈ Σ\(Σ∗α), then there is some
Σ′ ⊆ Σ such that Σ′∪{α} is consistent but Σ′∪{α, β} is not. In argumentation,
we care not on consistency, but on the warrant condition ofR. Hence, any belief
β that is removed should be needed to achieve an effective alteration.

(core-retainment) If β ∈ Σ \ (Σ∗ωR) then there is some Σ′ ⊆ Σ such that
R is warranted from Σ′ ∪ bd(R) but not from Σ′ ∪ bd(R) ∪ {β}

As usual in belief revision, it is natural to assume that revisions applied to
Σ by either of α or β (logically equivalent L-formulae) have necessarily identical
outcomes. For instance, Σ ∗ (¬p ∨ q) should be equal to Σ ∗ (p → q). This is
captured by the extensionality postulate: If α iff β then Σ∗α = Σ∗β. However,
extensionality allows the following revisions: (1) {r, r → p} ∗ ¬p = {r → p,¬p}
and (2) {r, r → p} ∗ ¬(p ∨ q) = {r,¬(p ∨ q)}. Although ¬p and ¬(p ∨ q) are not
logically equivalent, they are “equivalent” by considering that their complements
are equally implied by {r, r → p} and its subsets (see [21]). The choice of which
elements of the KB to retain should depend on their logical relations to the
new information. Therefore, if two sentences are inconsistent with the same
subsets of Σ, they should push out the same elements from Σ. This is known
as uniformity: For all Σ′ ⊆ Σ, if Σ′ ∪ {α} is inconsistent iff Σ′ ∪ {β} is
inconsistent, then Σ∩ (Σ ∗ α) = Σ ∩ (Σ ∗ β). Uniformity is used for belief bases
as a stricter version of extensionality, i.e., it implies extensionality, but is not
implied by it.

The question now is how can this be adapted to deal with the argumentation
theory. To that end, we need to specify some relation τ ⊆ AL×AL between pairs
of arguments R1 ∈ AL and R2 ∈ AL such that if τ(R1,R2) then two equiva-
lent revised KBs Σ∗ωR1 and Σ∗ωR2 arise. Since the argumentation model of
change that we study is based on the analysis of dialectical trees, we need to
ensure that the addition of either of such arguments determines dialectical trees
T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2)), such that T (R1) is warranting
iff T (R2) is warranting. For that matter, both trees should be morphologically
identical : two trees rooted in R1 and R2 such that either none of both have
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defeaters, or R1 has children (direct root defeaters) {B1, . . . ,Bn}, and R2 has
children {C1, . . . , Cm} such that (1) n = m; and (2) for every 1 ≤ i ≤ n, the
subtrees rooted in Bi and Ci are morphologically identical trees. Afterwards,
the alteration of any of both trees should end up equivalently in order for both
revisions to behave in the same manner. That is, the same beliefs should be
dropped from Σ by any of both revisions. In order to pursue equivalent alter-
ations of morphologically identical trees, we also need to ensure that for any
pair of lines λ1 ∈ T (R1) and λ2 ∈ T (R2), such that λ1 = [R1,B1, . . . ,Bn] and
λ2 = [R2, C1, . . . , Cn], if τ(R1,R2) then τ(Bi, Ci) holds for any 1 ≤ i ≤ n. For
instance, considering “τ” as the equality “=” between arguments would require
the same root argument for both trees, thus determining a unique acceptable
tree. On the other hand, considering “τ” as the equivalence “≡” seems to be too
permissive since their respective trees may not end up morphologically identical.

Example 6. Given a KB Σ = {q → ¬r, q → r}, and two external arguments
R1 ∈ EΣ and R2 ∈ EΣ, such that R1 ≡ R2, where R1 = 〈{q, r, (r ∧ q →
p)}, p∧q∧r〉, and R2 = 〈{r, (r → p∧q)}, p∧q∧r〉. Arguments B1 ∈ A(Σ∪bd(R1))

and B2 ∈ A(Σ∪bd(R2)) are equivalent (B1 ≡ B2) with identical bodies {q →
¬r}. Besides, B1 and B2 are canonical undercuts of R1 and R2, respectively.
However, argument C1 ∈ A(Σ∪bd(R1)), such that C1 = 〈{q, q → r},¬(q → ¬r)〉,
is a canonical undercut of B1, but has no equivalent canonical undercut of B2

in A(Σ∪bd(R2)).

Considering equivalent root arguments, it is clear that we cannot always ob-
tain morphologically identical trees. To this end, we strengthen the equivalence
relation “≡” between arguments, and define a strict equivalence “⊣” standing
for the relation “τ”.

Definition 4.1 (Strictly Equivalent Arguments). ArgumentsR1 ∈ AL and
R2 ∈ AL are strictly equivalent, written R1⊣R2 iff R1 ≡ R2 and for any
subset Ψ1 ⊆ bd(R1) there is a subset Ψ2 ⊆ bd(R2) such that Ψ1 iff Ψ2.

Example 7. Given a KB Σ = {q → ¬r}, and two external arguments R1 ∈ EΣ

and R2 ∈ EΣ, such that R1⊣R2, where R1 = 〈{q, (q → p), (q → r)}, p∧q∧r〉,
and R2 = 〈{q, (¬q ∨ p), (¬q ∨ r)}, p ∧ q ∧ r〉. Argument B1 = 〈{q → ¬r},¬(q ∧
(q → p) ∧ (q → r))〉 ∈ A(Σ∪bd(R1)) is a new canonical undercut of R1, and
B2 = 〈{q → ¬r},¬(q ∧ (¬q ∨ p) ∧ (¬q ∨ r))〉 ∈ A(Σ∪bd(R2)), of R2. Observe
that B1⊣B2 holds, and moreover, such condition also holds for the canonical
undercuts of B1 and B2 with bodies {q, q → r} and {q,¬q ∨ r}, respectively.

Given any pair of external arguments R1 and R2, if they are strictly equiva-
lent, their dialectical trees T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2)) would
end up being not only morphologically identical, but also strictly equivalent.

Definition 4.2 (Strictly Equivalent Lines and Trees). Two argumentation
lines λ1 ∈ LΣ and λ2 ∈ LΣ′ , where λ1 = [B1 . . . ,Bn] and λ2 = [C1 . . . , Cn],
are strictly equivalent iff Bi⊣Ci for 1 ≤ i ≤ n. Two dialectical trees
T (B1) ∈ TΣ and T (C1) ∈ TΣ′ are strictly equivalent iff for any λ ∈ T (B1)
(resp., λ ∈ T (C1)) there is a strictly equivalent λ′ ∈ T (C1) (resp., λ

′ ∈ T (B1)).
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Lemma 4.3. Given a KB Σ ⊆ L, two external arguments R1 ∈ EΣ and R2 ∈
EΣ, and their dialectical trees T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2));
if R1⊣R2 then T (R1) and T (R2) are strictly equivalent trees.

A KB to be revised by an argument R will possibly need to give up some
knowledge. However, the beliefs included in R should not be compromised. This
is necessary to ensure R to belong to the resulting set of arguments A(Σ∗ωR),
and also to allow R to end up warranted. Therefore, only old knowledge is
to be affected. While considering to revise Σ by any of two (or more) strictly
equivalent external arguments, the sets of beliefs to remove from Σ will end
up being identical given that, from Lemma 4.3, both (or all) trees are strictly
equivalent, and that no new information is allowed to be affected. Uniformity
is finally restated to argumentation as follows:

(uniformity) If R1⊣R2 then Σ ∩ Σ∗ωR1 = Σ ∩ Σ∗ωR2

The construction of an argument revision is required to alter in the same
manner different strictly equivalent dialectical trees. To this matter, we intro-
duce an additional condition on incision functions to guarantee this property.
Intuitions followed here are inspired by those of smooth incisions in Hansson’s
Smooth Kernel Contractions [20].

Definition 4.4 (Smooth Argument Incision). An incision σ is smooth iff
for any L-KB Σ, and any {R1,R2} ⊆ EΣ; if R1⊣R2 then for any B1 ∈
A(Σ∪bd(R1)) there exists B2 ∈ A(Σ∪bd(R2)) such that B1⊣B2 and σ(T (R1)) ∩
bd(B1) = σ(T (R2)) ∩ bd(B2).

Proposition 4.5. Given a KB Σ ⊆ L, and two arguments R1 ∈ EΣ and R2 ∈
EΣ such that R1⊣R2, there always exists an argument incision function σ
which is smooth.

An argument revision will be referred as smooth if and only if it is defined
by means of a smooth argument incision. Next we present the representation
theorem for the dialectic-global model. We claim that, though in classical belief
revision, guaranteeing success, inclusion, and core-retainment implies vacuity,
in argumentation this is not possible due to the non-monotonicity nature of the
argumentation semantics.

Representation Theorem 4.6. Given Σ ⊆ L and R ∈ AL, Σ∗
ωR is a smooth

argument revision iff it guarantees success, inclusion, vacuity, core-retainment,
and uniformity.

5. AF Revision Operation

In this section we will propose a revision operator for a propositional argu-
mentation framework or AF, by relying upon an incision function according to
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Definition 3.5. The new AF revision operator “⊛ω”, determines a revision of an
AF φ by an argument R in order to obtain a new AF (φ⊛ωR) warranting R.

Usually, an AF is given through a pair (set of arguments)–(attack relation).
However, since we are working with propositional AFs, the attack relation can
be obtained as a result of an inference process. Thus, an AF for us will identify
only a subset of AL, containing (propositional) L-arguments (recall that AL was
defined on page 10 as the set of all arguments over L). This means that, for an
AF φ which is obtained from an underlying KB Σ ⊆ L, it is easy to see that
φ = AΣ holds.

We will assume the existence of a specialized closure condition for propo-
sitional AFs in order to obtain a correct propositional AF. For instance, the
propositional AF φ = {B}, where bd(B) = {α, β} would not be correct given
that α ∈ L and β ∈ L, and therefore, the primitive arguments for each of them,
i.e., 〈{α}, α〉 and 〈{β}, β〉, should also be included in the AF. Observe that a
propositional AF will be in general infinite, if we admit arguments with claims
of unrestricted propositional patterns (mostly because of the consideration of
disjunctions). This matters can be treated with the aid of some of the elements
proposed in [7] such as canonical undercuts and so; and exceeds the scope of
this article. We will not step further into such subject.

In accordance to the aforementioned, it is clear that the formulation of a
pure AF revision in the ATC sense can be useful only for theoretical matters.
This posts a new fundamental justifying the proposal of the argument revision
proposed in Section 3, as a practical approach to ATC for base revision, in
which only the necessary portion of the AF is built “on demand” according to
the dialectical tree rooted in the new argument to be included in the KB.

Before we can specify the closure condition for propositional AFs, we will
define the obtention of the underlying KB of a given AF as follows.

Definition 5.1 (Underlying KB of an AF). Given a propositional AF φ ⊆
AL, an operator K determines the underlying KB of the AF φ iff K(φ) =
⋃

B∈φ bd(B).

We specify the closure condition for AFs by relying upon the operator K.

Definition 5.2 (Propositional AF Closure). Given a propositional AF φ ⊆
AL, an operator C determines the propositional AF closure of φ iff C(φ) =
AΣ, where Σ = K(φ).

Consequently, we will say that a propositional AF φ ⊆ AL is closed by “C”
(or simply, closed) if it holds φ = C(φ). From now on we will rely only upon
closed propositional AFs. This condition is necessary for a correct application
of the change methodologies proposed here.

Observation 5.3. K(AΣ) ⊆ Σ.

The previous observation shows an elementary correspondence between AΣ

and Σ when working with the operator K. It is important to mention that if it
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is the case that there is a sentence β ∈ Σ such that β /∈ K(AΣ) then the only
alternative we have is β |= ⊥, otherwise β would be part of (at least) a primitive
argument in AΣ, and therefore β ∈ K(AΣ) contrary to the hypothesis.

Observation 5.4. K(AΣ) = Σ iff for every β ∈ Σ, β 6|= ⊥.

The AF revision operator “⊛ω” is finally formalized for a closed propositional
AF by relying upon a global incision function, according to Definition 3.5.

Definition 5.5 (AF Revision). Given a closed AF φ ⊆ AL and an argument
R ∈ AL, an operator ⊛ω is an AF revision iff the operation φ⊛ωR is:

φ⊛ωR = {B ∈ A(K(φ)∪bd(R))|bd(B) ∩ σ(T (R)) = ∅, where
T (R) ∈ T(K(φ)∪bd(R))}

When necessary we will write φ⊛ω
σR to specify that the revision φ⊛ωR is

obtained by effect of a specific global incision function σ.
Note that an AF revision of a closed AF always results in a new closed AF.

Observation 5.6. Given a closed AF φ ⊆ AL and an argument R ∈ AL, the
AF revision φ⊛ωR determines a new AF which is also closed.

As shown before, in Section 3, the global incision function is not always
unique, however, it will be shown to be a function as part of the proof of
Theorem 4.6 (see (postulates ⇒ construction) condition 1, in page 32). This
means that, when applied over the same inputs (i.e., over the same dialectical
tree), it will certainly map to equal values from L. In consequence, the following
observation follows trivially from Definition 5.5 and Definition 3.7.

Observation 5.7. Given a closed AF φ ⊆ AL and an argument R ∈ AL, the
AF revision φ⊛ω

σR is obtained by effect of the global incision function σ iff the
argument revision K(φ)∗ωσR is obtained by effect of σ.

For the previous observation, notice that for both revision operations, φ⊛ω
σR

and K(φ)∗ωσR, σ is applied over the same dialectical tree T (R) ∈ T(K(φ)∪bd(R)).
In addition, through Observation 5.7, we can ensure that for the following results
(in which both revisions operations are interrelated), there will always apply a
fixed global incision function.

Lemma 5.8. φ⊛ωR = A(K(φ)∗ωR).

Lemma 5.9. K(φ⊛ωR) = K(φ)∗ωR.

For the full rationality of the AF revision operation we would need to pro-
pose a specialized set of postulates for this new sort of revision. This exceeds
the scope of this work, however, we can show the rationality of the AF revi-
sion in terms of the rationality of the argument revision operation shown in
Theorem 4.6, by following the results obtained in Lemma 5.8 and Lemma 5.9.

Theorem 5.10. Given a closed AF φ ⊆ AL and R ∈ AL, if K(φ)∗ωR is a
smooth argument revision then φ⊛ωR is a rational AF revision wrt. the postu-
lates in Theorem 4.6, taking Σ = K(φ) and Σ∗ωR = K(φ⊛ωR).
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6. Related Work

In this section, we present some of the existing work on belief change and
argumentation. Some of them, like [12, 11, 9, 10, 3], do not really propose
argumentative models of change but more likely analyze the impact of adding
a new argument to an AF. We firstly describe such works and relate them to
ATC. Afterwards, we give a brief summary of other articles working the relation
between belief revision and other theories that might somehow be similar to our
argumentative model of change towards revision of knowledge bases. Among
those works, only [28, 27] use argumentation, however, rather differently to the
way ATC approaches do: the former focusses on dynamics in epistemology, and
the latter on a particular agents’ belief base, relying on a model of belief dy-
namics which is alternative to AGM’s. Afterwards, a particular work, [2], is
analyzed. There, argumentation semantics are proposed to handle KB incon-
sistencies with a different orientation in comparison to our theories. Finally, we
describe the relation between the dialectic-global model presented in this article
and other existing ATC approaches.

Argumentation and Belief Revision

[12] proposed a revision theory upon Dung-style abstract argumentation sys-
tems. The main issue of any argumentation system is the selection of acceptable
sets of arguments. An argumentation semantics defines the properties required
for a set of arguments to be acceptable. The selected sets of arguments under
a given semantics are called extensions of that semantics. Then, by consid-
ering how the set of extensions is modified under the revision process, they
propose a typology of different revisions: decisive revision and expansive revi-
sion. A strong restriction is posed: the newly added argument must have at
most one interaction (via attack) with an argument in the system. This re-
striction greatly simplifies the revision problem of AFs, as multiple interactions
with the original system are more common to occur, and could become difficult
to handle. Moreover, regarding inconsistent-tolerant revision of KBs, this re-
striction would make impossible to apply such model of change to a KB from
where arguments and attacks are to be constructed. In ATC, this is addressed
with the inclusion of subarguments and through the handle of collateralities. In
addition, the objective of [12] differs from ours in that we apply (assuming it
is allowed) additional change to the original AF (and consequently, to the KB)
pursuing warrant of a single argument through the analysis of dialectical trees,
whereas they study how the addition of a given argument would affect the set of
extensions (without performing any alteration besides the addition of the new
argument), by looking at an arguments graph. Working with dialectical trees
seems to be a better alternative for the revision operator to handle a controlled
(and thus tractable) set of arguments.

Another similar approach studying dynamics in argumentation was pre-
sented in [11]. There, the abstraction of a framework, i.e., removal of a set
of arguments or attacks, is considered, and a series of principles is proposed
to establish under which conditions the semantics remains unchanged. This
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approach avoids recomputation of semantics. [9] discusses the existing relation
between argumentation and belief revision. It considers argumentation as per-
suasion to believe and that persuasion should be related to belief revision. More
recently, [10] presented the interrelation between argumentation and belief re-
vision on multi-agent systems. When an agent uses an argument to persuade
another one, he must consider not only the proposition supported by the argu-
ment, but also the overall impact of the argument on the beliefs of the addressee.

Revision over an argumentation-based decision making system was applied
in [3] through a generalization of the revision technique from [12], which eval-
uates the warrant status of a newly inserted argument. A complementary ap-
proach could be followed by using ATC when the new argument is not initially
warranted; in this way, we would know which arguments should be removed for
the new one to end up warranted.

There is a main difference between these approaches and ATC: they assume
that the framework is only changed as a reflection of the evolution of the modeled
world, and thus their theory analyzes the impact of change on the semantics.
On the other hand, ATC assumes certain external mechanism with capabilities
to affect the world and the way it evolves. Thus, ATC allows to decide which
changes to apply in order to make the modeled world evolve in the desired
direction. Nonetheless, this is not intended to lead to dishonest use, by “hiding”
neither arguments nor evidence from the argumentative machinery. To the
contrary, it provides a powerful tool for research purposes. For instance, consider
a legal process in which currently available evidence yields a dialectical tree
conforming an unexpected scenario. Performing hypothetical (or abductive)
reasoning by considering yet unavailable arguments may give intuitions about
missing evidence. This can be used to lead further investigations towards the
defense of the case in a trial.

Belief Revision and Knowledge Bases

Regarding ideas from classic belief revision applied to non-monotonic theo-
ries, in [8], the authors study the dynamics of a simple variant of defeasible logic
through the definition of expansion, revision and contraction operators. Here,
a defeasible theory contains facts, defeasible rules and defeaters. The first two
elements are similar to those in DELP, whereas defeaters are rules that, instead
of being used to draw claims, they prevent their achievement. The focus of
the paper is to provide a full account of postulates which are closely related to
those from the AGM model. The intuitions behind each operator do not need
any special consideration, and each one of them is formally checked to comply
with the corresponding set of postulates. As revision of defeasible logics, this
work is similar to [23], which proposes revision of DELP programs by relying
on an ATC approach (see next subsection for more details). However, contrary
to ATC approaches –including the dialectic-global model– the work done in [8]
requires consistency restoration.

The work in [5] is primarily oriented towards the treatment of inconsistency
caused by the use of multiple sources of information. Knowledge bases are
stratified, namely each formula in the knowledge base is associated with its

20



level of certainty corresponding to the layer to which it belongs. They suggest
that it is not necessary to restore consistency in order to make sensible inferences
from an inconsistent knowledge base. Likewise, argumentation-based inference
can derive conclusions supported by reasons to believe in them, independently
of the consistency of the knowledge base.

[28] studied the dynamic of a belief revision system considering relations
among beliefs in a “derivational approach” trying to obtain a theory of belief
revision from a more concrete epistemological theory. According to them, one of
the goals of belief revision is to generate a knowledge base in which each piece of
information is justified (by perception) or warranted by arguments containing
previously held beliefs. The difficulty is that the set of justified beliefs can
exhibit all kinds of logical incoherences because it represents an intermediate
stage in reasoning. Therefore, they propose a theory of belief revision concerned
with warrant rather than justification.

[18] proposed a kind of non-prioritized revision operator based on the use of
explanations. The idea is that an agent, before incorporating information that
is inconsistent with its knowledge, requests an explanation supporting it. The
framework used is oriented to defeasible reasoning. One of the most interesting
ideas of this work is the generation of defeasible conditionals from a revision
process. This approach preserves consistency in the strict knowledge and it
provides a mechanism to dynamically qualify the beliefs as strict or defeasible.

[27] joined argumentation and belief revision in the same conceptual frame-
work, highlighting the important role played by Toulmin’s layout of argument
in fostering such integration. They consider argumentation as “persuasion to
believe” and this restriction is useful to make more explicit the connection with
belief revision. They propose a model of belief dynamics alternative to the
AGM approach: data-oriented belief revision (DBR). Two basic informational
categories (data and beliefs) are put forward in their model, to account for the
distinction between pieces of information that are simply gathered and stored
by the agent (data), and pieces of information that the agent considers (possibly
up to a certain degree) truthful representations of states of the world (beliefs).
Whenever a new piece of evidence is acquired through perception or commu-
nication, it affects directly the agent’s data structure and only indirectly his
beliefs. Belief revision is often triggered by information update either on a fact
or on a source: the agent receives a new piece of information, rearranges his
data structure accordingly, and possibly changes his beliefs.

[16] addressed the problem of belief revision in (non-monotonic) logic pro-
gramming under answer set semantics: given two logic programs P and Q,
the goal is to determine a program R that corresponds to the revision of P
by Q, denoted P ∗ Q. They proposed formal techniques analogous to those of
distance-based belief revision [15, 32] in propositional logic. They investigate
two specific operators: (logic program) expansion and a revision operator based
on the distance between the strong equivalence models (SE-models) of logic pro-
grams. However, our approach is very different. First, we use propositional KBs
instead of logic programs, making our approach more expressive and general.
Second, since we want an external argument R to end up undefeated after the

21



revision, we must modify the KB to accept (warrant) R’s claim, thus defining a
revision operator in a prioritized fashion. Third, and most important, our work
does not pursue a consistent outcome from the revision operation, contrasting
the objective in [16, 15, 32].

Argumentation and Knowledge Bases

The recognition of consistent subsets of (potentially inconsistent) KBs is
studied in [2] by relying upon extension-based argumentation semantics à la
Dung. Authors recognize arguments from the KB in a similar way to what
we have done in this article. Then, they characterize the different semantics
in terms of the subsets of the KB that are returned by each extension. A full
correspondence between maximal consistent sub-bases of a KB and maximal
conflict-free sets of arguments is shown afterwards.

In the present article, we define a single attack relation upon propositional
inconsistency. This simplifies the recognition of attacks, allowing us to concen-
trate on knowledge dynamics matters and on the study of models of change.
On the other hand, [2] elaborates AFs considering three different sorts of attack
relations: rebut, strong-rebut, and undercut. In this way, they obtain three ar-
gumentation systems, generalizing them from propositional logic (which is the
original context of definition of the three attack relations) to general Tarskian
logics. They finally analyze such AFs and the relation between their extensions
and the sub-bases of the KB, upon some characterization properties.

[2] proposes an interesting base from which KBs’ inconsistencies are stud-
ied and handled through argumentation techniques. The difference with our
work is the argumentation semantics in which we base our theories: they work
upon complete graphs of arguments and over extension-based semantics, and we
work upon partial graphs, i.e., dialectical trees, and skeptical semantics defined
exclusively for such argument structures. Although the advantages of working
with dialectical trees bring us the opportunity to start designing prototypes, we
believe it is necessary to bridge the gap between extension-based and dialectical
trees semantics in order to study their results upon our models.

The Dialectic-Global Model and other ATC approaches

As mentioned before, the ATC model presented in [23], reifies the abstract
ATC approach presented in [30] to DELP aiming at revising DELP programs.
Similar to the case of [16], we use propositional KBs instead of (defeasible) logic
programs, which makes our approach more expressive and general. Moreover, in
contrast to the dialectic-global model, the alteration of dialectical trees in [23] is
achieved differently: incisions are applied in composition with a selection func-
tion, which determines the precise argument from each argumentation line to
which the incision is applied. The usage of selection functions in such approach,
allows to specify different criteria of minimal change: removing as few beliefs as
possible from the KB, altering as few argumentation lines as possible from the
tree, and preserving the tree structure as much as possible by removing argu-
ments placed as low as possible in each line, getting closer to the leaves. On the
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other hand, the dialectic-global model follows an alternative but more general
viewpoint to alterate dialectical trees: we rely on an incision function that is
defined “globally” to the dialectical tree. Therefore, a global incision function
determines a possible set of beliefs to be removed in order to effectively alter all
the necessary lines at once.

In addition, the objective of the model presented in [23] differs from the
dialectic-global’s in that the latter does not pursue such an extensive variety of
minimal change criteria, but only avoids to lose beliefs that are not related to
the revision through the postulate of core-retainment. Pursuing different crite-
ria of minimal change makes models much more intrincate both to define and
axiomatize. Moreover, it is important to remark that the notion of minimality is
usually subjective: most approaches in classic belief revision do not obtain real
minimality, but approximations to it by specifying different criteria interpreting
the meaning of minimal change.

Regarding other ATC approaches like [30] and more recently, [24], the focus
is stressed on changing abstract AFs rather than KBs. Besides, the alteration
of dialectical trees in such works, is done in the same manner explained before,
used for the model presented in [23].

7. Conclusions and Future Work

This article presents a novel model of change to handle both (1) dynamics of
knowledge in inconsistent propositional KBs, and (2) dynamics of argumenta-
tion frameworks (AFs). This so called, dialectic-global model, takes inspiration
from the classical belief revision literature to axiomatically characterize the
proposed revision operator. However, contrary to classical aproaches in belief
revision, it does not rely on consistency restoration. Thus, change is provoked
providing a consistent outcome, not in a standard (Tarskian semantics) sense,
but relying on argumentation semantics. From the standpoint of (1), the revi-
sion operator receives a minimal set R of propositional beliefs inferring a claim
α and includes it to the (inconsistent propositional) KB in a way that α is finally
accepted by the adopted inconsistent-tolerant semantics. On the other hand,
for (2), the revision includes the argument R to the AF ensuring it to end up
warranted and thus accepting α.

The article is centered on Argument Theory Change (ATC), which studies
certain aspects of belief revision in order to make them suitable for abstract
argumentation systems. However, the dialectic-global model provides a new
approach to ATC by rendering concrete the language for arguments to classical
propositional logic.

To our knowledge, the dialectic-global model is the unique argumentation
model of change which has been completely axiomatized (according to belief
revision). Firstly, a set of basic postulates was adapted from belief revision
to argumentation, and afterwards, the proposed model is shown to be rational
through the corresponding representation theorem. Its full rationalization has
been inspired by Hansson’s work on contractions [20]. There, kernel sets –
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minimal sets inferring the sentence to be contracted– are “broken” similarly to
the effective alteration of attacking lines as is done in ATC.

Attacking lines are recognized as the argumentation lines (a repeated inter-
change of arguments and counterarguments) that are somehow responsible for
the non-warrant status of a dialectical tree. These trees conform the structure
followed by the adopted argumentation semantics to decide whether to accept
(warrant) or not the argument placed on the root of a particular tree. Thus,
altering the composition of attacking lines in a dialectical tree renders a new
dialectical tree free of attacking lines, which consequently ensures its root ar-
gument to be warranted. Additionally, the alteration of argumentation lines
is performed by removing an argument in it. However, since the AF is con-
structed from the underlying propositional KB, removal of arguments is finally
achieved by deleting beliefs from the KB. To this end, minimal change is ensured
by deleting beliefs that are related to the revision, i.e., beliefs that are part of
arguments in lines that render non-warranting the dialectical tree rooted in R.

As an ATC approach, the model of change proposed in this article applies
exclusively upon dialectical trees as the adopted argumentation semantics. This
choice is made aiming at introducing practical approaches to base revision with
tolerancy to inconsistency. Thus, our claim supports the existing relation be-
tween the use of dialectical trees and practical argumentation: arguments are
built “on demand” from the underlying KB only for constructing a needed di-
alectical tree rooted in the argument by which the KB requires to be revised.
The use of complete graphs of arguments as the structure upon other argumen-
tation semantics rely, represent a different approach to the study of argumen-
tative reasoning. For theoretical reasons, we believe it would be interesting to
study the relations between the warrants (according to dialectical trees) and the
extensions (obtained from graph-based semantics, such as the ground, stable,
and others). Moreover, this will provide the necessary foundamentals in order
to apply the techniques used in this article for managing dynamics of knowl-
edge (mainly, the AF revision, which operates upon complete AFs) to some
well-known extension-based argumentation semantics. These subjects are left
as future work.

Preference relations between arguments are usually used to decide whether
a counterargument finally prevails to determine an attack. For simplicity we
abstracted away from such relations, and left attacks to be determined just
by logic contradiction. However, in a revision process, preference relations are
necessary to decide if an argument could be dropped in benefit of the warrant
pursual of the new argument to include. For instance, when promulgating a law,
it should be inadmissible to consider the removal of articles corresponding to
laws of higher importance than that of the new one: the National Constitution
should never be affected unless the inclusion of the new law is intended to reform
it. These considerations are part of the ongoing work.

The dialectic-global model can be easily extended to first-order logic (FOL).
In fact, only the argumentation machinery needs to be adapted to handle first-
order KBs, whereas the model of change remains unaffected. Nonetheless, a
first-order argumentation machinery is certainly much more complex than the
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simple one adopted here for propositional logic. For details on first-order argu-
mentation the reader is referred to [6, 7, 25].

A FOL-argumentation machinery may provide an interesting non-standard
reasoning methodology for inconsistent ontologies. Reasoning and change ap-
plied to inconsistent ontologies is of utmost importance in fields like medical
sciences and legal procedure. A preliminary description logics-based argumen-
tation system was presented in [26]. The study of the dialectic-global model
applied to it is underway towards a novel approach to ontology evolution. Such
model would be capable of revising ontologies without requiring consistency
restoration, which means that the ontologies would not need to be repaired.
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Appendix

This appendix provides the proofs corresponding to properties stated in the
main article. Additional definitions, propositions, lemmata, and theorems, iden-
tified as A.XX, B.XX, C.XX, or D.XX, are introduced in the corresponding
appendix for complementing the proofs provided there, but not for a right un-
derstanding of the theory proposed so far.

A. Proofs Corresponding to Section 2 – Consistency of the Adopted
Argumentation Semantics

In this section we concentrate on showing that the adopted argumentative
semantics based on dialectical trees always determines a consistent set of war-
ranted arguments. To such end, we will rely on the composition operation “◦”
defined between lines and arguments as ◦ : AΣ × LΣ → LΣ and overloaded
as ◦ : LΣ × AΣ → LΣ, such that for any λ ∈ LΣ, if λ = [B1, . . . ,Bn] then
λ = B1◦[B2, . . . ,Bn] = [B1, . . . ,Bn−1]◦Bn. Observe that any subsequence of an
acceptable line is also acceptable, hence, since λ ∈ LΣ, both [B2, . . . ,Bn] and
[B1, . . . ,Bn−1], are acceptable lines and thus both are contained in LΣ.

Proposition A.1. Given Σ ⊆ L and a warranting dialectical tree T (R) ∈ TΣ.
For every λ ∈ T (R) such that λ is alternating, if λ = R◦λ′ and B is λ′’s root
then λ′ is a line of T (B) ∈ TΣ and λ′ ∈ T (B) is attacking line.
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Proof: Firstly, we will show that for any undefeated argument C ∈ λ such that
C 6= R, C ∈ λ′ cannot be defeated in the context of T (B). Note that, since λ is
a warranting alternating line, C ∈ λ+ holds.

Assume there is some D ∈ AΣ defeating C, such that for any λ′′ ∈ T (R),
if D ∈ λ′′ then λ′′↑[D] 6= λ↑[C]◦D. This means that D is not a child of C ∈ λ
in T (R) given that either such D does not exist or λ↑[C]◦D is not acceptable.
Assuming the latter option (the former leaves C undefeated in T (B)), we know
λR = λ↑[C]◦D violates either acceptability condition (1) or (2) (as seen in
page 7). We will show that λB = λ′↑[C]◦D is not acceptable. Note that B ∈ λ+

B

and since C ∈ λ−
B , we also know that D ∈ λ+

B . Assuming (1) is violated for
λR, we have that D includes the subset of R defeated by B, and therefore B
counterargues D. This violates acceptability condition (2) on λB given that
{B,D} ⊆ λ+

B . On the other hand, assuming (2) is violated for λR, we have that
D counterargues some con argument in λ↑[C] (note that D ∈ λ−

R), and since
λ−
R = λ+

B , we also have that λB violates (2). Hence, λB is not acceptable.
Clearly, every undefeated argument C ∈ λ ends up also undefeated in C ∈ λ′.

And moreover, this includes λ′’s leaf, which is also undefeated. Afterwards, it is
easy to see that λ′ ∈ T (B), given that λ′ is exhaustive (since λ is known to be
acceptable and exhaustive, it is easy to see that line λ′ is also acceptable given
that the acceptability conditions are harder on λ than on λ′). Finally, since λ
is warranting alternating, λ′ ends up as attacking line from T (B). 2

Definition A.2 (Alternating Lines). An argumentation line λ ∈ T (R), with
T (R) ∈ TΣ, is called alternating if for every pair B ∈ λ and C ∈ λ it holds
mark(B, λ, T (R)) = mark(C, λ, T (R)) iff either {B, C} ⊆ λ− or {B, C} ⊆ λ+.
When T (R) is warranting, λ is referred as warranting alternating line.

Observation A.3. A line is attacking iff it is non-warranting alternating.

Proposition A.4. Given Σ ⊆ L, and the non-warranting tree T (R) ∈ TΣ;
there is always a non-warranting alternating line λ ∈ T (R).

Proof: Assume a non-warranting dialectical tree T (R) rooted in an argument
R ∈ AΣ, we have that R is marked as D. From the adopted marking criterion
defined in page 9, we know that (*) any argument marked as D has at least one
child which is undefeated. This is the case of R which we assume to have a child
B marked as U . Let us refer as λ to the line rooted in R followed by B. If B is
λ’s leaf then we have an alternating line, whereas if B is an inner node, the only
option for its child C is to be marked as D, which leaves us in the same situation
of the root argumentR. Hence, we know there is an undefeated argument which
is C’s child. Finally, by following the same construction from (*), we have that
there always exists a non-warranting alternating line λ ∈ T (R). 2

Lemma A.5. Given Σ ⊆ L, for any warranting dialectical tree T (R) ∈ TΣ and
any argument B ∈ AΣ, if B defeats R then T (B) ∈ TΣ is non-warranting.
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Proof: Straightforward from Proposition A.4, Proposition A.1, and Theo-
rem 3.2. 2

Lemma A.6. Given two arguments B ∈ AΣ and C ∈ AΣ, if C is a counter-
argument of B then there exists a subargument D ∈ AΣ of C such that D is a
canonical undercut of B.

Proof: Since C is a counterargument of B, by definition we have {cl(C)} ∪
bd(B) |= ⊥, and from Definition 2.1, since bd(C) |= cl(C), we have bd(B) ∪
bd(C) |= ⊥. It is easy to see that bd(C) |=

∨

β∈bd(B) ¬β holds. Thus, assuming

bd(B) = {β1 . . . , βn}, we have bd(C) |= ¬(β1∧. . .∧βn). Let ϕ be ¬(β1∧. . .∧βn).
Hence, there exists a minimal subset Ψ ⊆ bd(C) such that Ψ |= ϕ. In addition,
given Definition 2.1, and Ψ ⊆ bd(C), we know that Ψ 6|= ⊥; and since Ψ is
minimal for ϕ, there exists an argument D ∈ AΣ such that bd(D) = Ψ and
cl(D) = ϕ. Finally, it is easy to see that D –which is a subargument of C– is a
canonical undercut of B. 2

Theorem 2.4 Given Σ ⊆ L, for any pair of arguments R ∈ AΣ and R′ ∈ AΣ,
if both R and R′ are warranted then they are not conflicting.
Proof: By reductio ad absurdum, suppose R and R′ are both warranted and

conflicting. Assume without loss of generality that R defeats R′, and from
Lemma A.6, let us suppose R′′ is a canonical undercut of R′ such that R′′ ⊆
R. It is clear that, if R is warranted, so is R′′. Afterwards, [R′,R′′, . . .] ∈
T (R′) holds. Since R′ is warranted, from Lemma A.5 we know T (R′′) is non-
warranting. Afterwards, we know R is not warranted, which is absurd. 2

B. Proofs Corresponding to Section 3 – ATC and the Dialectic-global
Model

Theorem 3.2 Given the dialectical tree T (R) ∈ TΣ, there is no attacking line
λ ∈ T (R) iff T (R) is a warranting tree.
Proof: Considering a dialectical tree, we have two options: either it is war-
ranting or not. If the tree is warranting, its root argument is known to be
undefeated. Since the root is a pro argument, from Definition 3.1 we know
there is no attacking line. On the other hand, if the tree is non-warranting, it
is clear that its root argument is marked as D. In such a case, we know that
there exists at least one of its children which is a con argument marked as U .
Besides, such con argument ends up marked as U given that either (1) it is the
leaf of a line λ, or (2) it necessarily has no undefeated defeater. For 1), it is
clear that λ is an attacking line. For 2), each one of its children is known to be
a pro argument marked as D. Since this is the case of the root argument, the
proof necessarily ends in 1). Hence, if the tree is non-warranting we know there
is always an attacking line.

For the other way around, assuming we have no attaking lines, two options
arise, either the root argument is marked as D, or U . For the latter case, it
is clear that the tree is warranting. For the former case, where the root is
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marked as D, ends in an absurd given that we have shown that in this case it
always appears an attacking line. On the other hand, assuming we have some
attacking line, the only alternative for the root argument is to be marked as D,
and therefore the tree is non-warranting. 2

Proposition 3.3 If λ ∈ T (R) is attacking then for any B ∈ λ−, the upper
segment λ↑(B) turns into non-attacking.
Proof: When we cut the line by removing a con argument, the upper segment
that is left has odd length. Finally, from Proposition B.1, only argumentation
lines of even length may be attacking. 2

Proposition B.1. Given the dialectical tree T (R) ∈ TΣ, if λ ∈ T (R) is at-
tacking then λ has even length.

Proof: By reductio ad absurdum, if we assume an attacking line λ to be of
odd length, its leaf argument is known to be a pro argument. From the mark-
ing criterion adopted, we know that every leaf is marked as U since it has no
defeater. From Definition 3.1, we know that an attacking line has its pro ar-
guments marked as D. This means that λ is not attacking, contrary to the
hypothesis. 2

The root argument is preserved from being incised since we look for its
warrant.

Proposition B.2. Given a KB Σ ⊆ L, if “σ” is a global incision then σ(T (R))∩
bd(R) = ∅ holds for any R ∈ AΣ.

Proof: From Definition 3.5 we know that the upmost argument placed in any
line λ ∈ T (R) that can be incised is a con argument. Since R is the root
argument, it follows that R is a pro argument. Hence, σ(T (R)) ∩ bd(R) = ∅
holds. 2

Proposition B.3. Given a tree T (R) ∈ TΣ and a line λ ∈ T (R), if λ =
[. . . ,B1,B2, . . .] then bd(B2) \ bd(B1) 6= ∅.

Proof: Since B2 counterargues B1, we know {cl(B2)}∪bd(B1) |= ⊥. By reductio
ad absurdum, if we assume that bd(B2) \ bd(B1) = ∅ holds, two options arise:
either bd(B1) = bd(B2) or bd(B2) = ∅. For the former case, it is clear that B2’s
claim is a tautology, i.e., ⊤ |= cl(B2) (see Definition 2.1). This means that,
bd(B1) |= ⊥ given that {cl(B2)} ∪ bd(B1) |= ⊥ holds as seen before. Hence, we
reach an absurd given that Definition 2.1 has been contradicted in its condition
(2). Afterwards, we necessarily have that bd(B1) = bd(B2). But then, we have
that {cl(B2)} ∪ bd(B2) |= ⊥ which is again an absurd by contradiction of the
same condition from Definition 2.1. Finally, bd(B2) \ bd(B1) 6= ∅ holds. 2

Proposition 3.6 Given the dialectical tree T (R) ∈ TΣ, there is always a global
incision function σ(T (R)) ⊆ L.
Proof: Two options arise, either T (R) is warranting or not. For the fomer
case, from Theorem 3.2 we know there is no attacking lines. Afterwards, from
Definition 3.5, condition 1, we know σ(T (R)) = ∅.
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On the other hand, assuming T (R) is non-warranting, from Theorem 3.2
we know there is at least an attacking line λ ∈ T (R). From Definition 3.5,
condition 2a, we know there is B ∈ λ− such that σ(T (R)) ∩ bd(B) 6= ∅ and for
any other B′ ∈ λ↑(B) it holds σ(T (R))∩bd(B′) = ∅. In particular, if we assume
B to be R’s defeater in T (R), it is clear that B′ = R. From Proposition B.3, we
know there is some sentence β ∈ bd(B) such that β /∈ bd(R). Hence, it is always
possible to effectively alter an attacking line by incising over the root’s direct
defeater. Afterwards, if another line in the tree is collaterally altered and turned
into attacking, by following the same prionciple we can ensure that such a line
will be effectively altered by incising over its root’s direct defeater. Clearly, this
process reaches an end, since the bundle set used to build the dialectical tree is
finite.

Note finally that there is always a global incision function σ(T (R)) ⊆ L. 2

Lemma 3.8 Given Σ ⊆ L, if ∗ω is an argument revision then T (R) ∈ T(Σ∗ωR)

has no attacking lines, for any R ∈ AL.
Proof: From condition 1 in Definition 3.5, we know that the incision σ is
non-empty if there are attacking lines in T ′(R) ∈ T(Σ∪bd(R)). Besides, from
condition 2 (Definition 3.5), the incision function takes a belief from a con argu-
ment from each attacking line (or any other that may turn to attacking) ensuring
such belief to be the uppermost taken from such line. From Proposition 3.3, λ
is turned to non-attacking. Finally, from Definition 3.7, T (R) has no attacking
lines. 2

C. Proofs Corresponding to Section 4 – Rationality of the Dialectic-
global Model

Proposition C.1. If ∗ω satisfies success then bd(R) ⊆ Σ∗ωR.

Proof: By reductio ad absurdum, if bd(R) ⊆ Σ∗ωR does not hold, then R could
not be formed from Σ∗ωR and hence R could not be warranted from Σ∗ωR,
contrary to success. 2

We extend the notion of strict equivalence to sets of arguments.

Definition C.2 (Strictly Equivalent Sets of Arguments). Given two KBs
Σ ⊆ L and Σ′ ⊆ L, the sets of arguments AΣ and AΣ′ are strictly equivalent

sets, written AΣ⊣AΣ′ iff for any B ∈ AΣ (resp., B ∈ AΣ′) there is C ∈ AΣ′

(resp., C ∈ AΣ) such that B⊣C.

Observe that the symbol “⊣” has been overloaded to identify strictly equiv-
alent arguments, and strictly equivalent sets of arguments, given that its usage
will be rather explicit: B⊣B′ and AΣ⊣AΣ′ , respectively.

Proposition C.3. Given Σ ⊆ L, if R1⊣R2 then A(Σ∪bd(R1))⊣A(Σ∪bd(R2)),
for any {R1,R2} ⊆ EΣ.
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Proof: We need to show that for any B ∈ A(Σ∪bd(R1)) there is C ∈ A(Σ∪bd(R2))

such that B⊣C. It is easy to see that AΣ ⊆ (A(Σ∪bd(R1)) ∩A(Σ∪bd(R2))), hence
the problem is reduced to proving that for every argument B ∈ A(Σ∪bd(R1)) such
that B 6∈ AΣ there is C ∈ A(Σ∪bd(R2)) such that C 6∈ AΣ and B⊣C. Assuming
B ∈ A(Σ∪bd(R1)) and B /∈ AΣ, B does necessarily turn out to contain part of
R1. Therefore, if bd(B) ∩ bd(R1) = X , since X ⊆ bd(R1) and R1⊣R2, there
is Y ⊆ bd(R2) such that X iff Y . Then there is an argument C ∈ A(Σ∪bd(R2))

with bd(C) = (bd(B) \ X) ∪ Y such that cl(B) = cl(C) and B⊣C. Finally,
A(Σ∪bd(R1))⊣A(Σ∪bd(R2)) holds. 2

The previous proposition shows that given two strictly equivalent external
arguments, R1 and R2, by introducing one or the other to the KB we generate
strictly equivalent sets of arguments, that is A(Σ∪bd(R1))⊣A(Σ∪bd(R2)). Next
we show that the set of defeaters for any pair of strictly equivalent arguments
from A(Σ∪bd(R1)) and A(Σ∪bd(R2)), are also strictly equivalent.

Proposition C.4. Given two sets of arguments AΣ and AΣ′ , and two arguments
B ∈ AΣ and C ∈ AΣ′ , if AΣ⊣AΣ′ and B⊣C then for every defeater D ∈ AΣ of
B there exists a defeater D′ ∈ AΣ′ of C such that D⊣D′.

Proof: Since D→֒B and B⊣C we know that D→֒C. From Definition C.2 and

AΣ⊣AΣ′ we know that there exists an argument D′ ∈ AΣ′ such that D⊣D′.
Thus, D′ →֒C holds, or equivalently, D′ defeats C. 2

Definition C.5 (Class of Strictly Equivalent Arguments). Given Σ ⊆ L,
a class of strictly equivalent arguments, for short cse, is any set of argu-
ments Ψ ⊆ AΣ such that (1) for any pair B1 ∈ Ψ and B2 ∈ Ψ, B1⊣B2, and
(2) for any B1 ∈ Ψ there is no B2 6∈ Ψ such that B1⊣B2.

Subsets Ψ of strictly equivalent arguments might be recognized from a set
of arguments. This is important to show that if an argument inside Ψ is a node
in a dialectical tree T (R), then every argument within Ψ is a node in T (R),
and moreover, the use of either of them determines strictly equivalent lines.

Proposition C.6. For any cse Ψ ⊆ AΣ, any argument C ∈ Ψ, B ∈ AΣ, and
R ∈ AΣ, and a tree T (R) ∈ TΣ; if there is a line λ ∈ T (R) such that λ =
[R, . . . ,B, C, . . .] then for every C′ ∈ Ψ there exists a line λ′ ∈ T (R) such that
λ′ = [R, . . . ,B, C′, . . .] and both λ and λ′ are strictly equivalent.

Proof: Given λ = [R, . . . ,B, C, . . .] where C ∈ Ψ, assume by reductio ad ab-

surdum that there is no λ′ = [R, . . . ,B, C′, . . .] for some other C′ ∈ Ψ. Since
λ↑(C) = λ′↑(C′) holds, the only option we have is that C′ does not counterargue
B. From Definition C.5 we know that C⊣C′ and from Definition 4.1 it is clear
that C′ counterargues B given that C counterargues B. If λ is acceptable so is
λ′. Thus, from Definition 2.2, λ′ does exist and it is a line of T (R). Finally,
since C⊣C′, from Proposition C.4 we know that for any defeater D of C there
is a strictly equivalent defeater D′ of C′ (i.e., D⊣D′), and therefore it is easy
to see that both λ and λ′ are strictly equivalent lines. 2
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Lemma 4.3 Given a KB Σ ⊆ L, two external arguments R1 ∈ EΣ and R2 ∈
EΣ, and their dialectical trees T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2));
if R1⊣R2 then T (R1) and T (R2) are strictly equivalent trees.
Proof: Assuming R1⊣R2 holds, we have A(Σ∪bd(R1))⊣A(Σ∪bd(R2)) follows
from Proposition C.3. Afterwards, from Proposition C.4 we know that for every
defeater B ∈ A(Σ∪bd(R1)) of R1, there is a defeater C ∈ A(Σ∪bd(R2)) of R2 such
that C⊣B. Two alternatives arise: if bd(B) ∩ bd(R1) = ∅ then we know that
there is a cse Ψ ⊆ AΣ such that {B, C} ⊆ Ψ, and from Proposition C.6, the line
[R1,B, . . .] ∈ T (R1) is strictly equivalent to [R1, C, . . .] ∈ T (R1). Analogously,
the line [R2,B, . . .] ∈ T (R2) is strictly equivalent to [R2, C, . . .] ∈ T (R2). For
the other way around, if it is the case that bd(B) ∩ bd(R1) 6= ∅, we know
that bd(C) ∩ bd(R2) 6= ∅, and since A(Σ∪bd(R1))⊣A(Σ∪bd(R2)) and C⊣B, from
Proposition C.4 we have that for every defeater D ∈ A(Σ∪bd(R1)) of B there is
a defeater D′ ∈ A(Σ∪bd(R2)) of C such that D⊣D′. Finally, for every line in
T (R1) there is a strictly equivalent line in T (R2) and therefore both T (R1)
and T (R2) are striclty equivalent trees. 2

Proposition 4.5 Given a KB Σ ⊆ L, and two arguments R1 ∈ EΣ and R2 ∈ EΣ

such that R1⊣R2, there always exists an argument incision function “σ” which
is smooth.
Proof: Given R1⊣R2 holds, A(Σ∪bd(R1))⊣A(Σ∪bd(R2)) follows from Propo-
sition C.3, hence for any argument B1 ∈ A(Σ∪bd(R1)) we know there is an ar-
gument B2 ∈ A(Σ∪bd(R2)), such that B1⊣B2. Moreover, from Lemma 4.3 we
also know that T (R1)⊣T (R2), where T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈
T(Σ∪bd(R2)). Thus, two options appear: either B1 ∈ T (R1) or not. For the
former case, since T (R1)⊣T (R2), we know that B2 ∈ T (R2), and more-
over from Definition 4.2 assuming B1 ∈ λ1 where λ1 ∈ T (R1), we know
that there is a line λ2 ∈ T (R2) which is strictly equivalent to λ1 and there-
fore B2 ∈ λ2. Assuming “σ” is an argument incision function, from Propo-
sition B.2, we know that both σ(T (R1)) ∩ bd(B1) ⊆ bd(B1) \ bd(R1) and
σ(T (R2)) ∩ bd(B2) ⊆ bd(B2) \ bd(R2) hold. And moreover, it is easy to show
that bd(B1) \ bd(R1) = bd(B2) \ bd(R2), where B2 is some argument belonging
to a cse Ψ ⊆ A(Σ∪bd(R2)) –from Proposition C.6 we know that every argument
in Ψ is included by some line λ′

2 ∈ T (R2) which is strictly equivalent to λ2.
Hence, σ(T (R1)) ∩ bd(B1) = σ(T (R2)) ∩ bd(B2).

On the other hand, if it holds that B1 /∈ T (R1), since T (R1)⊣T (R2) we
also know that B2 /∈ T (R2). Finally from Definition 3.5, σ(T (R1))∩bd(B1) = ∅
and σ(T (R2)) ∩ bd(B2) = ∅ hold. 2

Representation Theorem 4.6 Given Σ ⊆ L and R ∈ AL, Σ∗ωR is a
smooth argument revision iff it guarantees success, inclusion, vacuity, core-
retainment, and uniformity.
Proof: (construction ⇒ postulates) The proof for success is trivial from
Lemma 3.8 and Theorem 3.2. Inclusion is trivially implied from Definition 3.7
and Definition 3.5. For vacuity, by reductio ad absurdum, if we assume that Σ∪
bd(R) ⊆ Σ∗ωR does not hold, it means that the incision is non-empty, implying
there is an attacking line in T (R) ∈ T(Σ∪bd(R)). Hence, from Theorem 3.2
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we know that T (R) is non-warranting, and therefore R is not warranted from
Σ ∪ bd(R) contradicting the hypothesis.

For core-retainment, if there is some β ∈ Σ\(Σ∗ωR) then from the equiva-
lence for σ adopted as hypothesis in this theorem, we know β ∈ σ(T (R)). From
Definition 3.5, condition 3, we know β ∈ bd(B), for some B ∈ λ, λ ∈ T (R).
Besides, we know that such λ needs necessarily to be either attacking (cond.
2a) or turned to attacking from a collateral incision (cond. 2b). Moreover,
from the consequent of cond. 2 in Definition 3.5, we know that B ∈ λ−. Hence,
from Proposition 3.3, we know that λ is effectively altered by eliminating β.
From inclusion we know Σ∗ωR ⊆ Σ ∪ bd(R), and from success we also know
R is warranted from Σ∗ωR, and along with Proposition C.1, we have that
bd(R) ⊆ Σ∗ωR. Let Σ′ = (Σ∗ωR) \ bd(R), then Σ′ ⊆ Σ. Finally, it is easy to
see that R is warranted from Σ′ ∪ bd(R) (given that it equals Σ∗ωR), but R is
not warranted from Σ′∪bd(R)∪{β}, given that including β, λ is not effectively
altered. Hence, core-retainment is verified.

Finally, for uniformity, if R1⊣R2 holds, from Lemma 4.3 both trees
T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2)) are known to be strictly equiv-
alent, therefore for any line λ ∈ T (R1) there is a strictly equivalent line λ′ ∈
T (R2). Moreover, for any argument B1 ∈ λ we know that there exists an
argument B2 ∈ λ′ such that B1⊣B2. From Definition 4.4, we know that
σ(T (R1)) ∩ bd(B1) = σ(T (R2)) ∩ bd(B2), and since this is valid for every
argument in any of both trees, we also know that σ(T (R1)) = σ(T (R2)).
From Definition 3.5, the uppermost incision in any line λ appears over an ar-
gument in λ− (which excludes the root argument), therefore we know that
σ(T (R1)) ⊆ Σ and σ(T (R2)) ⊆ Σ. Finally, from Definition 3.7, we have
Σ∗ωR1 = (Σ ∪ bd(R1)) \ σ(T (R1)), and Σ∗ωR2 = (Σ ∪ bd(R2)) \ σ(T (R2)).
And since we know that both incisions take the same beliefs from Σ, then we
have Σ ∩Σ∗ωR1 = Σ ∩Σ∗ωR2 holds.

(postulates ⇒ construction) Suppose that we have an operation ∗ω sat-
isfying the four postulates for argument revision. We need to show that there
is a smooth incision function σ such that Σ ∪ bd(R) \ σ(T (R)) = Σ∗ωR.

First, we define σ as: σ(T (R)) = Σ \ Σ∗ωR, where T (R) ∈ T(Σ∪bd(R)).
Now, we need to show that σ is an incision function according to Definition 3.5
which is smooth. Hence, we need to show:

1. σ is a function from trees to sets of formulae,

2. The conditions in Definition 3.5 hold for σ, and

3. σ is a smooth incision function according to Definition 4.4.

For 1, we assume two dialectical trees T (R1) ∈ T(Σ∪bd(R1)) and T (R2) ∈
T(Σ∪bd(R2)). If T (R1) = T (R2) then we need to show that σ(T (R1)) =
σ(T (R2)). Since both trees are equal that means that they have exactly the
same argumentation lines. Since all the lines begin at the root, this implies that
R1 = R2 and therefore R1⊣R2. From uniformity we have Σ ∩ Σ∗ωR1 =
Σ ∩ Σ∗ωR2, and thus Σ \ Σ∗ωR1 = Σ \ Σ∗ωR2. Finally, from the definition of
σ we have that σ(T (R1)) = σ(T (R2)).
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For 2 we need to show conditions 1, 2, and 3, from Definition 3.5. For
condition 1, if σ(T (R)) = ∅ then we need to show that there is no attacking
line in T (R) ∈ T(Σ∪bd(R)). From the definition of σ we have Σ \ Σ∗ωR = ∅,
then it follows that Σ ⊆ Σ∗ωR. From success and Proposition C.1, we know
that bd(R) ⊆ Σ∗ωR, hence Σ∪ bd(R) ⊆ Σ∗ωR. Thus, from inclusion we have
that Σ∗ωR = Σ∪ bd(R). This means that T(Σ∪bd(R)) = T(Σ∗ωR), and therefore
T (R) ∈ T(Σ∗ωR) holds. Finally, from success we know thatR is warranted from
Σ∗ωR, and from Theorem 3.2 we conclude that T (R) has no attacking lines.
For the other way around, if there is no attacking line in T (R) ∈ T(Σ∪bd(R))

then we need to show that σ(T (R)) = ∅. It follows that no line in T (R) has its
second argument undefeated, that is, every root’s defeater is defeated. Hence, R
is warranted from Σ∪bd(R), and from vacuity we have that Σ∪bd(R) ⊆ Σ∗ωR
holds. Finally, we have Σ ⊆ Σ∗ωR, and from the definition of σ adopted in the
hypothesis, σ(T (R)) = ∅ holds.

For cond. 2 in Definition 3.5, for any λ ∈ T (R) we only have to take into
account two cases: either λ is attacking line (condition 2a), or λ might turn to
attacking given the existence of collateral incisions Ψ = σ(T (R)) ∩ bd(C) 6= ∅
over an argument C ∈ λ, such that λ↑(C) ends up attacking from the hypothetical
tree H(R,Ψ) (condition 2b). In both cases, it means that λ might threat the
warrant status of the root R from the tree T (R). We need to show that there is
an argument B ∈ λ such that B ∈ λ− and B is the uppermost incised argument
in λ. By reductio ad absurdum, it is easy to show that if B 6∈ λ− is the uppermost
incised argument, from Proposition 3.3, λ↑(B) turns to attacking (only under
conditions 2a or 2b), and since there is no other incision over another argument
above B in λ (uppermost incised argument), then the resulting tree will have at
least one attacking line. Afterwards, from success we know that R is warranted
and from Theorem 3.2, we know that this is only possible from a dialectical tree
with no attacking lines. Thus, we reach an absurd, and hence condition 2 in
Definition 3.5 is verified.

For cond. 3 in Definition 3.5, let β ∈ σ(T (R)), then from the equivalence for
σ adopted as hypothesis in this theorem, we know β ∈ Σ\ (Σ∗ωR). From core-
retainment there is some Σ′ ⊆ Σ such that R is warranted from Σ′ ∪ bd(R)
but R is not warranted from Σ′∪bd(R)∪{β}. Hence the tree rooted in R from
T(Σ′∪bd(R)∪{β}) includes some attacking line λ, and by removing β we know
to provoke an effective alteration of such λ, given that R is warranted from
Σ′ ∪ bd(R). Thus, from Proposition 3.3, we know there is some B ∈ λ−, such
that β ∈ bd(B).

For 3, assume a pair of external arguments R1 ∈ EΣ, and R2 ∈ EΣ, such
that R1⊣R2. From Proposition C.3, we know that A(Σ∪bd(R1))⊣A(Σ∪bd(R2)).
That means that for any argument B1 ∈ A(Σ∪bd(R1)), we know there exists
B2 ∈ A(Σ∪bd(R2)) such that B1⊣B2. From Lemma 4.3 both trees T (R1) ∈
T(Σ∪bd(R1)) and T (R2) ∈ T(Σ∪bd(R2)) are known to be strictly equivalent, there-
fore the incision function will work over strictly equivalent trees. Assume any
node B1 in T (R1), if bd(B1) ∩ bd(R1) = ∅, from Proposition C.6 we know that
B1 is also placed at the same position in the context of T (R2). On the other
hand, if bd(B1)∩bd(R1) 6= ∅ then we know there exists a node B2 in T (R2) such
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that B1⊣B2 holds, but B1 6= B2. But also, bd(B1)\bd(R1) = bd(B2)\bd(R2).
From success and Proposition C.1, we have that bd(R1) ⊆ Σ∗ωR1, and from
the definition of σ (in the hypothesis) Σ∗ωR1 = Σ ∪ bd(R1) \ σ(T (R1)), we
know that σ(T (R1)) ∩ bd(R1) = ∅ = σ(T (R2)) ∩ bd(R2). Therefore, we have
σ(T (R1)) ∩ bd(B1) ⊆ Σ and σ(T (R2)) ∩ bd(B2) ⊆ Σ. Finally, σ(T (R1)) ∩
bd(B1) = σ(T (R2)) ∩ bd(B2) holds, for any such B1. 2

D. Proofs Corresponding to Section 5 – AF Revision Operation

Lemma 5.8 φ⊛ωR = A(K(φ)∗ωR)

Proof: From Observation 5.7, we know that the same incision function applies
for both φ⊛ωR and K(φ)∗ωR. Afterwards, by double inclusion, we will show
that 1) φ⊛ωR ⊆ A(K(φ)∗ωR) and 2) A(K(φ)∗ωR) ⊆ φ⊛ωR.

1) For any B ∈ φ⊛ωR, from Definition 5.5, we know B ∈ A(K(φ)∪bd(R)) and
bd(B) ∩ σ(T (R)) = ∅, where T (R) ∈ T(K(φ)∪bd(R)). Thus, it is easy to see
that, B ∈ A((K(φ)∪bd(R))\σ(T (R))) holds. Finally, from Definition 3.7, we know
B ∈ A(K(φ)∗ωR) holds.

2) For any B ∈ A(K(φ)∗ωR), from Definition 3.7, B ∈ A((K(φ)∪bd(R))\σ(T (R)))

holds, where T (R) ∈ T(K(φ)∪bd(R)). This means that, B ∈ A(K(φ)∪bd(R)) and
bd(B) ∩ σ(T (R)) = ∅. Finally, from Definition 5.5, it is clear that B ∈ φ⊛ωR.

From 1) and 2), we conclude that φ⊛ωR = A(K(φ)∗ωR) holds. 2

Lemma 5.9 K(φ⊛ωR) = K(φ)∗ωR
Proof: From Observation 5.7, we know that the same incision function applies
for both φ⊛ωR and K(φ)∗ωR.

It is easy to see that, K(φ⊛ωR) = K(A(K(φ)∗ωR)) (see Lemma 5.8). Let
us assume Σ′ = K(φ)∗ωR. Afterwards, from Observation 5.4, we have that
K(AΣ′) = Σ′ iff for every β ∈ Σ′, β 6|= ⊥. Afterwards, from Definition 3.7,
we have that β ∈ (K(φ) ∪ bd(R)) which means that β ∈ K(φ) or β ∈ bd(R).
Clearly, β is part either of R or of some argument in φ, which determines,
from Definition 2.1, that β 6|= ⊥. Hence, K(AΣ′) = Σ′ holds, and therefore, by
substituting Σ′, we have that K(A(K(φ)∗ωR)) = K(φ)∗ωR holds. 2

Theorem 5.10 Given a closed AF φ ⊆ AL and R ∈ AL, if K(φ)∗ωR is a smooth
argument revision then φ⊛ωR is a rational AF revision wrt. the postulates in
Theorem 4.6, taking Σ = K(φ) and Σ∗ωR = K(φ⊛ωR).
Proof: Assuming K(φ)∗ωR is a smooth argument revision, from Definition 4.4
we know that there is a smooth global incision function σ such that K(φ)∗ωσR =
K(φ)∗ωR. Besides, from Lemma 5.9, we have thatK(φ⊛ωR) = K(φ)∗ωR, which
means that (according to Observation 5.7) φ⊛ω

σR = φ⊛ωR. Therefore, φ⊛ωR
is a rational AF revision in accordance to Theorem 4.6, and the postulates for
the argument revision operator “∗ω”, taking Σ = K(φ) and Σ∗ωR = K(φ⊛ωR)
(according to Lemma 5.9). 2
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[13] Chesñevar, C., Maguitman, A., Loui, R., 2000. Logical Models of Argu-
ment. ACM Computing Surveys 32 (4), 337–383.
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