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Abstract In this article we explore multiple change operators, i.e., operators
in which the epistemic input is a set of sentences instead of a single sentence.
We propose two types of change: prioritized change, in which the input set is
fully accepted, and symmetric change, where both the epistemic state and the
epistemic input are equally treated. In both kinds of operators we propose a
set of postulates and we present different constructions: kernel changes and
partial meet changes.

Keywords Belief revision · Merging · Multiple change · Belief bases

M. A. Falappa (B) · G. R. Simari
Artificial Intelligence Research and Development Laboratory, Department of Computer
Science and Engineering, Universidad Nacional del Sur (UNS),
Bahía Blanca, Argentina
e-mail: mfalappa@cs.uns.edu.ar

G. R. Simari
e-mail: grs@cs.uns.edu.ar

M. A. Falappa
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Buenos Aires, Argentina

G. Kern-Isberner
Department of Computer Science, University of Dortmund, Dortmund, Germany
e-mail: gabriele.kern-isberner@cs.uni-dortmund.de

M. D. L. Reis
Centro de Ciências Exactas e da Engenharia and Madeira Interactive Technologies Institute,
Universidade da Madeira, Funchal, Portugal
e-mail: m_reis@uma.pt



M.A. Falappa et al.

1 Introduction

1.1 Motivation

The logic of theory change deals with the problem of modeling the dynamics
of knowledge, that is, how the beliefs of a cognitive agent are modified in some
dynamic scenario. Usually, the new information to be adopted is assumed to
be one single sentence, as in classical AGM theory [1, 2, 22, 23]. Our concern in
this paper is to study multiple change operations, i.e., belief change processes
that are induced simultaneously by sets of sentences [19]. In particular, we
will not consider the conjunction of all new sentences as the new piece of
information, since this would reduce the problem to change by singletons.

A good example could be presented in a multi-agent system: suppose a
system in which an agent C is the coordinator of a set of agents. This agent
C decides the destiny of some actions using information from the other agents.
Periodically, agent C needs to query them in order to decide which action will
be performed. Every time C receives information of the agents, it could be seen
as a case of multiple revision. Moreover, this example is a good justification
for the use of multiple change instead of the conjunction of the new sentences.
For instance, if every agent has a credibility degree, we could preserve this
information if we represent the new information by a set of tuples (α, I) where
α represents the belief and I the informant agent. At the knowledge level, the
agent believes in α; at the symbolic level, we add an agent identifier to specify
the reliability of the source.1 Changing the credibility of agents we could
change the entrenchment or plausibility of their associated beliefs. So, most
importantly, multiple change operators offer the possibility to consider incom-
ing information as independent pieces of information which might be treated
differently during the change process. However, using this representation (a
tuple (α, I) instead of a single sentence α) should lead to a non-prioritized
revision although this problem is not addressed in the paper.

In this paper, we will consider two different types of multiple change. In
prioritized change operators, all new beliefs are supposed to be fully accepted.
We do not consider partial acceptance (that is, to accept a proper subset of the
new beliefs) neither disjunctive acceptance (that is, to accept {α ∨ β} instead
of {α, β}). The other change operators are merging operators, allowing prior
and new beliefs to play symmetric roles under the change process. For each
type of change, we propose two operators, one being based on kernels and the
other making use of remainder sets. As the main contribution of this paper, we
characterize all revision and merging operators by sets of postulates. Following
the suggestion of [16], we assume that the paradigm or scenario underlying the

1The distinction about knowledge and symbolic level was proposed by [37]. According to Newell,
the knowledge level lies above the symbolic level where all of the knowledge in the system is
represented. An implicit assumption in Artificial Intelligence is that a knowledge-level system
must contain a symbol system. Following Newell’s unified theory of cognition, the symbol level
corresponds to the cognitive part and the knowledge level to the rational part.
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belief change process could be a computational agent in a multi-agent system
who tries to incorporate information from multiple sources (in the case of
prioritized multiple revision), or an agent who tries to merge its information
with the information provided by another reliable agent (in the case of merge).

1.2 Preliminaries and Notation

We will adopt a propositional language L with a complete set of boolean
connectives: ¬, ∧, ∨, →, ↔. Formulæ in L will be denoted by lowercase Greek
characters: α, β, δ, . . . , ω. Sets of sentences in L will be denoted by uppercase
Latin characters: A, B, C, . . . , Z . The symbol � represents a tautology or
truth. The symbol ⊥ represents a contradiction or falsum. The characters γ

and σ will be reserved to represent selection and incision functions for change
operators respectively. We also use a consequence operator Cn. Cn takes sets
of sentences in L and produces new sets of sentences. The operator Cn satisfies
inclusion (A ⊆ Cn(A)), idempotence (Cn(A) = Cn(Cn(A))), and monotony
(if A ⊆ B then Cn(A) ⊆ Cn(B)). We will assume that the consequence op-
erator includes classical consequences and verifies the standard properties of
supraclassicality (if α can be derived from A by deduction in classical logic,
then α ∈ Cn(A)), deduction (β ∈ Cn(A ∪ {α}) if and only if (α → β) ∈ Cn(A))
and compactness (if α ∈ Cn(A) then α ∈ Cn(A′) for some finite subset A′ of
A). In general, we will write α ∈ Cn(A) as A � α.

1.3 Belief Bases vs. Belief Sets

When we talk about change we also have to talk about the object of change.
Generally, this object of change is the epistemic state of an agent [30].
Different constructions can be used as models of epistemic states, two of
the most commonly used models being belief sets (sets of sentences closed
under logical consequence), and belief bases (sets of sentences not necessarily
closed).

Clearly, the representation of epistemic states by belief sets has many
disadvantages from a computational point of view. A belief set is a very large
entity. For any two sentences α, β in a belief set K then so are α ∨ β, α ∨ ¬β,
α ∨ β ∨ δ, . . . because they are logical consequences of K. If the language is
sufficiently rich, the belief set will contain innumerably many sentences that
the believer has never thought of [30].

It is more natural to think of the epistemic state as being represented by a
limited number of sentences that may (roughly speaking) correspond to the
explicit beliefs. Changes can operate on this smaller set, rather than directly
on the belief set. Such a model is much closer to computational applications
such as knowledge based systems, deductive databases, multi-agent systems,
etc. Moreover, some implementations of changes can be improved using the
method of prime-implicants/implicates of [5]. This method avoids multiple
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satisfiability checking (which is an NP-Complete problem)2 by expressing
beliefs in a specific syntax. The prime canonical forms are important in knowl-
edge representation, because theories compiled into them can be queried in
polynomial time for consistency, validity, clause entailment, implicants, equiv-
alence, sentential entailment and model enumeration [6]. Bienvenu et al. [4]
propose a way to define revision operators which are formula-based yet syntax-
insensitive. They define the revision operators in two steps: first replacing the
belief base by its set of prime implicates and then applying two specific revision
operators. Recently, in [3], sound and complete algorithms for generating and
recognizing prime implicates were presented, showing that prime implicate
recognition task is a PSpace-Complete problem.3

The distinction between belief sets and belief bases is similar to the distinc-
tion between the coherence approach and the foundational approach to belief
revision. The coherence approach focuses on logical relations among beliefs
rather than on inferential relations, that is, no belief is more fundamental than
others [9]. In the coherentist approach, beliefs provide each other with mutual
support; therefore, a belief set represents the limit case of this approach. On
the other hand, the foundational approach divides beliefs into two classes:
explicit beliefs and implicit beliefs. The explicit beliefs are considered as “self-
justified beliefs” whereas the implicit beliefs are seen as beliefs derived, jus-
tified or supported by the explicit beliefs. The foundational approach provides
explanation of beliefs by requiring that each belief is supportable by means
of non-circular arguments from explicit or basic beliefs [9]. Another feature
of the foundational approach is that a belief α may be justified or derived by
several independent beliefs, so that even if some of the justifications for α are
removed, the belief α may be retained because it is supported by other beliefs.4

A belief base is considered to be a good candidate for change according to the
foundational approach.

We may find several advantages and disadvantages for these approaches.
While a definitive conclusion about whether either of these approaches is bet-
ter than the other awaits answers, we believe that the foundational approach
by means of belief bases is better in computational environments such as
argumentative systems [20, 42], truth maintenance systems [8], and multi-agent

2In terms of language recognition, NP is the class of languages decided by nondeterministic Turing
machines in polynomial time [39]. From the perspective of decision problems (a question in some
formal system with a yes-or-no answer), NP is the set of all decision problems where the “yes”-
instances can be recognized in polynomial time by a non-deterministic Turing machine. A problem
P is NP-Complete if P is a problem in NP and all problems in NP can be reduced/transformed to
P. One of the most important characteristics of NP-complete problems is that no efficient solution
to them is known.
3In terms of decision problems, PSpace is the set of all decision problems which can be solved by
a Turing Machine using a polynomial amount of space. The hardest problems in PSpace are the
PSpace-Complete problems. It is suspected that some problems of PSpace-Complete are problems
in PSpace but not in NP.
4In the coherentist approach, if some justification for α is preserved then α is also preserved.
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systems [11, 44]. Although the foundational approach entails syntax depen-
dence of the belief base, this disadvantage can be overcome by normalizing
the belief base using the method of prime-implicants/implicates [5].

1.4 Overview

This article is organized as follows. Section 2 presents different possible oper-
ators for multiple change, giving characteristic postulates. In the following two
sections, we define two prioritized, respectively symmetric multiple revision
operators: multiple kernel revision operator and multiple partial meet revision
operator in Section 3, and kernel merge and partial meet merge in Section 4.
The two latter mentioned sections also contain some connections with specific
related works. Section 5 addresses some related work about multiple change,
and in the last section, we conclude and mention plans for future work. All
proofs can be found in the Appendix.

2 Multiple Changes

In this section we will briefly introduce and discuss multiple change operators.
Moreover, we will propose several postulates to describe multiple change that
adequately generalize postulates for changes by single sentences.

2.1 Prioritized Revision vs. Merging

Suppose that we want to change5 a set K with respect to a set of sentences A.
We may distinguish between different kinds of multiple change.

1. Prioritized change (revision): all sentences of A are to be included in the
new belief base.

2. Symmetric change (merge): K and A are symmetrically treated (i.e., sen-
tences of K and A could be accepted or rejected).

3. Selective change: some sentences of A could be accepted, some others
could be rejected.6

In this work, we will deal with prioritized multiple revision and symmetric
revision, leaving the selective multiple revision as a subject of future work.
The term “multiple revision” is used to refer to operations of revision allowing
simultaneous revision by more than one sentence. It should be distinguished
from “repeated” or “iterated” revision, that is, the application of two or more
revisions in a sequence.

5When we say “change” we may refer to a revision or merge.
6Selective revision was proposed by [14]. However, this model makes use of a single sentence
(instead of a set) as epistemic input.
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For prioritized multiple revision, we might think of making use of classical
AGM revision (i.e., revision by a single sentence) via applying sentential
negation:

Definition 1 (Hansson [25]) The function ¬ is a mapping from set of sentences
to sentences such that, for every finite set A holds:

1. ¬∅ = ⊥.
2. If A = {α} is a singleton then ¬A = ¬α.
3. If A = {α1, . . . , αm} for some m > 1, then ¬A = ¬α1 ∨ . . . ∨ ¬αm.

¬A is the sentential negation of A.

Let ÷ be an AGM contraction operator for K. A way to define a multiple
revision is by using a Generalized Levi Identity:7

K∗A = (K÷¬A) ∪ {A}
Then, the revision can be trivially achieved by expansion, and the axiomatic
characterization could be straightforwardly obtained from the corresponding
characterizations of the traditional models.

The aim of our work is not to define revisions from contractions, but rather
to construct and axiomatically characterize multiple revision operators in a
direct way. For slight, but substantial differences between contraction by single
sentences and contraction by sets of sentences, cf. [19].

2.2 Postulates for Multiple Revision

Let K, A and B be sets of sentences, and ∗ be a binary multiple revision oper-
ator that takes a belief base and a set of sentences as inputs. We propose the
following postulates as reasonable postulates for multiple revision operations:

Inclusion K∗A ⊆ K ∪ A.
Success A ⊆ K∗A.

Weak Success If A is consistent then A ⊆ K∗A.
Relative Success A ⊆ K∗A or K∗A = K.

Consistency If A is consistent then K∗A is consistent.
Vacuity 1 If A is inconsistent then K∗A = K.
Vacuity 2 If K ∪ A � ⊥ then K∗A = K ∪ A.

Uniformity 1 Given A and B two consistent sets, for all subset X of K, if
(X ∪ A) � ⊥ if and only if (X ∪ B) � ⊥ then K \ (K∗A) =
K \ (K∗B).

7The identity used in this paper is in fact a generalization of the (actual) Levi Identity to the case
of multiple operators on belief bases. In Hansson’s PhD thesis the (generalization) of the Levi
Identity to the case of multiple operator on belief sets has been called Levi identity for sets [24].
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Uniformity 2 Given A and B two consistent sets, for all subset X of K, if
(X ∪ A) � ⊥ if and only if (X ∪ B) � ⊥ then K ∩ (K∗A) =
K ∩ (K∗B).

Relevance If α ∈ K \ (K∗A) then there is a set C such that K∗A ⊆
C ⊆ (K ∪ A), C is consistent with A but C ∪ {α} is inconsis-
tent with A.

Core-Retainment If α ∈ K \ (K∗A) then there is a set C such that C ⊆
(K ∪ A), C is consistent with A but C ∪ {α} is inconsistent
with A.

Inclusion says that any change operator between two arbitrary sets is included
in the (unrestricted) union of them. Success gives priority to the new infor-
mation. Weak Success gives priority to the new information only when it is
consistent. Relative Success establishes that all sentences of the input set are
added to the changed set or nothing is changed (except in the limit case in
which some sentences of the input set are in the belief base). Consistency de-
termines that the changed set is consistent whenever the input set is consistent.
Vacuity 1 says that nothing is changed if the input set is inconsistent. Vacuity
2 establishes that if the input set is consistent with the original belief base,
then the changed set is equal to the union of them. Uniformity 1 determines
that if two consistent sets are consistent with the same subsets of the original
belief base K then the respective erased sentences of K should be identical.
Uniformity 2 determines that if two consistent sets are consistent with the same
subsets of the original belief base K then the respective preserved sentences of
K should be identical. Uniformity 2 is an adaptation of Uniformity [26] which is
used in revisions where the epistemic input is just a single sentence. Relevance
and Core-Retainment were adapted from [30] and they express the intuition
that nothing is removed from the original belief base unless its removal in some
way contributes to making the new belief base consistent. Except weak success
and uniformity 1, these postulates are adaptations of similar postulates from
singleton internal revision [29, 30].

2.3 Postulates for Merge

Let K, H, A and B be sets of sentences and ◦ be a binary merge operator
that takes sets of sentences as inputs. We propose the following postulates to
classify reasonable merge operations:

Inclusion K◦A ⊆ K ∪ A.
Symmetry K◦A = A◦K.

Strong Consistency K◦A is consistent.
Congruence If K ∪ A = H ∪ B then K◦A = H◦B.

Vacuity If K ∪ A � ⊥ then K◦A = K ∪ A.
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Reversion If K ∪ A and H ∪ B have the same set of minimal
inconsistent subsets then (K ∪ A) \ (K◦A) = (H ∪
B) \ (H◦B).8

Global Relevance If α ∈ (K ∪ A) \ (K◦A) then there is a set C such
that K◦A ⊆ C ⊆ (K ∪ A), C is consistent but C ∪
{α} is inconsistent.

Global Core-Retainment If α ∈ (K ∪ A) \ (K◦A) then there is a set C such
that C ⊆ (K ∪ A), C is consistent but C ∪ {α} is
inconsistent.

Again, Inclusion makes the union of two sets to be the upper bound of any
merge operation between them. Symmetry establishes that both belief bases
are considered of equal importance. Strong Consistency requires that the
changed belief base must be consistent. Congruence requires that the result
of merge should not depend on syntactic properties of the sentences to be
added or erased: only their logical content should count. Vacuity says that,
if two sets are consistent then the merged set is equal to the union between
them. Reversion says that, if two pairs of sets contain the same minimally
inconsistent subsets then the sentences erased in the respective changes are the
same. Global Relevance and Global Core-Retainment express the intuition
that nothing is removed from the union of the original belief base and the input
set unless its removal in some way contributes to making the new belief base
consistent. Inclusion, Symmetry, Congruence and Global Relevance have been
proposed in [18]; Reversion and Global Core-Retainment have been proposed
in [12].

The following lemma shows some relations among postulates.

Lemma 1

(a) If an operator satisf ies relevance then it satisf ies core-retainment.
(b) If an operator satisf ies global relevance then it satisf ies global core-

retainment.
(c) If an operator satisf ies vacuity 1 and weak success then it satisf ies relative

success.
(d) An operator satisf ies uniformity 1 if and only if it satisf ies uniformity 2.
(e) If an operator satisf ies inclusion, weak success and core-retainment then

it satisf ies vacuity 2.
(f) If an operator satisf ies reversion and inclusion then it satisf ies congruence.
(g) If an operator satisf ies congruence then it satisf ies symmetry.

8Given a set of sentences S, a minimal inconsistent subset of S is a set S′ such that S′ ⊆ S, S′ � ⊥,
and if S′′ ⊂ S′ then S′′

� ⊥. Making use of the notation introduced in Definition 11 this postulate
can be formulated in the following alternative way: If (K ∪ A)⊥⊥⊥ = (H ∪ B)⊥⊥⊥ then (K ∪ A) \
(K◦A) = (H ∪ B) \ (H◦B).
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3 Prioritized Multiple Revision

Suppose that we want to revise an arbitrary set K with respect to another
arbitrary set A without using sentential negation. We may construct two kinds
of multiple revision by generalizing techniques from classical belief (base)
revision [10, 30] :

1. Multiple Kernel Revision.9

2. Multiple Partial Meet Revision.

These two revision operators are syntax dependent and they are based in the
foundational approach. In order to define these constructions, we need to
define two concepts: A-consistent-remainders and A-inconsistent-kernels.

3.1 Kernels and Remainder Sets

Definition 2 Let K, A be sets of sentences, where A is consistent. The set of
A-inconsistent-kernels of K, noted by K⊥⊥⊥ A, is the set of sets X such that:

1. X ⊆ K.
2. X ∪ A is inconsistent.
3. For any X ′ such that X ′ ⊂ X ⊆ K then X ′ ∪ A is consistent.

That is, given a consistent set A, K⊥⊥⊥ A is the set of minimal K-subsets
inconsistent with A.

Definition 3 Let K, A be sets of sentences, where A is consistent. The set of
A-consistent-remainders of K, noted by K⊥⊥� A, is the set of sets X such that:

1. X ⊆ K.
2. X ∪ A is consistent.
3. For any X ′ such that X ⊂ X ′ ⊆ K then X ′ ∪ A is inconsistent.

That is, K⊥⊥� A is the set of maximal K-subsets consistent with A.

Example 1 Suppose that K = {p, p → q, q, ¬r} and A = {¬q, r}. Then we
have that:

– K⊥⊥⊥ A = {{p, p → q}, {q}, {¬r}}.
– K⊥⊥� A = {{p}, {p → q}}.

Observation 1 Let K, A be sets of sentences, A be consistent. Suppose that α ∈
K and α ∈ A. Then α �∈ ⋃

(K⊥⊥⊥ A) and, therefore, A ∩ ⋃
(K⊥⊥⊥ A) = ∅.

Observation 2 Let K, A be sets of sentences, A be consistent. Suppose that α ∈
K and α ∈ A. Then α ∈ X for all X ∈ K⊥⊥� A and, therefore, α ∈ ⋂

(K⊥⊥� A).

9The concept of kernel contraction was introduced in [27].
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Now, we will define two kinds of prioritized multiple revision operators.
However, both operators are not fully prioritized because they do not produce
changes when the new set of beliefs is inconsistent. This intuition is captured
by the postulate of vacuity 1.

3.2 Prioritized Multiple Kernel Revision

The first construction of multiple revision by a set of sentences is based on the
concept of a A-inconsistent-kernels. In order to complete the construction, we
must define an incision function that cuts in every inconsistent-kernel.

Definition 4 Let K be a set of sentences. σ is a consolidated incision function
for K (σ : 22L ⇒ 2L) if and only if, for all consistent set A:

1. σ(K⊥⊥⊥ A) ⊆ ⋃
K⊥⊥⊥ A.

2. If X ∈ K⊥⊥⊥ A then X ∩ (σ (K⊥⊥⊥ A)) �= ∅.

From Observation 1 and Definition 4, it follows that all the sentences of
A are ‘protected’, in the sense that they can not be considered for removing
by the consolidated incision function. That is, a consolidated incision function
selects among the sentences of K \ A that make K ∪ A inconsistent.

Example 2 Let K = {p, p → q, r, s, s → t} and A = {p, ¬q, ¬r}. It follows that
K⊥⊥⊥ A = {{p → q}, {r}}. The one possible consolidated incision function se-
lects {p → q, r}; p could not be selected by σ since p does not belong to any
X ∈ K⊥⊥⊥ A.

Definition 5 Let K be a set of sentences and σ a consolidated incision function
for K. The prioritized multiple kernel revision on K that is generated by σ is
the operator ∗σ such that, for all set A (∗σ : 2L × 2L ⇒ 2L):

K∗σ A =
{

(K \ σ(K⊥⊥⊥ A)) ∪ A if A is consistent
K otherwise

An operator ∗ is a prioritized multiple kernel revision for K if and only if there
is a consolidated incision function σ for K such that for all sets A, K∗A =
K∗σ A.

Example 3 Given K = {p, p → q, q, ¬r}, A = {¬q, r}. and K⊥⊥⊥ A = {{p,

p → q}, {q}, {¬r}}. We have two possible results for the consolidated incision
function and its associated multiple kernel revision operator:

– σ1(K⊥⊥⊥ A) = {p, q, ¬r} and K∗σ1 A = {p → q, ¬q, r}.
– σ2(K⊥⊥⊥ A) = {p → q, q, ¬r} and K∗σ2 A = {p, ¬q, r}.

Theorem 1 An operator ∗ is a prioritized multiple kernel revision for K if and
only if it satisf ies inclusion, consistency, weak success, vacuity 1, uniformity 1
(and uniformity 2), and core-retainment.
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From the definition and the axiomatization, we want to remark some im-
portant differences with AGM revisions: a) the epistemic state is a belief base,
b) the epistemic input is a set of sentences, c) the operator is more intuitive
since it satisfies Weak Success and Vacuity 1. Weak Success ensures the input
set is accepted when it is consistent. Vacuity 1 ensures that the belief base
remains unchanged when the input set is inconsistent. These two postulates
resolve a controversial point of AGM revisions such as success which forces α

to be accepted in the revision of K by α even though α might be inconsistent.
Some models of change in which a weaker version of the success postulate
is considered can be found, for example, in [12, 14, 31, 36].

3.3 Prioritized Multiple Partial Meet Revision

The second construction of multiple revision by a set of sentences is based
on the concept of a A-consistent-remainders. In order to complete the con-
struction, we must define a selection function that selects the ‘best’ consistent
remainders.

Definition 6 Let K be a set of sentences. γ is a consolidated selection function
for K (γ : 22L ⇒ 22L) if and only if, for all set A:

1. If K⊥⊥� A �= ∅ then ∅ �= γ (K⊥⊥� A) ⊆ K⊥⊥� A.
2. If K⊥⊥� A = ∅ then γ (K⊥⊥� A) = {K}.

From Observation 2 and Definition 6, it follows that all the sentences of
K ∩ A are ‘protected’, in the sense that they are included in the intersection of
any collection of remainders. That is, a consolidated selection function selects
a subset of the set K⊥⊥� A whose elements all contain the set K ∩ A.

Example 4 Let K={p, p→q, q, s, s→¬r, u, u→¬r, t} and A = {p, ¬q, s, r}.
It follows that K⊥⊥� A = {{p, s, u, t}, {p, s, u → ¬r, t}}. That is, p and s are in
every A-consistent-remainder, so p and q will be in

⋂
γ (K⊥⊥� A) for any

consolidated selection function γ for K.

Definition 7 Let K be a set of sentences and γ a consolidated selection
function for K. The prioritized multiple partial meet revision on K that is
generated by γ is the operator ∗γ such that, for all set A (∗γ : 2L × 2L ⇒ 2L):

K∗γ A =
{⋂

γ (K⊥⊥� A) ∪ A if A is consistent
K otherwise

An operator ∗ is a prioritized multiple partial meet revision on K if and only
if there is a consolidated selection function γ for K such that for all sets A,
K∗A = K∗γ A.
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Example 5 Given K = {p, p → q, q, ¬r}, A = {¬q, r}. and K⊥⊥� A = {{p},
{p → q}}. We have three possible results for the consolidated selection func-
tion and its associated multiple partial meet revision operator:

– γ1(K⊥⊥� A) = {{p}} and K∗γ1 A = {p, ¬q, r}.
– γ2(K⊥⊥� A) = {{p → q}} and K∗γ2 A = {p → q, ¬q, r}.
– γ3(K⊥⊥� A) = {{p}, {p → q}} and K∗γ3 A = {¬q, r}.

Theorem 2 An operator ∗ is a prioritized multiple partial meet revision for K if
and only if it satisf ies inclusion, consistency, weak success, vacuity 1, uniformity
2 (and uniformity 1), and relevance.

It follows immediately from the the representation Theorems 1 and 2 and
from Lemma 1, that the multiple partial meet revision operators satisfy all
the postulates that axiomatically characterize the multiple kernel revision
operators. Thus, the following corollary holds.

Corollary 1 Let K be a belief base. If ∗ is a multiple partial meet revision for K
then ∗ is a multiple kernel revision for K.

The following example (which has been adapted from a similar one pre-
sented in [30, page 91]) clarifies that the converse of the above corollary does
not hold, i.e., that some multiple kernel revision operators are not multiple
partial meet revision operators.

Example 6 Let p, q and r be logically independent sentences and K = {p, q, r}.
Suppose that A = {¬p ∨ ¬q, ¬p ∨ ¬r}. Suppose that we are applying a priori-
tized multiple kernel revision. Then we have that:

K⊥⊥⊥ A = {{p, q}, {p, r}}
Suppose that σ(K⊥⊥⊥ A) = {p, r}. Then, prioritized multiple kernel revision of
K with respect to A is:

K∗σ A = (K \ σ(K⊥⊥⊥ A) ∪ A = {q, ¬p ∨ ¬q, ¬p ∨ ¬r}
Now, suppose that we are applying a prioritized multiple partial meet

revision. Then we have that:

K⊥⊥� A = {{p}, {q, r}}
If γ is a selection function for K, then K∗γ A = ⋂

(K⊥⊥� A) ∪ A. We have three
cases:

γ1(K⊥⊥� A) = {{p}} and K∗γ1 A = {p, ¬p ∨ ¬q, ¬p ∨ ¬r}.
γ2(K⊥⊥� A) = {{q, r}} and K∗γ2 A = {q, r, ¬p ∨ ¬q, ¬p ∨ ¬r}.
γ3(K⊥⊥� A) = {{p}, {q, r}} and K∗γ3 A = {¬p ∨ ¬q, ¬p ∨ ¬r}.
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Thus, we can immediately conclude that ∗σ is not a multiple partial meet
revision.

From Corollary 1 and Example 6 it follows that kernel operators are more
general than partial meet operators. That is, every partial meet operator can be
modeled by a kernel operator but some kernel operators can not be modeled
by partial meet operators.

3.4 Connection with AGM revision

In order to show the interrelation of these new operators with AGM revision
we will define a revision operator on belief sets from a multiple revision on
belief bases. This idea is similar to the one present in Fuhrmann’s work [17],
namely where contractions for the logical closures of belief bases are defined.

Definition 8 Let K be a belief base. Then K = Cn(K) is the associated belief
set generated from the base K by closing K under a logical consequence
operator Cn.

For a (finite) set A of sentences, let
∧

A denote the conjunction over all
elements of A.

Definition 9 Let K be a belief base and let ∗ be a prioritized multiple kernel
(or partial meet) revision for K. Let A be a set of sentences, K = Cn(K) and
α = ∧

A. The associated revision operator � for K is defined as:

K�α =
{

Cn(K∗A) if A is consistent
Cn(K ∪ A) otherwise

Note that we take the belief base K and a multiple revision operator for
K as the reference point, and the revision of the belief set K = Cn(K) as the
derived technique. This is necessary to avoid the problem of well-definedness
of the associated revision operator. If we take the belief set K as the reference
point then two different bases K, K′ with K = Cn(K) = Cn(K′) might give rise
to different revision operators. That is, we define a revision for K = Cn(K)

from K and a multiple revision operator ∗ for K. The set K is fixed and the
revision of the K depends on K and ∗.

Alchourrón et al. [1] have proposed a basic set of postulates for revision on
belief sets. Let K be a belief set, � a revision operator on K and α, β sentences
of L. The basic postulates for revision are:

AGM-Closure K�α = Cn(K�α).
AGM-Success α ∈ K�α.

AGM-Inclusion K�α ⊆ Cn(K ∪ {α}).
AGM-Vacuity If K � ¬α then K�α = Cn(K ∪ {α}).
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AGM-Consistency If � ¬α then K�α � ⊥.
AGM-Extensionality If � α ↔ β then K�α = K�β.10

It is easy to show that, if � is a revision operator defined as in Definition 9,
then it satisfies the basic postulates for AGM revision.

Proposition 1 Let ∗ be a prioritized multiple kernel (or partial meet) revision
for a belief base K. Let � be a revision operator for the belief set K =
Cn(K) def ined according to Def inition 9. Then � satisf ies AGM-closure,
AGM-success, AGM-inclusion, AGM-vacuity, AGM-consistency and AGM-
extensionality.

Despite this result, we believe it is important to consider multiple revisions
rather than revisions by a single sentence. Suppose that we want to revise a set
K with respect to a set A = {p, q, r}. Suppose also that beliefs are informed
by agents: p and q are informed by the agent Black, and r is informed by the
agent White. With the passage of time, the agent White loses credibility and,
therefore, the credibility of r could be decreased. If we make a revision of
K with respect to

∧
A = p ∧ q ∧ r then we would not have the possibility to

distinguish the credibility of r from the credibility of p and q.
As it was pointed out in [13], in a revision general process, the new

information I may come in very different shapes and forms. In the simplest
scenario, I is a propositional fact. This is the scope of the basic AGM theory.
But I might be much more complex: it can be equipped with a degree of
plausibility or with an informant agent, or have the form of a rule, or consist of
a set of such entities. For the further processing of I, it is crucial for the agent
to know its origin, as this knowledge will influence decisively her willingness to
adopt I. For instance, if I is based on an observation made by the agent herself,
she will usually be convinced of it being true. However, if I is conveyed to her
by another agent, then the agent could require some justification for I. That is
one reason why we believe it is important to define multiple revisions instead
of single revisions.

3.5 Connection with Konieczny & Pino Pérez Merging with Integrity
Constraints

Konieczny and Pino Pérez have been intensely working on merging operators,
in particular with respect to axiomatic characterizations. In [33], they propose
merging operators as a generalization of AGM revision operators and set
up a logical framework for belief base merging in the presence of integrity

10The name extensionality was proposed in [21]. A logic is extensional if it allows logically equiv-
alent sentences to be freely substituted for each other. This postulate is also called preservation
because logical equivalence is preserved [30, page 69].
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constraints (IC) where there is no preference over the belief bases. They define
IC merging operators and a set of postulates to classify three different merging
operators: i) � operators, which resolve conflicts using majority, ii) Max
operators, which are very close to the minimax rule used in decision theory,
and iii) GMax operators, which are operators for arbitration with a more
consensual behavior, trying to satisfy each agent’s goals as far as possible. In
particular, they propose a way to build an IC merging operator from a classical
revision operator. We look on this connection from the other side and explain
in the following how our prioritized multiple revision operators can be seen as
a particular class of IC merging operators.

In [33] the authors suggested that IC are a finite set of formulae (a belief
base) and they usually denote IC as μ. Let ψ1, . . . , ψn be n belief bases
(not necessarily different). According to [33], a belief set 
 is a multi-set
consisting of n belief bases: 
 = {ψ1, . . . , ψn}. ∧


 denotes the conjunction
of all formulas of all belief bases of 
, and the union of the belief bases of 
 is
denoted by �
. Usually, � represents a merging operator.

Definition 10 �μ is said to be an IC merging operator if and only if it satisfies
the following basic postulates (IC7 and IC8 are not presented since they are a
generalization of supplementary postulates for revision):

(IC0) �μ(
) � μ.
(IC1) If μ is consistent then �μ(
) is consistent.
(IC2) If

∧

 is consistent with μ then �μ(
) = ∧


 ∧ μ.
(IC3) If 
1 ↔ 
2 and μ1 ↔ μ2 then �μ1(
1) = �μ2(
2).
(IC4) If ϕ � μ and ϕ′ � μ then �μ(ϕ � ϕ′) ∧ ϕ is consistent if and only if

�μ(ϕ � ϕ′) ∧ ϕ′ is consistent.
(IC5) �μ(
1) ∧ �μ(
2) � �μ(
1 � 
2).
(IC6) If �μ(
1) ∧ �μ(
2) is consistent then it holds that �μ(
1 � 
2) �

�μ(
1) ∧ �μ(
2).

(IC0) assures that the result of the merging satisfies the integrity constraints.
(IC1) states that if the integrity constraints are consistent, then the result
of merging will be consistent. (IC2) establishes that if possible, the result of
merging is the conjunction of the belief bases with the integrity constraints.
(IC3) is the principle of irrelevance of syntax. (IC4) is the fairness postulate,
stating that merging operators must not give undue preference to any of the
belief bases. (IC5) and (IC6) together state that if one could find two subgroups
which agree in at least one alternative, then the result of global merging will
be exactly those alternatives the two groups agree on.

In our approach, if we consider A as a set of integrity constraints and a belief
set consisting of just one belief base K, then (IC0) corresponds to our success
postulate, (IC1) corresponds to weak success, (IC2) corresponds to vacuity 2.
The other postulates can not be compared because they are formulated for the
case in which the belief set contains two or more belief bases.



M.A. Falappa et al.

Finally, we do not compare our multiple revision operators with iterated
belief revision, that is, the repeated application of belief revision operators. It is
easy to check that, if A = {α1, . . . , αn} is a set of logically dependent sentences,
then K∗A is not identical to (. . . ((K ∗ {α1}) ∗ {α2}) ∗ . . .) ∗ {αn}.

4 Merging Operators

Contrary to the absolute preference for new information implicit in the idea
of AGM revision, we may change our beliefs in a non prioritized way. Some
of the most relevant works about non-prioritized change on belief sets are:
credibility limited revision [31], selective revision [14] and screened revision [36];
a work about non-prioritized change on belief bases is [12]. In this section, we
will focus on a special kind of non prioritized change on belief bases called
merging.

Merging is a problem that occurs in several situations, for instance, in
computer science fields where it is necessary to coherently synthesize sev-
eral sources of information. Merging multiple sources of information can be
applied in distributed databases, multi-agent systems, expert systems, data
warehousing, etc. In these situations, it is important to integrate multiple
databases into a single and preferably consistent database. One of the most
important applications of merging is in the integration of expert systems, where
each one has a belief base representing its belief state. In some situations, belief
states can be represented with a propositional language; in other cases, a subset
of a first order logic (such as in logic programs) can be required.

Merging opens the possibility that new evidence is partially or even com-
pletely ignored if old information is suitably well-entrenched. The merge
operation joins old and new information to a consistent whole without giving
possibly undue precedence to the one or the other. The result of a merge op-
eration is only dictated by the informational value rather than the novelty [18].
Konieczny and Pino Pérez [33] focused on belief merging from a semantical
point of view. Here, we present a syntactic approach defining kernel merge
and partial meet merge, in analogy to the respective notions for revision in the
previous section.

4.1 Motivation and Technical Preliminaries

We will present some preliminary concepts in order to define two kinds of
merging operators.

Definition 11 (Hansson [27]) Let K be a belief base and α a sentence. Then
K⊥⊥α is the set such that K′ ∈ K⊥⊥α if and only if K′ ⊆ K, K′ � α, and if
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K′′ ⊂ K′ then K′′
� α. The set K⊥⊥α is called the kernel set of K with respect to

α, and its elements are called the α-kernels of K.

So, the α-kernels of K are the minimal subsets of K that entail α. This
definition is similar to the definition of prime implicants [41] with syntax
dependency. The concept of α-kernel was introduced by Hansson in the
definition of kernel contraction [27].

Definition 12 (Alchourrón et al. [1]) Let K be a set of sentences and α a
sentence. Then K⊥⊥α is the set of all X such that X ∈ K⊥⊥α if and only if X ⊆
K, X � α and if X ⊂ X ′ ⊆ K then X ′ � α. The set K⊥⊥α is called the remainder
set of K with respect to α, and its elements are called the α-remainders of K.

So, the α-remainders of K are the maximal subsets of K that fail to entail α.

4.2 Kernel Merge

In order to define the operator of kernel merge we need to use an incision
function. This function selects sentences to be removed from K ∪ A and it is
called incision function because it makes an incision in every ⊥-kernel.

Definition 13 Let K and A be two belief bases. A general incision function for
K and A is a function σ (σ : 22L ⇒ 2L) such that for any sets K, A ⊆ L, the
following hold:

1) σ((K ∪ A)⊥⊥⊥) ⊆ ⋃
((K ∪ A)⊥⊥⊥).

2) If X ∈ (K ∪ A)⊥⊥⊥ and X �= ∅ then (X ∩ σ((K ∪ A)⊥⊥⊥)) �= ∅.

In the limit case in which (K ∪ A)⊥⊥⊥ = ∅, we have σ((K ∪ A)⊥⊥⊥) = ∅.

Definition 14 Let K and A be belief bases and σ a general incision function.
The operator ◦σ of kernel merge (◦σ : 2L × 2L ⇒ 2L) is defined as K◦σ A =
(K ∪ A) \ σ((K ∪ A)⊥⊥⊥).

An operator ◦ is a kernel merge for K and A if and only if there is a
consolidated incision function σ such that for all sets K and A, K◦A = K◦σ A.

Example 7 Let p, q be logically independent propositional sentences. Suppose
that K = {p, p → q} and A = {p, ¬q}. Then, the set of minimal inconsistent
subsets of K ∪ A is:

(K ∪ A)⊥⊥⊥ = {{p, p → q, ¬q}}
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and, the possible results for a general incision function for K and A, and for its
associated kernel merge are the following:

σ1((K ∪ A)⊥⊥⊥) = {p} and K ◦σ1 A = {p → q, ¬q}.
σ2((K ∪ A)⊥⊥⊥) = {p → q} and K ◦σ2 A = {p, ¬q}.
σ3((K ∪ A)⊥⊥⊥) = {¬q} and K ◦σ3 A = {p, p → q}.
σ4((K ∪ A)⊥⊥⊥) = {p, p → q} and K ◦σ4 A = {¬q}.
σ5((K ∪ A)⊥⊥⊥) = {p, ¬q} and K ◦σ5 A = {p → q}.
σ6((K ∪ A)⊥⊥⊥) = {p → q, ¬q} and K ◦σ6 A = {p}.
σ7((K ∪ A)⊥⊥⊥) = {p, p → q, ¬q} and K ◦σ7 A = ∅.

The mechanism of this operator is to join K and A and then eliminate from
the result all possible inconsistencies by means of an incision function that
makes a “cut” over each minimally inconsistent subset of K ∪ A. Since this
operator uses an incision function and the set of ⊥-kernels, we call it kernel
merge.

Theorem 3 Let K and A be two belief bases. The operator ◦σ is a kernel merge
of K and A if and only if it satisf ies inclusion, strong consistency, global core-
retainment and reversion.

4.3 Partial Meet Merge

In order to define a partial meet version of a merge operator, we need a general
selection function.

Definition 15 A general selection function for L is a function γ (γ : 22L ⇒ 22L)
such that for any X ⊆ L, it holds that:

1) γ (X⊥⊥⊥) ⊆ X⊥⊥⊥.
2) γ (X⊥⊥⊥) �= ∅.

Since every set X ⊆ L contains a consistent subset, X⊥⊥⊥ is always non-
empty.

Definition 16 Let γ be a general selection function. Then γ is an equitable
selection function if, for any X, X ′ ⊆ L, X⊥⊥⊥ = X ′⊥⊥⊥ implies that X \⋂

γ (X⊥⊥⊥) = X ′ \ ⋂
γ (X ′⊥⊥⊥).

The intuition behind this definition is that, if the set of minimally incon-
sistent subsets of K ∪ A is equal to the set of minimal inconsistent subsets of
K′ ∪ A′ then α is erased in the selection of ⊥-remainders of K ∪ A if and only
if it is erased in the selection of ⊥-remainders of K′ ∪ A′ [12].
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Example 8 Let p, q, r, s, t and u be logically independent sentences. For exam-
ple, let K = {p, q, ¬r}, A = {¬q, r, s, t} and B = {¬q, r, u}. Then:

(K ∪ A)⊥⊥⊥ = {{p, q, r, s, t}, {p, ¬q, r, s, t}, {p, q, ¬r, s, t}, {p, ¬q, ¬r, s, t}}
(K ∪ B)⊥⊥⊥ = {{p, q, r, u}, {p, ¬q, r, u}, {p, q, ¬r, u}, {p, ¬q, ¬r, u}}

We have that (K ∪ A)⊥⊥⊥ = (K ∪ B)⊥⊥⊥ = {{q, ¬q}, {r, ¬r}}. Suppose that
γ ((K ∪ A)⊥⊥⊥) = {{p, q, r, s, t}, {p, ¬q, r, s, t}}. Then:

(K ∪ A) \
⋂

γ ((K ∪ A)⊥⊥⊥) = {q, ¬r, ¬q}
Hence, if γ is an equitable selection function then γ ((K ∪ B)⊥⊥⊥) must be
equal to {{p, q, r, u}, {p, ¬q, r, u}} (given that γ ((K ∪ B)⊥⊥⊥) must be such that
(K ∪ B) \ ⋂

γ ((K ∪ B)⊥⊥⊥) = {q, ¬r, ¬q}).

Definition 17 Let K and A be two belief bases and γ an equitable selection
function. The operator ◦γ of partial meet merge (◦γ : 2L × 2L ⇒ 2L) is defined
as K◦γ A = ⋂

γ ((K ∪ A)⊥⊥⊥).
An operator ◦ is a partial meet merge for K and A if and only if there is a

equitable selection function γ such that for all sets K and A, K◦A = K◦γ A.

The mechanism of this operator is to join K and A and then eliminate
from the result all possible inconsistencies by means of an equitable selection
function that makes a choice among the maximally consistent subsets of K ∪ A
and intersect them. Since this operator uses a selection function and the
remainder set, we call it partial meet merge.

Example 9 As in Example 7, let p, q be logically independent propositional
sentences, K = {p, p → q} and A = {p, ¬q}. Then, the set of maximal consis-
tent subsets of K ∪ A is:

(K ∪ A)⊥⊥⊥ = {{p, p → q}, {p, ¬q}, {p → q, ¬q}}
and, the possible results for an equitable selection function and for its associ-
ated partial meet merge for K and A are the following:

γ1((K ∪ A)⊥⊥⊥) = {{p, p → q}} and K ◦γ1 A = {p, p → q}.
γ2((K ∪ A)⊥⊥⊥) = {{p, ¬q}} and K ◦γ2 A = {p, ¬q}.
γ3((K ∪ A)⊥⊥⊥) = {{p → q, ¬q}} and K ◦γ3 A = {p → q, ¬q}.
γ4((K ∪ A)⊥⊥⊥) = {{p, p → q}, {p, ¬q}} and K ◦γ4 A = {p}.
γ5((K ∪ A)⊥⊥⊥) = {{p, p → q}, {p → q, ¬q}} and K ◦γ5 A={p → q}.
γ6((K ∪ A)⊥⊥⊥) = {{p, ¬q}, {p → q, ¬q}} and K ◦γ6 A = {¬q}.
γ7((K ∪ A)⊥⊥⊥) = {{p, p → q}, {p, ¬q}, {p → q, ¬q}} and K◦γ7 A=∅.

Fuhrmann presented the following representation theorem, including the
postulate of congruence, for this kind of operators.
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Theorem 4 (Fuhrmann [18]) Let K and A be two belief bases. The operator ◦γ

is a partial meet merge of K and A if and only if it satisf ies inclusion, strong
consistency, global relevance and congruence.

The next result consists of an alternative axiomatic characterization which
makes use of reversion (cf. item ‘f’ of Lemma 1).

Theorem 5 Let K and A be two belief bases. The operator ◦γ is a partial meet
merge of K and A if and only if it satisf ies inclusion, strong consistency, global
relevance and reversion.

Since, according to Lemma 1, if global relevance is satisfied then global
core-retainment is satisfied, it follows immediately from Theorems 3 and 5 that
every partial meet merge is a kernel merge. On the other hand, by looking at
the constructions, is easy to conclude that every kernel (or partial meet) merge
satisfies vacuity and symmetry. These facts are formally stated in the following
corollary.

Corollary 2 Let K and A be two belief bases:

a) If ◦ is a partial meet merge for K and H then ◦ is a kernel merge for K
and H.

b) If ◦ is a kernel merge for K and H then it satisf ies vacuity and symmetry.

More relations between partial meet and kernel operators can be found
in [10].

4.4 Connection with Other Merging Operators

Konieczny and Pino Pérez proposed merging operators without integrity
constraints, called pure merging operators [32]. With the same preliminaries as
in Section 3.5, the operator � merges a belief set 
 to a belief base �(
). � is
said to be a pure belief merging operator if and only if it satisfies the following
postulates:

(A1) �(
) is consistent.
(A2) If

∧

 is consistent then �(
) = ∧


.
(A3) If 
1 ↔ 
2 then �(
1) = �(
2).
(A4) If ψ1 ∧ ψ2 is not consistent then �(ψ1 � ψ2) � ψ1.
(A5) �(
1) ∧ �(
2) � �(
1 � 
2).
(A6) If �(
1) ∧ �(
2) is consistent then �(
1 � 
2)��(
1) ∧ �(
2).

(A1) and (A2) correspond to our postulates strong consistency and vacuity
respectively. (A3) is the principle of the irrelevance of syntax, i.e., if two belief
sets are equivalent then the belief bases resulting from merging each of the
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two sets will be logically equivalent; such a postulate is not present in our
framework in which the result of merging depends on the belief bases’ syntax.
(A4) establishes that, if two belief bases are inconsistent then some belief
of each of them will be discarded in their merging; this postulate can be
approximated by global core-retainment and global relevance. (A5) and (A6)
state that if one can find two subgroups which agree in at least one alternative,
then the result of global merging will be those alternatives the two groups agree
on. These last two postulates are not present in our framework.

Konieczny and Pino Pérez further observed that there are syntactically
merging operators which do not satisfy the principle of irrelevance of syntaxis
(AC3), similar to our approach of merging and the partial meet merge pro-
posed in [18]. However, we proposed an alternative construction, called kernel
merge, giving an axiomatic characterization of it and an alternative axiomatic
characterization of partial meet merge.

Finally, since our merging operator satisfies congruence and, therefore, also
satisfies symmetry (see Lemma 1), we can conclude that kernel and partial
meet merge are commutative operators, as are the arbitration operators (dif-
ferent from arbitration operators formulated by Konieczny and Pino Pérez)
presented in [34, 35]. A deep comparison with arbitration operators of Liber-
atore and Schaerf is not presented here because it has been show that these
operators can be characterized by IC merging operators [33].

4.5 Connection with Consolidation

Hansson proposed an operator, called consolidation, to make a belief base
consistent [24]. A possible way to perform a consolidation it is to contract by
falsum (contradiction). Let K be a belief base and ! be a consolidation operator
for K. The following postulates have been proposed for consolidation [24, 28]:

(C-Consistency) K! is consistent.
(C-Inclusion) K! ⊆ K.

(C-Core-Retainment) If α ∈ (K \ K!) then there is some K′ with K′ ⊆ K
such that K′ is consistent but K′ ∪ {α} is inconsistent.

(C-Relevance) If α ∈ (K \ K!) then there is some K′ with K! ⊆ K′ ⊆
K such that K′ is consistent but K′ ∪ {α} is inconsis-
tent.

C-Consistency states that a consolidated belief base must be consistent. C-
Inclusion determines that nothing is added in a consolidation process. C-Core-
Retainment and C-Relevance state that if some belief is excluded when a belief
base is consolidated, then it must have contributed to making the original belief
base inconsistent.

In a later work, Hansson identified two kind of consolidation operators:
kernel consolidations and partial meet consolidations. In particular, kernel
consolidations are based on the following observation: a subset of K implies
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a sentence α if and only if it contains some minimal α-implying subset of K. In
order to remove α from K, it is necessary and sufficient to remove at least one
element from each minimal α-implying subset of K. A kernel consolidation of
K removes at least one sentence of every minimal inconsistent subset of K.

Definition 18 An operation ! is a kernel consolidation for K if there exists an
incision function σ for K such that:

K! = K \ σ(K⊥⊥⊥)

Theorem 6 (Hansson [28]) Let K be a belief base. An operation ! is a kernel
consolidation for K if and only if it satisf ies C-consistency, C-inclusion and
C-core-retainment.

Partial meet consolidations are based on a partial meet contraction by
falsum. The partial meet consolidation of K is the intersection of the most
preferred maximal consistent subsets of K.

Definition 19 An operation ! is a partial meet consolidation for K if there exists
a selection function γ for K such that:

K! =
⋂

γ (K⊥⊥⊥)

Theorem 7 (Hansson [28]) Let K be a belief base. An operation ! is a partial
meet consolidation for K if and only if it satisf ies C-consistency, C-inclusion
and C-relevance.

We want to characterize a particular class of partial meet consolidations
based on equitable selection functions.

Definition 20 An operation ! is an equitable partial meet consolidation for K if
there exists an equitable selection function γ such that:

K! =
⋂

γ (K⊥⊥⊥)

Fuhrmann proposed a way to define merge from consolidation and vice
versa [18]. However, he proposed the definition only for partial meet merge
and partial meet consolidation. Here we extend the proposal for the case of
kernel merge and kernel consolidation.

Definition 21 Let K1, K2 be sets of sentences and ! be a consolidation operator
for K1 ∪ K2. Then, the merge of K1 and K2, noted by K1◦K2, is defined as:

K1◦K2 = (K1 ∪ K2)!
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Having in mind Definitions 14, 17, 18 and 20 it is easy to show that if !
is a kernel (equitable partial meet) consolidation operator then ◦, defined
according to Definition 21, is a kernel (partial meet) merge operator.

Proposition 2 Let K1, K2 be sets of sentences and ! be a consolidation op-
erator for K1 ∪ K2. Let ◦ be the merge of K1 and K2 def ined according to
Def inition 21. Then the following statements hold:

1. If ! is a kernel consolidation then ◦ is a kernel merge.
2. If ! is an equitable partial meet consolidation then ◦ is a partial meet merge.

Definition 22 Let K be a set of sentences and ◦ be a merge operator for K and
K. Then, the consolidation of K, noted by K!, is defined as:

K! = K◦K

Now, taking into account Definitions 14, 17, 18 and 19 it is easy to show
that if ◦ is a kernel (partial meet) merge operator then !, defined according to
Definition 22, is a kernel (partial meet) consolidation operator.

Proposition 3 Let K be a set of sentences and ◦ be a merge operator for K and
K. Let ! be the consolidation of K def ined according to Def inition 22. Then the
following statements hold:

1. If ◦ is a kernel merge then ! is a kernel consolidation.
2. If ◦ is a partial meet merge then ! is a partial meet consolidation.

5 Related Works

There are some other relevant works related to multiple change. We begin by
recalling works on multiple revision. Peppas [40] defines a multiple revision
operator with respect to a (possibly infinite) set of sentences using Grove’s
sphere system. Contrary to our approach focusing on sets of sentences, Peppas
proposed ways to reduce multiple revision to classical AGM sentence revision,
devising a particular condition which is shown to be necessary and sufficient for
such a reduction.

Revision and expansion operators of logic programs by answer set semantics
have been proposed in [7]. They gave properties for their operators also con-
sidering their complexity. Expansion is characterized in terms of intersections
of models, and revision is characterized in terms of minimal distance between
models. Here, we consider multiple revision in a more general classical-logical
environment.

Furthermore, and at first sight less related to our work, some work has been
done on multiple contraction. Niederée [38] introduced the concept of multiple
or simultaneous contraction, showing that recovery cannot be satisfied in
such cases. van der Hoek and de Rijke [43] study an approach to concurrent
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contraction. They assume the existence of a set of agents simultaneously
contracting their beliefs. The epistemic input is a vector of sentences that
represents the sentences that should be contracted from each agent’s epistemic
state. Zhang and Foo [45] extend the AGM theory to deal with inf initary belief
change, representing the epistemic states by belief sets. They generalize both
axiomatization and modeling of the AGM theory by extending to the case in
which the epistemic input is a set of sentences. They show that most properties
of AGM model are inherited.

In [19] two ways of multiple partial meet contraction are defined: package
contraction, where all the sentences of the epistemic input must be removed
from a belief set, and choice contraction, where it is sufficient that at least one
of the sentences is removed. Fermé et al. [15] proposed kernel versions of pack-
age and choice contractions for belief bases. Comparing the results of these last
two papers and our definitions of multiple kernel revision (Definition 5) and
of multiple partial meet revision (Definition 7) it seems that multiple partial
meet revision could be defined from partial meet package contraction [19],
and similarly, multiple kernel revision from kernel package contraction [15]
via a Generalized Levi identity. However, the confirmation of this conjecture
requests for a more detailed investigation which we leave as a subject of future
work.

Suppose that ÷ is a package contraction (partial meet or kernel) for
a belief base K. Given a set A = {α1, . . . , αn}, then we can define ¬A =
{¬α1, . . . , ¬αn}. Then we can define a prioritized multiple revision for K from
the package contraction by K∗A = (K÷¬A) ∪ A. Moreover, since choice
contraction allows to select the beliefs to be discarded, we could define a
prioritized multiple revision for K from a choice contraction giving place
to a multiple selective revision operator. This operator, similar to selective
revision by a single sentence [14], is an operator that can accept a subset of
the new information. However, it should be noted that the notions of package
remainders and package kernels defined in those papers do not correspond
to our definitions of A-consistent remainders and A-inconsistent kernels, so a
more thorough investigation has to be done.

The significance of our work can be summarized in the following items
(one concerning operators of belief revision and the other operators of belief
merge):

– We have defined two new kinds of prioritized multiple revision operators
on belief bases and obtained axiomatic characterizations for them: prior-
itized multiple kernel revision and prioritized multiple partial meet revi-
sion. These operators of multiple change are based in two new concepts:
A-inconsistent-kernels and A-consistent-remainders, respectively. Thus,
we have presented a way of constructing multiple revision operators
without needing to make use of the Generalized Levi’s identity nor of a
previously defined multiple contraction operator.

– We have proposed an alternative axiomatization for partial meet merge
(which was originally proposed and axiomatically characterized by
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Fuhrmann) and, additionally, we have defined a new kind of merge opera-
tors called kernel merge which constitute a more general class than that of
partial meet merge. Also for such operators, we presented representation
theorems to characterize them by axioms.

6 Conclusions and Future Work

In this paper we presented different approaches to multiple change. We
proposed a set of postulates and constructed two main families of change op-
erators: prioritized multiple change operators, and merge or symmetric change
operators. In either case, we presented different constructions via kernel
change and partial meet change techniques. For prioritized changes, we found
axiomatic characterizations for multiple kernel revision and multiple partial
meet revision.

One of the contribution of our work is the construction of the prioritized
revision operators. They are based on minimal inconsistent kernels (for pri-
oritized multiple kernel revision) and maximal consistent remainders (for
prioritized multiple partial meet revision). We proposed a set of postulates
and some relations among them.

Analogously, we proved representation theorems for kernel merge and par-
tial meet merge. From the representation theorems, its clear that each partial
meet operator is a kernel operator. As part of our future work, we will study
selective multiple revision, that is, revisions in which only a subset of the
epistemic input is accepted. Also, we want to define multiple semi-revision
operators from merge operators. Finally, we want to investigate the interre-
lations between operators of prioritized multiple partial meet revision and of
prioritized multiple kernel revision, on the one hand side, multiple partial meet
contraction [19] and multiple kernel contraction [15], on the other.
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Appendix

Proof of Lemma 1

The items (a), (b), (c) and (g) are trivially shown. We will prove the items (d),
(e) and (f).

(d) Uniformity 1 implies Uniformity 2: We must show that:

if K \ (K∗A) = K \ (K∗B) then K ∩ (K∗A) = K ∩ (K∗B)
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By set properties, it holds that:

K = (K ∩ (K∗A)) ∪ (K \ (K∗A))

where (K ∩ (K∗A)) ∩ (K \ (K∗A)) = ∅. Similarly, it holds that:

K = (K ∩ (K∗B)) ∪ (K \ (K∗B))

where (K ∩ (K∗B)) ∩ (K \ (K∗B)) = ∅. Therefore, we can conclude that
K ∩ (K∗A) = K ∩ (K∗B).
Uniformity 2 implies Uniformity 1: We must show that:

if K ∩ (K∗A) = K ∩ (K∗B) then K \ (K∗A) = K \ (K∗B)

Using set properties, the proof is similar to the above case.
(e) Let ◦ be an operator that satisfies inclusion, weak success and core-

retainment, and assume that K ∪ A � ⊥. We must show that K∗A =
K ∪ A.

(⊆) By inclusion it holds that K∗A ⊆ K ∪ A.
(⊇) Since K ∪ A � ⊥ then A is consistent and by weak success it holds

that A ⊆ K∗A. It remains to show that K ⊆ K∗A. By reductio
ad absurdum, suppose that K �⊆ K∗A. Therefore, there is some
α ∈ K \ K∗A. Due to core-retainment, there is a set C such that
C ⊆ (K ∪ A), C is consistent with A but C ∪ {α} is inconsistent with
A. But this is absurd because K ∪ A � ⊥. Therefore K ⊆ K∗A and
K ∪ A ⊆ K∗A.

(f) Let ◦ be an operator that satisfies reversion and inclusion, and assume
that K ∪ A = H ∪ B. Due to reversion, (K ∪ A) \ (K◦A) is equal to
(H ∪ B) \ (H◦B). Therefore, by inclusion it holds that K◦A = H◦B and
congruence is satisfied.

Proof of Observation 1

Let K, A be sets of sentences, A be consistent. Suppose that α ∈ K and α ∈ A.
We must show that α �∈ ⋃

(K⊥⊥⊥ A).
By reductio ad absurdum, suppose that α ∈ ⋃

(K⊥⊥⊥ A). Then, there is some
X ∈ K⊥⊥⊥ A such that α ∈ X. By Definition 2 then:

(1) X ⊆ K.
(2) X ∪ A is inconsistent.
(3) For any X ′ ⊂ X ⊆ K then X ′ ∪ A is consistent.

But this is absurd. Indeed, condition (3) is not satisfied because X ′′ = X \ {α}
is such that X ′′ ∪ A is inconsistent due to (2) and the fact that X ′′ ∪ A is equal
to X ∪ A. Therefore, α �∈ ⋃

(K⊥⊥⊥ A).
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Proof of Observation 2

Let K, A be sets of sentences, A be consistent. Suppose that α ∈ K and α ∈ A.
We must show that α ∈ ⋂

(K⊥⊥� A).
By reductio ad absurdum, suppose that α �∈ ⋂

(K⊥⊥� A). Then, there is some
X ∈ K⊥⊥� A such that α �∈ X. By Definition 3 then:

(1) X ⊆ K.
(2) X ∪ A is consistent.
(3) For any X ⊂ X ′ ⊆ K then X ′ ∪ A is inconsistent.

But this is absurd. Indeed, condition (3) is not satisfied because X ′′ = X∪ {α}
is such that X ′′ ∪ A is consistent due to (2) and the fact that X ′′ ∪ A is equal
to X ∪ A. Therefore, α ∈ ⋂

(K⊥⊥� A).

Proof of Theorem 1

– Construction to Postulates. Let σ be an arbitrary consolidated incision
function for K and ∗σ be the prioritized multiple kernel revision on K that
is generated by σ . Then, for all sets A:

K∗σ A =
{

(K \ σ(K⊥⊥⊥ A)) ∪ A if A is consistent
K otherwise

We must show that ∗σ satisfies all the enumerated postulates.

Inclusion Trivial by definition.
Consistency Suppose that A is consistent. Since σ(K⊥⊥⊥ A) cuts

every subset of K inconsistent with A then K \
σ(K⊥⊥⊥ A) is consistent with A. Therefore, K \
σ(K⊥⊥⊥ A) ∪ A is consistent.

Weak Success Suppose that A is consistent. Then it is trivial by
definition that A ⊆ K∗σ A.

Vacuity 1 Trivial by definition.
Uniformity 1 Given A and B two consistent sets, suppose that

for all subset X of K, (X ∪ A) � ⊥ if and only if
(X ∪ B) � ⊥. Then K⊥⊥⊥ A = K⊥⊥⊥ B and since σ is
a well defined function then σ(K⊥⊥⊥ A) = σ(K⊥⊥⊥ B).
Therefore, K \ (K∗σ A) = K \ (K∗σ B).

Core-Retainment Let β ∈ K and β �∈ K∗σ A. Then K∗σ A �= K and, from
the definition of ∗σ , it follows that:

K∗σ A = (K \ σ(K⊥⊥⊥ A)) ∪ A

Therefore, from β �∈ (K \ σ(K⊥⊥⊥ A)) ∪ A and β ∈ K,
we can conclude that β ∈ σ(K⊥⊥⊥ A). By definition
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σ(K⊥⊥⊥ A) ⊆ ⋃
K⊥⊥⊥ A, and it follows that there is

some X ∈ K⊥⊥⊥ A such that β ∈ X. X is a minimal K-
subset inconsistent with A. Let Y = X \ {β}. Then Y
is such that Y ⊂ X ⊆ K ⊆ K ∪ A, Y is consistent with
A but Y ∪ {β} is inconsistent with A.

– Postulates to Construction. Let K be a set of sentences and ∗ be an operator
on K that satisfies the enumerated postulates. We must show that ∗ is a
prioritized multiple kernel revision. Let σ be a function such that, for every
set K and for every consistent set A, it holds that:

σ(K⊥⊥⊥ A) = {α : α ∈ (K \ (K∗A)}

We must show:
Part A.

1. σ is a well defined function. Given A and B two consistent sets,
suppose that K⊥⊥⊥ A = K⊥⊥⊥ B. It follows from uniformity 1 that
K \ (K∗A) = K \ (K∗B). Therefore:

σ(K⊥⊥⊥ A) = σ(K⊥⊥⊥ B)

2. σ(K⊥⊥⊥ A) ⊆ ⋃
K⊥⊥⊥ A. Let α ∈ σ(K⊥⊥⊥ A). Then α ∈ K \ K∗A.

Due to core-retainment there is some C such that C ⊆ (K ∪ A), C ∪
A � ⊥ but C ∪ A ∪ {α} � ⊥. Now let X be an arbitrary element of C ∪
{α}⊥⊥⊥ A (notice that it follows from C ∪ {α} ∪ A � ⊥ and C ∪ A � ⊥
that C ∪ {α}⊥⊥⊥ A �= ∅). Then X is such that X ⊆ C ∪ {α}, X ∪ A � ⊥
and, for any X ′ such that X ′ ⊂ X, it holds that X ′ ∪ A � ⊥. From
all the above facts we can conclude that α ∈ X and that X ∩ A = ∅.
Hence, combining the latter equality with X ⊆ C ∪ {α} and C ⊆ (K ∪
A) we obtain that X ⊆ K. Therefore, X ∈ K⊥⊥⊥ A and, since α ∈ X,
we can conclude that α ∈ ⋃

(K⊥⊥⊥ A).
3. If X ∈ K⊥⊥⊥ A then X ∩ (σ (K⊥⊥⊥ A)) �= ∅. Let X ∈ K⊥⊥⊥ A. We need

to show that X ∩ σ(K⊥⊥⊥ A) �= ∅. Suppose that A is consistent. By
consistency then K∗A is consistent. Since X is inconsistent with A then
X �⊆ K∗A by weak success. This means that there is some β ∈ X and
β �∈ K∗A. Therefore, β ∈ σ(K⊥⊥⊥ A).

Part B. ∗σ is equal to ∗, that is, K∗σ A = K∗A, for any set A. Vacuity
1 covers the limit case in which A is inconsistent. Suppose that A is
consistent.

(⊇) Let α ∈ K∗A. It follows from the definition of σ(K⊥⊥⊥ A) that
α �∈σ(K⊥⊥⊥ A). By inclusion it holds that K∗A ⊆ K ∪ A and α ∈
K ∪ A. Therefore, by definition of ∗σ , α ∈ K∗σ A.

(⊆) Let α �∈ K∗A. We must show that α �∈ K∗σ A. By weak success
we have that α �∈ A. Since by definition K∗σ A is equal to
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(K \ σ(K⊥⊥⊥ A)) ∪ A then it only remains to show that α �∈ K \
σ(K⊥⊥⊥ A). To do that we consider two cases:

– α �∈ K. Then it follows trivially that α �∈ K \ σ(K⊥⊥⊥ A).
– α ∈ K. Then it follows from the definition of σ(K⊥⊥⊥ A) that α ∈

σ(K⊥⊥⊥ A) and, therefore, α �∈ K \ σ(K⊥⊥⊥ A).

Proof of Theorem 2

– Construction to Postulates. Let γ be an arbitrary consolidated selection
function for K and ∗γ be the prioritized multiple partial meet revision on
K that is generated by γ . Then, for all sets A:

K∗γ A =
{⋂

γ (K⊥⊥� A) ∪ A if A is consistent
K otherwise

We must show that ∗γ satisfies all the enumerated postulates.

Inclusion Since every X ∈ K⊥⊥� A is such that X ⊆ K then this
postulate is trivially shown.

Consistency Suppose that A is consistent. Then K⊥⊥� A �= ∅ and by
definition, every X ∈ K⊥⊥� A is consistent with A. There-
fore, the intersection of any subset of K⊥⊥� A is consistent
with A. Finally, K∗γ A is consistent and we are done.

Weak Success Suppose that A is consistent. Then it is trivial by definition
that A ⊆ K∗γ A.

Vacuity 1 Trivial by definition.
Uniformity 2 Given two consistent sets A and B, suppose that for

all subsets X of K, (X ∪ A) � ⊥ if and only if (X ∪
B) � ⊥. We must show that K ∩ (

⋂
γ (K⊥⊥� A) ∪ A) =

K ∩ (
⋂

γ (K⊥⊥� B) ∪ B). We start by observing that:

K ∩
(⋂

γ
(
K⊥⊥� A

) ∪ A
)

=
(

K ∩
(⋂

γ (K⊥⊥� A)
))

∪ (K ∩ A)

=
(⋂

γ (K⊥⊥� A)
)

∪ (K ∩ A)

=
⋂

γ (K⊥⊥� A)

where the last equality above is due to the fact that
K ∩ A ⊆ X for all X ∈ K⊥⊥� A (see Observation 2) and,
consequently, K ∩ A ⊆ ⋂

γ (K⊥⊥� A). Analogously:

K ∩
(⋂

γ
(
K⊥⊥� B

) ∪ B
)

=
⋂

γ (K⊥⊥� B).

Since γ is a well defined function then γ (K⊥⊥� A) =
γ (K⊥⊥� B) (notice that K⊥⊥� A = K⊥⊥� B follows from our
assumption that for all subsets X of K, (X ∪ A) � ⊥



M.A. Falappa et al.

if and only if (X ∪ B) � ⊥). Therefore,
⋂

γ (K⊥⊥� A) =⋂
γ (K⊥⊥� B). Hence:

K ∩
(⋂

γ (K⊥⊥� A) ∪ A
)

= K ∩
(⋂

γ (K⊥⊥� B) ∪ B
)

Relevance Suppose that K⊥⊥� A �= ∅. Let β ∈ K and β �∈ K∗γ A. Then
there is some X ∈ K⊥⊥� A such that β �∈ X. Therefore,
there is some X such that β �∈ X ⊆ K, X ∪ A is consistent
but X ∪ A ∪ {β} is inconsistent and we are done.
Suppose that K⊥⊥� A = ∅ in which case A is inconsis-
tent. By definition, K∗γ A = K and relevance is vacuously
satisfied.

– Postulates to Construction. Let K be a set of sentences and ∗ be an operator
on K that satisfies the enumerated postulates. We must show that ∗ is a
prioritized multiple partial meet revision. Let γ be a function such that, for
every set A, it holds that:

• γ (K⊥⊥� A) = {K} whenever K⊥⊥� A = ∅.
• γ (K⊥⊥� A)={X ∈ K⊥⊥� A : (K ∩ (K∗A)) ⊆ X} whenever K⊥⊥� A �=∅.

We must show:
Part A.

1. γ is a well defined function. Suppose that K⊥⊥� A = K⊥⊥� B for A and
B two consistent sets. It follows from uniformity 2 that K ∩ (K∗A) =
K ∩ (K∗B). Hence γ (K⊥⊥� A) = γ (K⊥⊥� B).

2. If K⊥⊥� A = ∅ we must show that γ (K⊥⊥� A) = {K}. It follows from the
definition of γ .

3. If K⊥⊥� A �= ∅ we must show that ∅ �= γ (K⊥⊥� A) ⊆ K⊥⊥� A. It follows
from the definition of γ that γ (K⊥⊥� A)⊆ K⊥⊥� A. Now we prove
that γ (K⊥⊥� A) �= ∅. By weak success it holds that A ⊆ K∗A and,
consequently (K ∩ (K∗A)) ∪ A ⊆ K∗A. On the other hand, it follows
from consistency that K∗A � ⊥ and, therefore, we can conclude that
(K ∩ K∗A) ∪ A � ⊥. Hence, there must be some set X ∈ K⊥⊥� A such
that K ∩ K∗A ⊆ X. Thus γ (K⊥⊥� A) �= ∅.

Part B. ∗γ is equal to ∗, that is, K∗γ A = K∗A, for any set A. Vacuity
1 covers the limit case in which A is inconsistent. Suppose that A is
consistent.

(⊇) Let α ∈ K∗A. We must show that α ∈ K∗γ A. We have two cases:

– α ∈ A then it is trivial that α ∈ K∗γ A.
– α �∈ A. By inclusion it holds that K∗A ⊆ K ∪ A and we can

conclude that α ∈ K. Therefore, α ∈ K ∩ K∗A. Hence, it follows
from the definition of γ that α ∈ X for all X ∈ γ (K⊥⊥� A) and we
are done.
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(⊆) Let α �∈ K∗A. We must show that α �∈ K∗γ A. If α �∈ K∗A we need to
find some X ∈ γ (K⊥⊥� A) such that α �∈ X. We have two cases:

– α ∈ K. By relevance there exists some C such that K∗A ⊆
C ⊆ (K ∪ A), C ∪ A � ⊥ and C ∪ A ∪ {α} � ⊥. Then we may
infer that α �∈ A and α �∈ C. Let H = K ∩ C. Then α �∈ H, (K ∩
(K∗A)) ⊆ H ⊆ K, H ∪ A � ⊥ and H ∪ A ∪ {α} � ⊥. Then we
may extend H to a maximal subset X of K consistent with A
such that (K ∩ (K∗A)) ⊆ X and α �∈ X. Hence, X ∈ γ (K⊥⊥� A)

and α �∈ X.
– α �∈ K. Then no set in K⊥⊥� A will contain α.

Proof of Proposition 1

Let K be a belief base and ∗ be either a prioritized multiple kernel revision or
a prioritized multiple partial meet revision for K. It follows from Theorems 1
and 2 and Lemma 1, items (a) and (d), that ∗ satisfies inclusion, consistency,
weak success, vacuity 1, uniformity 1, uniformity 2 and core-retainment. Let
K = Cn(K) and � be a revision operator for K defined, for any sentence
α, by:

K�α =
{

Cn(K∗A) if A is consistent
Cn(K ∪ A) otherwise

where A is any set of sentences such that α = ∧
A.

AGM-Closure Straightforward from definition.
AGM-Success Straightforward from definition and ∗-weak success.

AGM-Inclusion Straightforward from definition and ∗-inclusion.
AGM-Vacuity If K � ¬α then K ∪ {α} � ⊥. From definition K ∪ A �

⊥. From item (e) of Lemma 1, since ∗ satisfies inclu-
sion, weak success and core-retainment then ∗ satisfies
vacuity 2. Therefore, from definition and ∗-vacuity 2
then AGM-vacuity is satisfied.

AGM-Consistency Straightforward from ∗-consistency.
AGM-Extensionality Let A and B two sets of sentences such that α = ∧

A
and β = ∧

B and suppose that � α ↔ β. It follows
immediately from the respective definitions that if
∗ is a prioritized multiple kernel revision or a pri-
oritized multiple partial meet revision then it holds
that, for any consistent set A, K∗A = (K ∩ K∗A) ∪
A (i). By Observation 1.13 of [30], we have that
Cn(X ∪ Y) = Cn(X ∪ Cn(Y)) (ii). By hypothesis, we
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know that Cn(A) = Cn(B) (iii) and, by uniformity 2,
K ∩ (K∗A) = K ∩ (K∗B) (iv). Therefore:

Cn(K∗A) = Cn((K ∩ K∗A) ∪ A) from (i)

= Cn((K ∩ K∗A) ∪ Cn(A)) from (ii)

= Cn((K∩K∗B)∪Cn(B)) from (iii) and (iv)

= Cn((K ∩ K∗B) ∪ B) from (ii)

= Cn(K∗B) from (ii)

Therefore, AGM-extensionality is satisfied.

Proof of Theorem 3

– Construction to Postulates Let ◦ be a kernel merge for K. We must show
that ◦ satisfies the postulates enumerated in the theorem. Let K◦A = (K ∪
A) \ (σ ((K ∪ A)⊥⊥⊥)).

Inclusion Straightforward from the definition.
Strong Consistency Since all sets in (K ∪ A)⊥⊥⊥ are minimally

inconsistent, and σ cuts every set in it, then
(K ∪ A) \ σ((K ∪ A)⊥⊥⊥) is consistent.

Global Core-Retainment Suppose that α∈(K∪ A) \ (K◦A). That is, α∈
K∪ A and α �∈ K◦A. Then α∈σ((K∪ A)⊥⊥⊥).
Since σ((K∪ A)⊥⊥⊥)⊆⋃

((K∪ A)⊥⊥⊥) there
is some X such that α ∈ X and X ∈ (K ∪
A)⊥⊥⊥. Let Y = X \ {α}. Then Y is such that
Y ⊆ (K ∪ A), Y � ⊥ but Y ∪ {α} � ⊥. There-
fore, global core-retainment is satisfied.

Reversion Suppose that K∪ A and K′∪ A′ have the same
minimally inconsistent subsets. That means
that (K ∪ A)⊥⊥⊥ = (K′ ∪ A′)⊥⊥⊥. Since σ is a
well defined function then:

σ((K ∪ A)⊥⊥⊥) = σ
((

K′ ∪ A′) ⊥⊥⊥)

We need to show that (K ∪ A) \ (K◦A) =
(K′ ∪ A′) \ (K′◦A′).

(⊆) If α ∈ (K ∪ A) \ (K◦A) then, by defi-
nition of ◦, it holds that α ∈ σ((K ∪
A)⊥⊥⊥). From the hypothesis we know
that σ((K ∪ A)⊥⊥⊥) = σ((K′ ∪ A′)⊥⊥⊥).
Then α ∈ K′ ∪ A′ and α �∈ K′◦A′.
Therefore:

(K ∪ A) \ (K◦A) ⊆ (
K′ ∪ A′) \ (

K′◦A′)

(⊇) By symmetry, it is the same proof as the
one for (⊆).
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– Postulates to Construction Let σ be a function such that, for every pair of
sets K and A, it holds that:

σ((K ∪ A)⊥⊥⊥) = {α : α ∈ (K ∪ A) \ (K◦A)}

We must show:

Part A.

1. σ is a well defined function.
If K′ and A′ are sets of sentences such that (K ∪ A)⊥⊥⊥ is equal
to (K′ ∪ A′)⊥⊥⊥, then we must show that:

σ((K ∪ A)⊥⊥⊥) = σ
((

K′ ∪ A′) ⊥⊥⊥)

From the hypothesis we have that K ∪ A and K′ ∪ A′ have the
same minimally inconsistent subsets. It follows from reversion that
(K ∪ A) \ (K◦A) = (K′ ∪ A′) \ (K′◦A′):

σ((K ∪ A)⊥⊥⊥) = {α : α ∈ (K ∪ A) \ (K◦A)}
= {

α : α ∈ (
K′ ∪ A′) \ (

K′◦A′)}

= σ
((

K′ ∪ A′) ⊥⊥⊥)

Therefore, σ is well defined.
2. σ((K ∪ A)⊥⊥⊥) ⊆ ∪((K ∪ A)⊥⊥⊥).

Let α ∈ σ((K ∪ A)⊥⊥⊥). Then α ∈ (K ∪ A) \ (K◦A). Due to
global core-retainment there is some E such that E ⊆ (K ∪ A),
E � ⊥ but E ∪ {α} � ⊥. Since α ∈ K ∪ A then there is a ⊥-kernel
X in (K ∪ A) (i.e., there is a minimally inconsistent subset of
K ∪ A) such that X ⊆ E ∪ {α} and α ∈ X. Therefore, α ∈ ⋃

((K ∪
A)⊥⊥⊥).

3. If X ∈ (K ∪ A)⊥⊥⊥ then (X ∩ σ((K ∪ A)⊥⊥⊥)) �= ∅.
Let X ∈ ((K ∪ A)⊥⊥⊥). We need to show that:

X ∩ σ((K ∪ A)⊥⊥⊥) �= ∅

Due to strong consistency K◦A � ⊥. Since X � ⊥ we may con-
clude that X � K◦A. This means that there is some β such
that β ∈ X and β �∈ K◦A. Since X ⊆ (K ∪ A) then β ∈ (K ∪ A) \
(K◦A), i.e., β ∈ σ((K ∪ A)⊥⊥⊥). So β ∈ (X ∩ σ((K ∪ A)⊥⊥⊥)).
Therefore, (X ∩ σ((K ∪ A)⊥⊥⊥)) �= ∅.

Part B: ◦σ is equal to ◦.
Due to inclusion and from the definition of σ((K ∪ A)⊥⊥⊥) we con-
clude that K◦A = K◦σ A.
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Proof of Theorem 5

– Construction to Postulates Let ◦ be a partial meet merge for K. We must
show that ◦ satisfies the postulates enumerated in the theorem. Let K◦A =⋂

γ ((K ∪ A)⊥⊥⊥), for all sets A.

Inclusion Straightforward from the definition.
Strong Consistency Since all sets in (K ∪ A)⊥⊥⊥ are consistent, so is their

intersection.
Global Relevance Suppose that α ∈ (K ∪ A) \ (K◦A). That is, α ∈

K ∪ A and α �∈ K◦A. Then α �∈ ⋂
γ ((K ∪ A)⊥⊥⊥).

Hence, there is some X such that α �∈ X and X ∈
γ ((K ∪ A)⊥⊥⊥). Then, since γ ((K ∪ A)⊥⊥⊥) ⊆ (K ∪
A)⊥⊥⊥, we can conclude that X ⊆ K ∪ A, X � ⊥
but X ∪ {α} � ⊥. On the other hand, it follows from⋂

γ ((K ∪ A)⊥⊥⊥) ⊆ X that K◦A ⊆ X. Therefore,
relevance is satisfied.

Reversion Suppose that K ∪ A and K ∪ B have the same mini-
mal inconsistent subsets, that is, (K ∪ A)⊥⊥⊥ = (K ∪
B)⊥⊥⊥. We need to show that (K ∪ A) \ (K◦A) =
(K ∪ B) \ (K◦B). Straightforward since γ is an eq-
uitable selection function.

– Postulates to Construction We will show that if an operator ◦ satisfies the
enumerated postulates then it is possible to build an operator ◦γ of partial
meet merge such that ◦ is equal to ◦γ . Let γ be a function such that, for all
pairs of sets K and A, it holds that:

γ ((K ∪ A)⊥⊥⊥) = {X ∈ (K ∪ A)⊥⊥⊥ : K◦A ⊆ X}
Let ◦γ be a merge operator defined as follows:

K◦γ A =
⋂

γ ((K ∪ A)⊥⊥⊥)

We must show that:

Part A: ◦γ is equal to ◦, i.e.,
⋂

γ ((K ∪ A)⊥⊥⊥) = K◦A, for all sets A.

(⊇) It follows from the definition.
(⊆) Let α �∈ K◦A. We must prove that α �∈ ⋂

γ ((K ∪ A)⊥⊥⊥).

That is, we need to find some X ∈ γ ((K ∪ A)⊥⊥⊥) such that α �∈ X. We
have two cases:

1. α ∈ K ∪ A: by global relevance we have that there is some H
such that K◦A ⊆ H ⊆ K ∪ A, H � ⊥ and H ∪ {α} � ⊥. From this
we have that H � α. It is clear that we may extend the set H
to a maximally consistent set H′ such that H′ ∈ (K ∪ A)⊥⊥⊥ and
α �∈ H′. Since K◦A ⊆ H′ then H′ ∈ γ ((K ∪ A)⊥⊥⊥).

2. α �∈ K ∪ A: then no set in (K ∪ A)⊥⊥⊥ will contain α.
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Part B.

1. γ is a well defined function.
Let K, K′, A and B be sets of sentences such that:

(K ∪ A)⊥⊥⊥ = (
K′ ∪ B

) ⊥⊥⊥
We must show that γ ((K ∪ A)⊥⊥⊥) = γ ((K′ ∪ B)⊥⊥⊥). If (K ∪
A)⊥⊥⊥ = (K′ ∪ B)⊥⊥⊥ then it follows that K ∪ A = K′ ∪ B [12].
From item (f) of Lemma 1 it follows that if inclusion and reversion
hold then congruence holds. Therefore, K◦A = K′◦B and:

γ ((K ∪ A)⊥⊥⊥) = {X ∈ (K ∪ A)⊥⊥⊥ : K◦A ⊆ X}
= {

X ∈ (
K′ ∪ B

) ⊥⊥⊥ : K′◦B ⊆ X
}

= γ
((

K′ ∪ B
) ⊥⊥⊥)

That means that the function γ is well defined.
2. γ is an equitable selection function.

First we will show that γ is a general selection function. That
is to say that ∅ �= γ ((K ∪ A)⊥⊥⊥) ⊆ (K ∪ A)⊥⊥⊥. That γ ((K ∪
A)⊥⊥⊥) ⊆ (K ∪ A)⊥⊥⊥ follows immediately from the definition of
γ . Now we prove that γ ((K ∪ A)⊥⊥⊥) �= ∅. By inclusion (K◦A) ⊆
(K ∪ A). Due to strong consistency K◦A � ⊥. Hence, there must
exist a set H between K◦A and K ∪ A which is maximally con-
sistent. Then H ∈ (K ∪ A)⊥⊥⊥ and K◦A ⊆ H. Therefore, γ ((K ∪
A)⊥⊥⊥) �= ∅ and γ is a general selection function.
It remains to show that γ is an equitable selection function. Sup-
pose that K ∪ A and K′ ∪ B have the same minimal inconsistent
subsets. It follows from reversion that:

(K ∪ A) \ (K◦A) = (
K′ ∪ B

) \ (
K′◦B

)

It follows from Part A that K◦A = ⋂
γ ((K ∪ A)⊥⊥⊥) and K′◦B =⋂

γ ((K′ ∪ B)⊥⊥⊥). Therefore, γ is an equitable selection function.

Proof of Proposition 2

Let K1, K2 be sets of sentences and ! be a consolidation operator for K1 ∪ K2.
Let ◦ be the merge of K1 and K2 defined according to Definition 21.

1. Suppose that ! is a kernel consolidation for K1 ∪ K2. We must show that ◦
is a kernel meet merge for K1 and K2.
Since ! is a kernel consolidation for K1 ∪ K2, then (according to
Definition 18) there exists an incision function σ for K1 ∪ K2 such that
K1◦K2 = (K1 ∪ K2)! = (K1 ∪ K2) \ σ(K1 ∪ K2⊥⊥⊥) and it follows imme-
diately from Definition 14 that ◦ is a kernel merge for K1 and K2.

2. Suppose that ! is an equitable partial meet consolidation for K1 ∪ K2. We
must show that ◦ is a partial meet merge for K1 and K2.



M.A. Falappa et al.

Since ! is an equitable partial meet consolidation for K1 ∪ K2, then (ac-
cording to Definition 20) there exists an equitable selection function γ such
that: K1◦K2 = (K1 ∪ K2)! = ⋂

γ ((K1 ∪ K2)⊥⊥⊥). Therefore, it follows im-
mediately from Definition 17 that ◦ is a partial meet merge for K1 and K2.

Proof of Proposition 3

Let K be a set of sentences and ◦ be a merge operator for K and K. Let ! be
the consolidation of K defined according to Definition 22. Then:

1. If ◦ is a kernel merge then ! is a kernel consolidation.
Straightforward from Definitions 14 and 18.

2. If ◦ is a partial meet merge then ! is a partial meet consolidation.
Straightforward from Definitions 17 and 19.
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