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Independent component analysis of MODIS-NDVI data in a large
South American wetland
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Monthly images of Normalized Difference Vegetation Index (NDVI) from the
moderate resolution imaging spectroradiometer (MODIS) are used to characterize
the spatio-temporal variability of vegetation in a large South American wetland
(SAW) (located in the Paraná River floodplain) during the period 2000–2009.
While these data do not meet the requirements of classical component extraction
techniques (CETs) (e.g. principal component analysis (PCA)), they are suitable
for the modern method named independent component analysis (ICA). Hence,
ICA is used here to extract three statistically independent modes of inter-annual
MODIS-NDVI variability that are successfully interpreted as vegetation responses
to hydrological changes. One mode isolates the vegetation response to a severe
drought associated with La Niña 2007–2008. Another component reflects the
expansion (or contraction) of lagoons owing to high (or low) water level of
the Paraná River. The remaining mode captures the vegetation decrease caused
by the flood related to El Niño 2006–2007. The results presented here for a partic-
ular wetland suggest that ICA of NDVI images is a powerful tool for identifying
the physical causes of vegetation changes in other large wetlands.

1. Introduction

Wetlands are important elements of the Earth System when they are considered at
global, regional and subregional scales (Mitsch and Gosselink 2007). In a global con-
text, wetlands play an important role in various biogeochemical cycles. For instance,
they have a direct impact on atmospheric concentrations of carbon dioxide, methane
and sulphur. At regional and subregional scales, wetlands constitute banks of bio-
diversity, productivity and recruitment. Moreover, these systems act as nutrient traps,
moderate the effect of floods, improve water quality and provide places for recreational
activities. Thus, it is relevant to improve our understanding of wetland responses to
environmental changes.

The Normalized Difference Vegetation Index (NDVI) is a remotely sensed measure
of the vigour and amount of vegetation (Tucker 1979, Tucker et al. 1991). This index
has been widely used to study terrestrial ecosystems and their response to climatic
variables (e.g. precipitation) at global and regional scales (e.g. Li and Kafatos 2000,
Anyamba et al. 2001, Los et al. 2001, Gurgel and Ferreira 2003, Lotsch et al. 2003a,
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Poveda and Salazar 2004, Nagai et al. 2007). However, in wetlands, it is not common
to use this index for studying vegetation changes. This is probably because the seasonal
cycle of NDVI is significantly disrupted by large negative NDVI values when there is
a water excess (i.e. water is above the ground or in saturated soils) (Zoffoli et al. 2008).
Nevertheless, Zoffoli et al. (2008) recently showed the potential of NDVI data for gain-
ing insights into the functioning of wetlands. In selected locations of a South American
wetland (SAW), Zoffoli et al. (2008) analysed NDVI time series derived from coarse
resolution (8 km × 8 km) images. They used a correlation coefficient as the primary
tool for analysing these time series. Although interesting results were obtained with
this simple approach, more detailed studies are needed for increasing our knowledge
of large wetlands (Zoffoli et al. 2008).

The objective of this letter is to conduct a detailed analysis of the spatio-temporal
variability of NDVI with the aim of identifying physical causes of vegetation changes
in a large SAW. To achieve this goal, we perform an independent component anal-
ysis (ICA) on a sequence of moderate resolution (0.1o × 0.1o) NDVI images of the
same SAW studied by Zoffoli et al. (2008), and we interpret the extracted components
as vegetation responses to hydrological changes. ICA is a modern component extrac-
tion technique (CET) that was mainly developed in the fields of signal processing and
neural modelling to overcome various limitations of classical CETs (Hyvärinen and
2000). Nevertheless, ICA is also a useful tool for analysing the spatio-temporal dis-
tribution of geophysical variables (e.g. Aires et al. 2000, Lotsch et al. 2003b) and for
conducting various types of remote sensing studies (e.g. Lizarazo 2010, Chen et al.
2011). At the continental scale, Lotsch et al. (2003b) showed that ICA of NDVI images
serve to find the physical causes of vegetation variability. However, to the best of our
knowledge, ICA has not been used previously in large wetlands for decomposing a
sequence of NDVI images into physical meaningful modes of variability. Hence, this
study presents ICA of NDVI data as a promising method for studying the ecosystems
of large wetlands.

2. Study area

The study area consists of a wetland of subregional extension (300 km long and 50–80
km wide) located in south-eastern South America and associated with the floodplain
of the Paraná River (figure 1). Different landscapes and ecosystems coexist in this
large wetland (Zoffoli et al. 2008). This complex and diverse system evolved from a
marine embayment to its present state during the last 6 × 103 years as a consequence
of a gradual decrease in sea level (Iriondo 2004). For this reason, this area is usually
known as the littoral complex (LC).

According to Kottek et al. (2006), the LC has a warm and fully humid temperate
climate. The climatological average July (January) temperature is 10oC (27oC), and
the climatological monthly rainfall varies between 30 and 130 mm with a primary
(secondary) peak in autumn (spring) (National Oceanic and Atmospheric Administra-
tion (NOAA) 1991).

The lower Paraná River has climatological seasonal cycles of discharge and water
level characterized by a maximum (minimum) in spring (autumn) (Pasquini and
Depetris 2007).

3. Data and methods

To characterize vegetation changes between February 2000 and August 2009 in the
LC, monthly NDVI images from the moderate resolution imaging spectroradiometer
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Figure 1. Map showing the littoral complex (LC) (white) and surrounding areas. Main
water bodies are shown in black and names of major rivers are given in italics.
The relief for land areas is from the digital elevation model ETOPO2v2 (available at
http://www.ngdc.noaa.gov/mgg/global/etopo2.html). Elevation values in the LC (not shown)
are less than 15 m. Open circles show the locations of the following cities, which are mentioned
within this letter: BA, Buenos Aires; G, Gualeguachú; T, Timbúes; R, Rosario; and SF, Santa
Fe. Two relevant parts of the study area are also indicated: the lagoon system (LS) and the delta
of Paraná river

(MODIS) with a spatial resolution of 0.1o × 0.1o are used. Because the focus is on
inter-annual vegetation variability, the seasonal cycle is removed from the NDVI time
series in the following manner. At each grid cell, climatological NDVI values are
calculated for each calendar month by averaging the data for that month over the
whole study period. Then, monthly anomalies are obtained as deviations from this
climatological annual cycle.

Values of skewness and kurtosis of NDVI anomalies significantly depart from 0 in
most of the grid cells and, therefore, the probability density function (PDF) of NDVI
time series is not Gaussian in most of the LC (figure 2); note that the PDF of these
115-element times series significantly deviates from a Gaussian PDF if the estimates
of skewness (or kurtosis) have an absolute value much greater than

√
15/115 ∼ 0.4

(or
√

96/115 ∼ 1) (Press et al. 1992). Infrequent NDVI values have greater proba-
bility to be low than high as shown by the negative values of skewness (figure 2(a)).
Positive kurtosis values show that the peak of NDVI PDF is more sharp than that
of a Gaussian PDF (figure 2(b)). Consequently, classical CETs, for example, princi-
pal component analysis (PCA), should not be applied to NDVI anomalies since these
methods usually require Gaussian input data (Aires et al. 2000). This and other limita-
tions of classical CETs are overcome by modern CETs. In particular, ICA is a recently
developed CET where statistically independent components (ICs) are extracted from
non-Gaussian data (classical CETs such as PCA extract decorrelated components
that may not be statistically independent); for a more complete review of ICA, see

http://www.ngdc.noaa.gov/mgg/global/etopo2.html
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Figure 2. Spatial distributions of (a) skewness and (b) kurtosis of NDVI anomalies. Skewness
and kurtosis estimates whose absolute value is less than 0.4 and 1, respectively, are not shown.
That is, estimates of skewness and kurtosis are only shown if they reflect a non-Gaussian
behaviour (see section 3).

Hyvärinen and Oja (2000). Therefore, to extract components from NDVI images of
the LC, ICA is more appropriate than classical CETs.

It is important to note that several ICA methods exist (Hyvärinen and Oja 2000). In
this study, an Infomax ICA algorithm is used because of its simplicity, robustness and
fast convergence (Nadal and Parga 1994; Bell and Sejnowski 1995). This algorithm
uses a maximum likelihood formulation and the Broyden–Fletcher–Goldfarb–Shanno
optimization method (Nielsen 2001). The method assumes linear and instantaneous
mixing, a square-mixing matrix and zero noise. Time series of NDVI for every pixel
can be expressed as the sum of ICs. The amplitude of each IC varies from loca-
tion to location according to a mixing matrix that is depicted as a map. In this
manner, the data set can be decomposed into a number of ICs equal to the num-
ber of grid cells of the NDVI image. For the images used here, this number would
be very large (>104). However, it is common that only a few ICs are meaningful
modes of variability (Nadal et al. 2000). Hence, to extract only these ICs and to
avoid numerical problems, the number of extracted ICs can be decreased by reduc-
ing the dimensionality and noise of the input data prior to ICA (Nadal et al. 2000).
This is usually done through a PCA (or singular value decomposition) truncation
so that the largest principal components are only retained. Here, the first five prin-
cipal components explaining 71% of total variance of NDVI anomalies are retained
(i.e. only five ICs are extracted). Hereafter, the kth component from ICA is denoted
by ICk. Since the order of the extracted ICs is not meaningful (Hyvärinen and
Oja 2000), we order ICs so that the percentage of total variance accounted for a
component decreases as k increases (i.e. we order ICs in analogy with principal
components).
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In floodplain wetlands, water availability mainly depends on the fluvial regime and
local rainfall. To interpret ICs of NDVI in terms of changes in these two water inputs,
the following two variables are considered: (i) monthly mean water level of Paraná
River recorded at Timbúes gauge station (see station location in figure 1) and (ii)
monthly total precipitation over the LC. For every month, the latter is estimated as
the arithmetic mean of precipitation values from meteorological stations located in
the following cities: Buenos Aires, Gualeguaychú, Rosario and Santa Fe (see city
locations in figure 1). To make consistent comparisons between ICs extracted from
monthly NDVI anomalies and time series of water inputs, the seasonal cycle is also
removed from the time series of water level and precipitation in the same manner as
for NDVI time series. Accumulated precipitation is considered here as a measure of
the ecologically significant water deficit associated with a drought. For a time scale of n
months, accumulated precipitation is computed by averaging precipitation anomalies
of n consecutive months and by assigning that average to the last month.

To find links between ICs of NDVI and El Niño Southern Oscillation (ENSO),
an indicator of this climatic phenomenon should be considered. In this study, the
Multivariate ENSO Index (MEI) is used to describe the magnitude and timing of
ENSO. This index combines atmospheric and oceanic variables from the equatorial
Pacific Ocean and, therefore, it contains more information than other indexes based
on a single variable (Wolter and Timlin 1998). It is noted, however, that the conclusions
of this study would not change if other indicators of ENSO (e.g. Southern Oscillation
Index) are used instead of MEI.

4. Results and discussion

In this section, ICA results are described and discussed. Only the first three ICs are
presented since they can be interpreted as vegetation responses to changes in local
rainfall and water level of Paraná River.

IC1 captures a vegetation decrease associated with a drought that occurred in most
of the LC between April 2008 and December 2008 (figures 3(a) and 4(a)). Note that
this vegetation minimum almost coincides with the most pronounced and prolonged
minimum of rainfall accumulated over 9 months (figure 4(a) and 4(b)). Note also that
this precipitation minimum occurred at the end of the most intense La Niña event of
the study period (figure 5(a)). Thus, our results are consistent with previous studies
that show, at the continental scale, a decrease of precipitation and vegetation dur-
ing La Niña conditions, and an increase during El Niño conditions, in south-eastern
South America (e.g. Los et al. 2001; Lotsch et al. 2003a).

IC2 reflects changes in vegetation cover associated with variations in Paraná River
water level. In the eastern sector of the lagoon system, the amount of vegetation
decreases when water level increases and vice versa (figures 3(b), 4(c) and 4(d)). Note
that this behaviour is only interrupted in 2006–2007 when the largest peak of water
level occurred (figure 4(c)). However, the vegetation response to this flood pulse is
captured by another IC (see below in this section). It is noted that there are channels
that connect the Paraná River with the lagoons. Hence, vegetation changes described
by IC2 can be interpreted as expansions (or contractions) of eastern lagoons owing to
high (or low) levels of the Paraná River.

IC3 consists of a pulse-like vegetation minimum that mainly occurred in the central
part of the LC between March 2007 and July 2007 (figures 3(c) and 4(e)). This mini-
mum occurred 1–2 months after the largest peaks of time series of precipitation and
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Figure 3. (a)–(c) Spatial distributions of amplitude of the first three ICs of monthly NDVI
anomalies. Each distribution is normalized to a maximum absolute value of unity. The fraction
of total variance accounted for each component is shown within the panels.
Note: IC, independent component; NDVI, Normalized Difference Vegetation Index.

water level (figure 4(f )). Since these two peaks occurred simultaneously (figure 4(e)),
it is difficult to assess the role of each of these water sources in generating the flood
pulse. Note that the anomalous large values of precipitation and water level occurred
at the end of El Niño 2006–2007 (figure 5). Several studies showed that these hydro-
logical conditions are commonly related to El Niño events (e.g. Diaz et al. 1998; Los
et al. 2001; Camilloni and Barros 2003). Therefore, IC3 isolates the effect of a flood
pulse, associated with El Niño 2006–2007, on the vegetation cover of the LC.

Interestingly, none of the first three ICs exhibit significant variability in the delta
region (figure 3). That is, the seasonal cycle of vegetation remains nearly unchanged
from year to year in this part of the LC. This would be the case if there is a dominant
water input that does not exhibit significant interannual variability. This type of water
source is provided by diurnal and semi-diurnal astronomical tides of the Río De la
Plata River which flood the delta region every day (tide tables for Río de la Plata
River are available at http://www.hidro.gov.ar/). Thus, our results are in agreement

http://www.hidro.gov.ar


ICA of NDVI data in a large wetland 389

IC
1

(a)

2000 2002 2004 2006 2008 2010

−0.6

−0.3

0.0

0.3

0.6

P
9 

(m
m

)

−40

−20

0

20

40

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0
(b)

r

IC
2

(c)

−0.6

−0.3

0.0

0.3

0.6

H
 (

m
)

−1

0

1

−0.2

0.0

0.2

0.4

0.6

0.8
(d)

r

   
   

   
   

   
   

   
   

 IC
3

(e)

0.0
0.3
0.6

P
 (

m
m

)

0
90

2000 2002 2004
Year

2006 2008 2010

−1
0
1

H
 (

m
)

0 2 4 6 8 10 12

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

( f )
IC3, H

IC3, P

Month

r

Figure 4. Time series of the first three ICs of monthly NDVI anomalies are shown as thick
lines in (a), (c) and (e). In (a), the thin line shows accumulated precipitation over 9 months (P9).
In (c) and (e), thin lines show monthly values of precipitation (P) and Paraná River water level
(H). Panel (b) shows values of Pearson’s coefficient (r) for correlation between time series of
IC1 and precipitation accumulated over time intervals varying from 1 to 12 months. Values of
r for lagged correlation between the following pairs of variables (indicated between brackets)
are shown: (d) [IC2,H], (f ) [IC3,H] and (f ) [IC3,P]; time lags, shown on the abscissa, are only
applied to the second variable. The correlation coefficients shown in (b), (d) and (f ) are calcu-
lated over the shaded periods shown in (a), (c) and (e), respectively. In (b), (d) and (f ), r values
above the horizontal line are significant at the 97.5% level (one-sided t-test)
Note: IC, independent component; NDVI, Normalized Difference Vegetation Index.

with Zoffoli et al. (2008) who suggested that ENSO-related signals (i.e. interannual
variability) are absent in the delta vegetation because of the important effect of tides
on the ecosystem of this region.

This study shows that the Infomax ICA algorithm is a useful tool for isolating phys-
ical causes of vegetation variability in a large wetland. However, it should be stressed
that other ICA algorithms exist (Hyvärinen and Oja 2000). Hence, a possible exten-
sion of this work would consist of performing an intercomparison ICA model study
to assess the performance of different ICA algorithms for the identification of causes
of vegetation changes in wetlands.
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Figure 5. Time series of monthly anomalies of precipitation (P, thin line in (a)), precipitation
accumulated over 9 months (P9, thick line in (a)) and Paraná River water level (H, thin line in
(b)). In (a) and (b), the time series of MEI is also shown as an area graph. Positive and negative
MEI values correspond to El Niño and La Niña conditions, respectively.
Note: MEI, Multivariate ENSO Index.

5. Conclusions

A modern CET named ICA is performed on a 10-year long sequence of monthly
MODIS-NDVI images of a large SAW. The main conclusions of this work are the
following:

• The NDVI data used in this study do not follow a Gaussian (normal) probabil-
ity distribution. Consequently, classical CETs, which usually require Gaussian
input variables, are not suitable for studying the spatio-temporal variability of
these data.

• Since ICA has several advantages over classical CETs (e.g. it does not require
Gaussian input data), it succeeds in extracting three physically meaningful com-
ponents from the NDVI image sequence. Each of these components isolates the
effect of a particular hydrological perturbation (e.g. a severe drought associated
with La Niña 2007–2008) on the vegetation cover. Thus, ICA of NDVI images
provides a detailed and in-depth analysis of the physical causes of vegetation
variability in the wetland considered here.

• Although we only applied an ICA method to NDVI data from a particular large
wetland of South America, we believe that this modern technique is also a pow-
erful tool for understanding vegetation changes in other wetlands. Hence, we
hope that this study provides a useful background for future studies of wetland
ecosystems.
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