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Abstract. We obtain the covariant propagator at finite temperature for interacting baryons immersed in a
strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken
into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact
form of its propagator. We present some simple applications of these propagators, where the statistical
averages of nuclear currents and energy density are evaluated.

1 Introduction

The dynamics of matter subject to strong magnetic fields
has been widely studied in the past [1], and it has received
renewed interest due to the analysis of different experi-
mental situations. For instance, some investigations of the
last decade [2–5] have pointed out that matter created in
heavy-ion collisions could be subject to very intense mag-
netic fields. As a consequence the particle production can
exhibit a distinguishable anisotropy. A preferential emis-
sion of charged particles along the direction of the mag-
netic field is predicted in [2, 3] for noncentral heavy-ion
collisions, due to magnetic intensities eB ∼ 102 MeV2.
Improved calculations taking care of the mass distribu-
tion of the colliding ions [4] do not modify essentially the
magnitude of the produced fields. Furthermore, the nu-
merical simulations performed by [5] predict larger values
eB ∼ m2

π ∼ 2 × 104 MeV2.
In a very different scenario, the presence of strong mag-

netic fields is the key issue that distinguishes a kind of
astronomical compact objects. The analysis of the obser-
vational data in the range from soft X to soft gamma
radiation has showed the features of a class of neutron
stars named Soft Gamma Repeaters and Anomalous X-
Ray Pulsars. These isolated stars are characterized by a
sustained X-ray luminosity with energy in the soft (0.5–
10 keV) or hard (50–200 keV) spectrum. They can show a
time variability, with pulsations at relatively long spin pe-
riods. In particular, the Soft Gamma Repeaters exhibit a
bursting activity which includes giant flares as a rare man-
ifestation. Both cases can be described within the magne-
tar model [6–8], where the X-ray emission as well as burst-
ing are attributed to the dissipation and decay of very
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strong magnetic fields. Their intensity has been estimated
around 1015 G at the star surface, and could reach much
higher values in the dense interior of the star. The avail-
ability of an increasing amount of precision data opens the
question on how well the current theoretical description of
nuclear matter can fit this empirical evidence.

The properties of the dense hadronic medium have
been properly described within a covariant model of the
hadronic interaction known as Quantum Hadro-Dynamics
(QHD) [9]. It has been used to study the structure of neu-
tron stars and particularly to analyze hadronic matter in
the presence of an external magnetic field [10–16]. The
versatility of this formulation allows the inclusion of the
intrinsic magnetic moments in a covariant way. Due to the
strength of the baryon-meson couplings, the mean field
approximation (MFA) is usually employed. Within this
approach the meson fields are replaced by their expecta-
tion values and assimilated to a quasi-particle picture of
the baryons. Finally the meson mean values are obtained
by solving the classical meson equations taking as sources
the baryonic currents. This scheme is conceptually clear
and easy to implement, however it is not evident at all
how to include further corrections if they were needed.

In recent years several publications have stressed the
role of the intrinsic magnetic moments on the statistical
properties of hadronic systems such as the matter suscep-
tibility and magnetization [13–15], the rise in the popula-
tion of hyperons in stellar matter [13,14], and the satura-
tion properties of nuclear matter [16]. The variation of the
magnetic moments of hadrons within the nuclear environ-
ment has been pointed out in recent investigations [17].

The purpose of this work is twofold. In the first
place we construct the covariant propagator of fermions,
both neutral and charged, in the presence of an external
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magnetic field. We give a full treatment including their
intrinsic magnetic moments.

Expressions for the covariant propagator of a charged
particle subject to an external magnetic field have been
presented long time ago [18, 19], and this is a subject of
continuous development [20, 21]. However, the effects of
the magnetic moment have been neglected assuming its
smallness. Exceptionally, in ref. [22] the proton propagator
in vacuum has been presented.

For magnetic intensities greater than 5 × 1017 G, the
influence of the magnetic moments must be taken into ac-
count in the determination of the stable configuration of
matter [23], and the evaluation of thermodynamical prop-
erties [13–16].

On the other hand, we give here an extension of the
Dirac field propagator appropriate to include density and
temperature effects in the study of hadronic systems sub-
ject to very strong magnetic fields. It is shown that the
mean values of the particle densities and currents agree
with the results obtained for nuclear matter within the
QHD model in the MFA.

We present a detailed derivation, using a clearly stated
notation. Our results open the possibility of using the di-
agrammatic techniques of the field theory to study quan-
tum corrections and statistical averages of physical pro-
cesses developing under strong magnetism, including the
effects of the magnetic moments of baryons. Thus we pro-
pose a complementary tool to extend the analysis of re-
lated investigations [22,24,25].

The organization of this work is as follows. In the next
section we summarize the classical solutions for a Dirac
field in the presence of an external magnetic field, con-
sidering the intrinsic magnetic moments. For this purpose
we follow the general guidelines of [11]. This complete set
of solutions is used to make an expansion of the quantum
fields, including the appropriate measure of integration
in the phase space. Following the standard prescriptions
we evaluate the in-medium nucleon propagator in sect. 3.
These results are interpreted within the context of the
QHD model, and we evaluate nucleon densities and en-
ergy densities in sect. 4. Finally, in the last section we
present a summary of our results.

2 Dirac solutions for nucleons with magnetic

moment

The Lagrangian density for Dirac particles of mass
mb, with anomalous magnetic moments κb, interacting
through scalar σ and vector ω mesons, and under the in-
fluence of an external electromagnetic field A, is given by
(h̄ = 1, c = 1) [26]

L =
∑

b

Ψ̄ (b)

[

γμ(i ∂μ − qb Aμ − gω ωμ) + gσ σ − mb

−κb

2
σμν Fμν

]

Ψ (b) − 1

4
Fμν Fμν +

1

2
(∂μσ ∂μσ − m2

σ σ2)

−1

4
Ωμν Ωμν +

1

2
m2

ω ωμ ωμ, (1)

where Fμν = ∂μ Aν −∂ν Aμ and Ωμν = ∂μ ων −∂ν ωμ are
the electromagnetic and vector meson field strength ten-
sors, qb denotes the electric charge, and gσ,ω the strong
coupling constants, and σμν = i/2 [γμ, γν ]. We study the
case of a constant external magnetic field B applied along
the z-axis. In order to fix ideas and facilitate the com-
parison with previous results [11], we choose the gauge
Aμ = (0, 0, Bx, 0). To simplify the discussion, we consider
first baryons interacting only with B, and mesons will be
included later.

It must be mentioned that the remaining content of
this section has been studied long time ago, see for in-
stance [11]. But we present here a summary in order to
state clearly the notation used.

In this approach the classical eigenstates ψ(b) =

φ(b) e−iE(b) t of the Dirac equation satisfy

[�α · �π + γ0 mb − iγ0 γ1γ2 κb B]φ(b) = E(b) φ(b), (2)

with �α = γ0 �γ and �π = −i�∇− qb
�A. The label s indicates

the alignment of the magnetic moment with the exter-
nal field. It must be borne in mind that when consider-
ing nuclear particles, we can write κb = χbμN , with the
anomalous moments χp = 2.79 for protons, χn = −1.91
for neutrons, and μN the nuclear magneton.

2.1 Charged states

The particle solutions for energies Ens are given by

φ
(+)(p)
nspypz (ξ, y, z) = ei(pyy+pzz) e−ξ2/2 unspz

(ξ) with

unspz
(ξ) =

Nns

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Hn(ξ)

2n s pz

√
qB i

(Δn + s mp) (Ens + s Δn − κpB)
Hn−1(ξ)

pz

Ens + s Δn − κpB
Hn(ξ)

−2n s
√

qB i

Δn + s mp
Hn−1(ξ)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3)

and

ξ = (−py + qBx)
/

√

qB , (4)

Δn =
√

m2
p + 2nqB , (5)

Ens =
√

p2
z + (Δn − s κpB)2 , (6)

N2
ns =

√
qB

4
√

π(2π)2 2n n!

(Δn + s mp)(Ens + sΔn − κpB)

mp (Δn − s κpB)
.

(7)

Hn stands for the Hermite polynomials, and n ≥ 1.
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In the case n = 0 the physical eigenstate corresponds

to φ
(+)(p)
0pypz

(ξ, y, z) = ei(pyy+pzz) e−ξ2/2 u0pz
, with

u0pz
= N0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

pz

E0 + mp − κpB

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

and

E0 =
√

p2
z + (mp − κpB)2 , (9)

N2
0 =

√
qB

2
√

π(2π)2
E0 + mp − κpB

mp − κpB
. (10)

Another solution exists for n = 0 and s = −1, with eigen-
value

√

p2
z + (mp + κpB)2, but it is asymptotically diver-

gent.

The antiparticle states φ
(−)(p)
ns correspond to the

negative eigenvalues −Ens and have the eigenfunctions

φ
(−)(p)
nspypz (ξ, y, z) = e−i(pyy+pzz) e−η2/2 vnspz

(η) with

vnspz
(η) =

Nns

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pz

Ens + s Δn − κpB
Hn(η)

2n s
√

qB i

Δn + s mp
Hn−1(η)

Hn(η)

−2n s pz

√
qB i

(Δn + s mp) (Ens + s Δn − κpB)
Hn−1(η)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

where η = (py + qBx)/
√

qB and n ≥ 1. While for

n = 0 the antiparticle state φ
(−)(p)
0 has negative en-

ergy −E0 and its wave function reads φ
(−)(p)
0pypz

(η, y, z) =

e−i(pyy+pzz) e−η2/2 v0pz
with

v0pz
= N0

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pz

E0 + mp − κpB

0

1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

The eigenstates are normalized according to [27]
〈

φ̄
(±)(p)
nsp′

yp′

z
|φ(±)(p)

nspypz

〉

= ±δ(p′y − py)δ(p′z − pz) (13)

and therefore satisfy the covariant orthogonal conditions
〈

φ
(±)(p)†
n′s′p′

yp′

z
|φ(±)(p)

nspypz

〉

=
Ens Δn

mp (Δn − s κp B)

× δn′n δs′s δ(p′y − py) δ(p′z − pz),
〈

φ
(+)(p)†
n′s′p′

yp′

z
|φ(−)(p)

nspypz

〉

=
〈

φ
(−)(p)†
n′s′p′

yp′

z
|φ(+)(p)

nspypz

〉

= 0. (14)

These conditions also include the case n = 0, s = 1, if
Δ0 = mp is assumed.

2.2 Neutral states

The positive energy eigenstates have wave functions

φ
(+)(n)
�ps (�r ) = ei�p·�r u�ps, with

u�ps = N�ps

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

−s (px + ipy) pz

(Δ + s mn) (E�ps + s Δ − κnB)

pz

E�ps + s Δ − κnB

s (px + ipy)

Δ + s mn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(15)

and

E�ps =
√

p2
z + (Δ − s κnB)2 , (16)

Δ =
√

m2
n + p2

x + p2
y , (17)

N2
�ps =

1

4 (2π)3
(Δ + s mn) (E�ps + s Δ − κnB)

mn (Δ − s κnB)
. (18)

On the other hand, the antiparticle states, of energy −E�ps,

are φ
(−)(n)
�ps (�r ) = e−i�p·�r v�ps with

v�ps = N�ps

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pz

E�ps + s Δ − κnB

s (px + ipy)

Δ + s mn

1

−s (px + ipy) pz

(Δ + s mn) (E�ps + s Δ − κnB)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (19)

Similarly to the previous case, these eigenstates are
normalized according to

〈

φ̄
(±)(n)
�p ′s |φ(±)(n)

�ps

〉

= ±δ3(�p ′ − �p ) (20)

and therefore satisfy the covariant orthogonal conditions

〈

φ
(±)(n)†
�p ′s′ |φ(±)(n)

�ps

〉

=
E�ps Δ

mn (Δ − s κn B)
δs′s δ3(�p ′ − �p ),

〈

φ
(+)(n)†
�p ′s′ |φ(−)(n)

�ps

〉

=
〈

φ
(−)(n)†
�p ′s′ |φ(+)(n)

�ps

〉

= 0. (21)

3 Dirac fields and Green functions

We propose an expansion of the fields in terms of creation
and destruction operators for states with the quantum
numbers specified in the previous section. Hence, the coef-
ficients in this expansion correspond to the wave functions
previously described [19].
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Thus, we obtain for the charged field

Ψ (p)(t, �r ) =

∫

dpy dpz

√

mp − κp B

E0

·
[

e−iE0 t ei(pyy+pzz) e−ξ2/2 u0pz
(ξ) a

(p)
0pypz

+ eiE0 t e−i(pyy+pzz) e−η2/2 v0pz
(η) d

†(p)
0pypz

]

+
∑

n=1

∑

s=±1

∫

dpy dpz

√

mp (Δn − s κp B)

Ens Δn

·
[

e−iEns t ei(pyy+pzz) e−ξ2/2 unspz
(ξ) a(p)

nspypz

+ eiEns t e−i(pyy+pzz) e−η2/2 vnspz
(η) d†(p)

nspypz

]

(22)

and for the neutral field

Ψ (n)(t, �r ) =
∑

s=±1

∫

d�p

√

mn (Δ − s κn B)

E�ps Δ

×
[

e−iE�ps t ei�p·�r u�ps a
(n)
�ps + eiE�ps t e−i�p·�r v�ps d

†(n)
�ps

]

, (23)

where we have introduced an appropriate measure of inte-
gration in the phase space [26]. Written in this form, these
expressions clearly reduce to the more familiar ones when
κb = 0.

These fields satisfy the anti-commutation relations

{

Ψ †(b)
α (t, �r ′), Ψ

(b)
β (t, �r )

}

= δαβ δ3(�r ′ − �r ) (24)

if the standard anti-commutation relations are assumed
for the creation and annihilation operators, i.e.

{

a
†(b)
j , a

(b)
j′

}

=
{

d
†(b)
j , d

(b)
j′

}

= δjj′ ,

{

d
†(b)
j , a

(b)
j′

}

=
{

a
†(b)
j , d

(b)
j′

}

= 0,

(25)

where the indices j, j′ stand for a full set of quantum
numbers, either discrete or continuum.

These fields are used to evaluate the in-medium causal
propagator

iG
(b)
αβ(t′, �r ′, t, �r ) =

〈

T
[

Ψ (b)
α (t′, �r ′)Ψ̄

(b)
β (t, �r )

]〉

= Θ(t′ − t)
〈

Ψ (b)
α (t′, �r ′)Ψ̄

(b)
β (t, �r )

〉

−Θ(t − t′)
〈

Ψ̄
(b)
β (t, �r )Ψ (b)

α (t′, �r ′)
〉

,

(26)

where Θ denotes the Heaviside step function. Here the
angular brackets must be regarded as a statistical mean
value, as obtained for instance by evaluating the trace with
the density matrix of the system. The same average acting

on the products of a pair of creation and/or destruction
operators produce the well-known results [28]

〈

a
(b)
j′ a

†(b)
j

〉

= δjj′ −
〈

a
†(b)
j a

(b)
j′

〉

, (27)

〈

d
(b)
j′ d

†(b)
j

〉

= δjj′ −
〈

d
†(b)
j d

(b)
j′

〉

, (28)

〈

a
†(b)
j a

(b)
j′

〉

= δjj′ nF

(

T,E
(b)
j

)

, (29)

〈

d
†(b)
j d

(b)
j′

〉

= δjj′ nF

(

T,−E
(b)
j

)

, (30)

where nF denotes the Fermi occupation number

nF (T, p0) =
Θ(p0)

1 + e(p0−μb)/T
+

Θ(−p0)

1 + e−(p0−μb)/T
(31)

at temperature T and chemical potential μb associated
with the conservation of the baryonic number.

The remaining combination of pairs have null expec-
tation values.

The following expansions of the direct product of the
spinors (3), (8), (15) are particularly useful:

u0pz
(ξ) ⊗ ū0pz

(ξ′) =
1

(2π)2

√

qB/π

4(mp − κp B)

×(E0γ0 − pzγ3 + mp − κp B)(1 + iγ1γ2), (32)

unspz
(ξ) ⊗ ūnspz

(ξ′) =
1

(2π)2

√

qB/π(Δn + s mp)

2n+3n!mp(Δn − s κp B)

×
[

Hn(ξ)(Ensγ0 − pzγ3 + s Δn − κp B)

+ i
mp − sΔn√

qB
Hn−1(ξ)(Ensγ0 − pzγ3 − s Δn + κp B)γ1

]

×(1 + i γ1γ2)

[

Hn(ξ′) + i
mp − s Δn√

qB
Hn−1(ξ

′)γ1

]

, (33)

u�ps ⊗ ū�ps =
1

(2π)3
i s γ1γ2

4mn(Δ − κnsB)

× [E�psγ0 − pzγ3 + (sΔ − κn B) iγ1γ2]

× (−pxγ1 − pyγ2 + mn + sΔiγ1γ2) . (34)

A similar result can be obtained for the case of antiparti-
cles.

In order to evaluate (26) we insert the expansions (22)
or (23), and we use the expectation values (27)–(30). With
the aim of unifying the contributions coming from parti-
cles and antiparticles, we apply the following relations:

i

2π

∫ ∞

−∞

dp0
f(p0)e

−ip0(t
′−t)

p2
0 − E2 + iǫ

= Θ(t′ − t)
f(E)e−iE(t′−t)

2E

+Θ(t−t′)
f(−E)eiE(t′−t)

2E
,

nF (T,±E)=2

∫ ∞

−∞

dp0|p0|Θ(±p0)δ(p
2
0−E2)nF (T, p0),
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(E > 0). Finally we make use of eqs. (32)–(34) and similar
relations for antiparticles, to obtain the following results:

G
(p)
αβ(t′, �r ′, t, �r ) =

1

2

√

qB

π

∫

dp0 dpy dpz

(2π)3
e−ip0 (t′−t)

× ei[py(y′−y)+pz(z′−z)] e−(ξ′2+ξ2)/2

×
[

Λ
0(p)
αβ Ξ(T,E0)+

∑

n=1

∑

s=±1

Δn + smp

2n+1 n!Δn

×Λ
ns(p)
αβ (ξ′, ξ)Ξ(T,Ens)

]

(35)

for charged particles, where

Λ0(p) =
(

p0γ
0 − pzγ

3 + mp − κp B
) (

1 + iγ1γ2
)

, (36)

Λns(p) =

[

(p0γ
0 − pzγ

3 + sΔn − κpB)Hn(ξ′)

+ i
mp − sΔn√

qB
(p0γ

0 − pzγ
3 − sΔn + κpB)γ1Hn−1(ξ

′)

]

×
[

(1+iγ1γ2)Hn(ξ)+i
mp−sΔn√

qB
γ1(1−iγ1γ2)Hn−1(ξ)

]

,

(37)

Ξ(T,E)=
1

p2
0−E2 + iǫ

+2π i nF (T, p0) δ(p2
0−E2) (38)

and ξ′ = (−py + qBx′)/
√

qB.

In addition we have

G
(n)
αβ (t′, �r ′, t, �r ) =

∑

s=±1

∫

d4p

(2π)4
e−ipμ (x′

μ−xμ)Λ
s (n)
αβ Ξ(T,E�ps) (39)

for neutral particles, where

Λs (n) =
−is γ1γ2

2Δ

[

p0γ
0 − pzγ

3 + iγ1γ2(sΔ − κnB)
]

×
(

pxγ1 + pyγ2 − mn − isΔγ1γ2
)

.

Equations (35) and (39) resume the main findings of this
work. Of course, these Green functions satisfy the differ-
ential equation
(

iγμDμ − mb + iγ1γ2 κb B
)

G(b)(x, x′) = δ4(x − x′),

where Dμ = ∂μ + iqb Aμ.

It is a well-known fact that real time formulations of
the thermal field theory [29, 30], like Schwinger-Keldysh
theory or Thermo Field Dynamics (TFD), need to du-
plicate the degrees of freedom in order to keep the for-
malism and procedures of the usual field theory. In TFD,
for instance, to each physical field ϕ(1)(x) there corre-
sponds a dual partner ϕ(2)(x), and they are related by the
so-called tilde conjugation operation. As a consequence,
there is a 2 × 2 matrix associated to the product of two
fields. This is also the case for the one-particle propaga-
tors iGab(x, x′) = 〈Tϕ(a)(x)ϕ(b)(x′)〉, and the correspond-
ing self-energies. Within this context the results shown in

eqs. (35) and (39) correspond to the component (1, 1) of
the TFD representation. However, it suffices to treat the
MFA at zero temperature to be developed in the next sec-
tion.

To evaluate higher-order corrections to the finite tem-
perature self-energy, the full dependence on the thermal
degrees of freedom must be taken into account. This means
that for a given perturbative diagram, to each internal line
there corresponds a 2 × 2 propagator and a sum over the
thermal index c = 1, 2 should be included for each internal
vertex [31].

A resume of the Feynman graph rules in TFD for the
QHD model is given in ref. [32].

Within the quasi-particle scheme described at the be-
ginning of this section, it is not difficult to evaluate some
thermal expectation values required to complete the TFD
propagator. In practice, eq. (38) must be replaced by the
following matrix:

Ξ(T,E) =

⎛

⎜

⎜

⎝

1

p2
0 − E2 + iε

0

0
1

p2
0 − E2 − iε

⎞

⎟

⎟

⎠

+ 2πiδ(p2
0 − E2)

(

nF (T, p0) n̄F (T, p0)

n̄F (T, p0) −nF (T, p0)

)

(40)

with nF as in eq. (31) and

n̄F (T, p0) =
e(p0−μb)/2T

1 + e(p0−μb)/T
Θ(p0)

− e−(p0−μb)/2T

1 + e−(p0−μb)/T
Θ(−p0).

It must be noticed that at zero temperature the matrix in
eq. (40) becomes diagonal, that is, the thermal degrees of
freedom are decoupled.

In the next section we study the coherence of these
results by comparing some simple calculations with well-
established facts of the QHD formalism.

4 Mean values of nuclear matter densities

In order to keep the simplicity of the discussion, we have
reduced the problem to its bare minimum. Up to this
point we have regarded the nucleon as a noninteract-
ing particle. Now, we include the strong interaction be-
tween the nucleons and its environment in the MFA of
the QHD model. Within this scheme, the lightest mesons
dress the nucleon giving rise to a quasi-particle picture.
The net effect is to modify the mass of the nucleons by
m∗

b = mb−gσ σ0; as a consequence the modified quantities
Δ∗

n, Δ∗ must be introduced. The single-particle spectrum
becomes ǫb j = Ej + gω ω0, where σ0, ω0 are the uniform
in-medium expectation values of the meson fields f0(500)
and ω(782), respectively [9].
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We can include these modifications into the propaga-
tors (35) and (39) by assuming that the masses m∗

p and
m∗

n represent the in-medium values described above, while
the change in the energy spectrum can be handled by re-
placing the chemical potentials μb, which are implicit in
the Fermi distribution functions nF , by the effective ones
μ̄b = μb − gω ω0.

In the following we check the validity of the results
presented in the previous section by comparing our calcu-
lations for the nuclear scalar, baryon and energy densities,
with those presented in previous calculations. In the spirit
of the MFA we neglect the divergent contributions com-
ing from the Dirac sea. We start examining the average

mean field scalar ρ
(b)
s and baryon ρ(b) densities, using the

general definitions

ρ(b)
s (t, �r ) =

〈

Ψ̄ (b)(t, �r )Ψ (b)(t, �r )
〉

= −i lim
(t′→t+,�r ′→�r )

Tr
{

G(b)(t, �r, t′, �r ′)
}

, (41)

ρ(b)(t, �r ) =
〈

Ψ̄ (b)(t, �r ) γ0 Ψ (b)(t, �r )
〉

= −i lim
(t′→t+,�r ′→�r )

Tr
{

γ0 G(b)(t, �r, t′, �r ′)
}

. (42)

For the case of protons the results are

ρ(p)
s =

qB

2π2

∫ ∞

0

dpz

{

(m∗
p−κp B)

ǫ0
[nF (T, ǫ0)+nF (T,−ǫ0)]

+m∗
p

∑

n=1

∑

s=±1

(Δ∗
n−sκpB)

ǫnsΔ∗
n

[nF (T, ǫns)+nF (T,−ǫns)]

}

,

(43)

ρ(p) =
qB

2π2

∫ ∞

0

dpz

{

[nF (T, ǫ0) − nF (T,−ǫ0)]

+
∑

n=1

∑

s=±1

[nF (T, ǫns) − nF (T,−ǫns)]

}

. (44)

Similarly for neutrons

ρ(n)
s =

∫

d3p

(2π)3

∑

s=±1

(Δ∗ − sκnB)

ǫ�psΔ∗

× [nF (T, ǫ�ps) + nF (T,−ǫ�ps)], (45)

ρ(n) =

∫

d3p

(2π)3

∑

s=±1

[nF (T, ǫ�ps) − nF (T,−ǫ�ps)]. (46)

As the temperature tends to zero, T → 0, we have
nF (T,−ǫ(b)) → 0, nF (T, ǫ(b)) → Θ(μ̄b − ǫ(b)). The
last condition defines the Fermi momentum for pro-

tons and neutrons. For the first case we have p
(p)
Fs =

√

μ̄2
p − (Δ∗

n max − sκpB)2, with the highest occupied Lan-

dau level given by the condition |Δ∗
n max − sκpB| =

μ̄p, while for neutrons the Fermi surface is defined by

p
(n)
Fs =

√

μ̄2
n − (Δ∗

max − sκnB)2 along the z-axis and by

|Δ∗
max − sκnB| = μ̄n in the orthogonal plane.

The baryonic contribution to the energy density ε(b)

arises from the mean field value of the Hamiltonian density

operator H(b)(t, �r ) = Ψ̄ (b)(t, �r ) (iγ0∂/∂t)Ψ (b)(t, �r ), i.e.

ε(b) =
〈

H(b)
〉

=

−i lim
(t′→t+,�r ′→�r )

Tr
{

(iγ0∂/∂t)G(b)(t, �r, t′, �r ′)
}

. (47)

Thus, we have

ε(p) =
qB

2π2

∫ ∞

0

dpz

{

ǫ0 [nF (T, ǫ0) + nF (T,−ǫ0)]

+
∑

n=1

∑

s=±1

ǫns [nF (T, ǫns) + nF (T,−ǫns)]

}

, (48)

ε(n) =

∫

d3p

(2π)3

∑

s=±1

ǫ�ps [nF (T, ǫ�ps) + nF (T,−ǫ�ps)]. (49)

By taking the limit T → 0 of these results we find a com-
plete agreement with the calculations of [11].

5 Conclusions

In this work we have evaluated the covariant propagator
for nucleons in the presence of a strong magnetic field.
We have extended previous results by including the in-
trinsic magnetic moment and the effects of finite density
and temperature. We have performed a detailed deriva-
tion with a clear statement of the notation used, a fact
that was lacking in the literature.

Furthermore, our results have been interpreted in the
context of the Thermo Field Dynamics, and definite ex-
pressions for the thermal propagator as a 2 × 2 matrix
have been presented.

We have performed some simple calculations which
show the coherence with previous results. We consider
that the relevance of our findings lies in the fact that it
allows the evaluation of in-medium nuclear processes by
including the full effects of an external magnetic field, and
further corrections can be included by using the diagram-
matic techniques of relativistic Quantum Field Theory.

Self-consistent calculations of corrections to the prop-
agation of hadrons in matter under strong magnetic fields
are now in progress.

This work has been partially supported by the CONICET of
Argentina under grant PIP 112-2008-01-00282.
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