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ABSTRACT. Given a space of homogeneous type (X,d,u) and 1 < p <
oo, the main purpose of this note is to find sufficient conditions on a
function w and on a subset F of X, such that w(d(z, F)) belongs to
the Muckenhoupt class Ap(X,d, u). Here d(z, F') denotes the distance
between z € X and F.

INTRODUCTION

The class of Muckenhoupt weights are extensively used in real and har-
monic analysis, as well as, in the theory of partial differential equations.
For example, the behavior of the source near the boundary of the domain
of a Dirichlet boundary value problem, may cause non-solvability in a non-
weighted Sobolev space. Nevertheless, the problem can be solved in an ade-
quate weighted Sobolev space, in which the difficulties might be avoided. If
the source has an unbounded growth near the boundary F' of the domain,
we should search for a weight which vanishes there. This is the case of the
power-type weights, which are of the form d?(z, F), where d(z, F) is the
distance from the point x to F'.

Weighted Sobolev spaces with Muckenhoupt weights are of particular in-
terest since weighted imbedding theorems and Poincaré type inequalities
hold.

In the general framework of metric measure spaces (X, d, i), in [ACDT14]
the authors give sufficient conditions on a closed set FF C X and on a real
number 3 in such a way that d(z, F)? becomes a Muckenhoupt weight.

On the other hand, Kokilashvili and Samko study in [KS08] under which
conditions w(d(x, zg)) belongs to the Muckenhoupt class A, (X, d, 1), where
7o € X and w(t) is a function generalizing the powers t°.

In this note we obtain sufficient conditions on w(t) and on a subset F' of
a space of homogeneous type (X,d, p1), such that w(d(z, F)) € Ap(X,d, ).
This result is contained in Theorem 1, and state a joint condition on the
function w, the set F' and the measure p, that for the case of F' = {x¢}, is
the same that the required in [KSO08].

In Theorem 4 we study when this condition is satisfied, in the particular
case that (X, d, ) is a g-Ahlfors space and F is a h-set, where g and h are
dimension functions. In this setting, we also consider the specific function
w(t) = h(t)/g(t) and we obtain a condition in terms on the upper and lower
indices of h and g respectively. Precisely, in Theorem 7 we prove that if
I(h) < i(g), then w(d(x, F))? € A,(X,d,p) for every (1 —p) < 3 < 1.
When g¢(t) = t* and h(t) = t* we recover the result given in [ACDT14].
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We finish the note exhibit an example of a Muckenhoupt weight obtained
as consequence of our results.

1. NOTATION, DEFINITIONS AND BASIC RESULTS

Let X be a set. A quasi-distance on X is a non-negative symmetric
function d defined on X x X such that d(z,y) = 0 if and only if z = y, and
there exists a constant K > 1 such that the inequality

d(z,y) < K(d(z, 2) +d(z,y))

holds for every x,y,z € X. We will refer to K as the triangle constant for
d. A quasi-distance d on X induces a topology through the neighborhood
system given by the family of all subsets of X containing a d-ball B(x,r) =
{y € X :d(z,y) < r}, 7> 0 (see [CWT1]). In a quasi-metric space (X,d)
the diameter of a subset E is defined as

diam(F) = sup{d(z,y) : z,y € E}.

Throughout this paper (X, d) shall be a quasi-metric space such that the
d-balls are open sets.

We shall say that (X,d, p) is a space of homogeneous type if u is a
non-negative Borel measure p satisfying the doubling condition

0 < u(B(z,2r)) < Ap(B(z,7)) < 00

for some constant A > 1, for every x € X and every r > 0. We will refer to
A as the doubling constant for ;. We shall assume that pu({z}) = 0 for every
x € X, or in other words, (X,d, ) is a non-atomic space of homogeneous
type.

First we shall recall a basic property of spaces of homogeneous type that
we shall need. This property is actually contained in [CWT71], and reflects
the fact that spaces of homogeneous type have finite metric (or Assouad)
dimension (see [Ass79]). The expression finite metric dimension means
that there exists a constant N € N such that no ball of radius r contains more
than N6~1°82V points of any dr-disperse subset of X, for every § € (0,1).
A set U is said to be r-disperse if d(z,y) > r for every z,y € U, x # y. An
r-net in X is a maximal r-disperse set. It is easy to check that U is an r-net
in X if and only if U is an r-disperse and r-dense set in X, where r-dense
means that for every € X there exists u € U with d(z,u) < r. It is well
known that if a quasi-metric space (X, d) has finite metric dimension, then
every bounded subset F' of X is totally bounded, so that for every r > 0
there exists a finite r-net on F', whose cardinal depends on diam(F') and
on r.

Let us recall that a weight p on (X,d,pu) is a locally integrable non-
negative function defined on X. By locally we mean integrable over balls,
ie. [pdu < oo forevery d-ball Bin X. For 1 < p < co the Muckenhoupt
class Ap(X,d, p) is defined as the set of all weights p defined on X for
which there exists a constant C' such that the inequality

(it o) Gy )<
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holds for every d-ball B in X. For p = 1, we say that p € A;(X,d,u) if
there exists a constant C such that

M(lB)/deu < Cp(x)

holds for every d-ball B in X and p-almost every x € B. The classi-
cal reference for the basic theory of Muckenhoupt weights is Chapter IV
in [GCRAF85].

We now introduce some notions which are of interest in studying the order
of growth of functions. Let 0 < ¢ < oo, and let w : [0, 4] — [0, +00]. We shall
say that w(t) is almost increasing (a.i.) if there is a constant C' > 1 such
that w(t;) < Cw(te) if t; < to. Analogously, w(t) is almost decreasing
(a.d.) if there is a constant C' > 1 such that if t; < to then w(t2) < Cw(t1).
Following the notation in [KS08], we shall write

W([0,4]) = {w € C([0,4]) : w(0) =0, w(t) >0 for t >0 and w(t) is a.i.},

and

W([0,4]) = {¢: x¥p(x) € W([0,]) for some v € R}.

For w € W([0,/]), the lower and upper indices is defined by
m(w) =sup{r € R: ¢t Yw(t) is a.i. in [0, ]},
M(w) =inf{r € R: ¢t Yw(t) is a.d. in [0,4]}.

Remark 1. For a large class of functions w, the indices m(w) and M (w) coin-
cide with the lower and upper Matuszewska-Orlicz indices (see for example
[Mal85] and [KS04]).

Remark 2. It is easy to check that if t™"w(t) is a.i. on [0, £], then the same
is true for t=Pw(t) for every B < v. Analogously, if t~“w(t) is a.d. on [0, ],
then the same holds for t~#w(t) for every 8 > v. Then, if m(w) > —oo and
v < m(w), then the function w,(t) := ¢t "w(t) is ai. on [0,]. Similarly,
if M(w) < oo and v > M(w), then w,(t) is a.d. on [0,¢] and then, from
the definition of w, we have that it is a doubling function on [0, ¢]. This
means that there exists a positive constant C' such that w, (2t) < Cw,(t),
for every 0 <t < /¢/2.

Remark 3. Tt is not difficult to check that M (w) = —m(w™?), and that for
each a > 0, we have m(w?®) = am(w) and M (w?®) = oM (w).

Given a space of homogeneous type (X,d, u) with diameter ¢, the main
purpose of this note is to find sufficient conditions on a function w € W ([0, ¢])
and on a subset F' of X, such that p(x) := w(d(z, F')) belongs to the Muck-
enhoupt class A,(X,d, ). Here d(x, F') denotes the distance between x € X
and F, defined in the classical way by d(x, F') = inf{d(z,y) : y € F'}. In this
paper we extend the results in [KSO08|, where is considered the particular
case ' = {x¢} for some zp € X.

Since functions in the Muckenhoupt class are positive almost everywhere
and p(z) = w(d(z, F)) = w(0) = 0 for every z € F', we shall assume from
now on that pu(F) = 0.

In what follows the letter C' will denote a generic constant but not always
the same at each occurrence, if is necessary we refer about the dependencies.
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2. THE MAIN RESULT

Let (X,d, u) be a given space of homogeneous type and set £ = diam(X).
Given a subset F' of X and € > 0, the e-enlargement [F|. of F' is defined
by

[Fle ={r e X :d(z,F)<e} = U B(y,e).
yeF

Let w € W([0,/]). We shall say that w belongs to W if there exists a
constant C' such that
o [ MR B

0 tw(t) w(r)
holds for every 0 < r < ¢ and every x € F'.

We can now state our main result, which give us sufficient conditions on
a weight w and on a given set F', in such a way that w(d(x, F')) belongs to
a Muckenhoupt class.

Theorem 1. Let 1 < p < oo and F C X given, and let w € W([0,/))
1

with both m(w) and M(w) finite. If w™' and wr=1 belong to W¥', then

w(d(z, F)) € Ap(X, d, ).

Remark 4. Let us observe that for the particular case F' = {z¢} for some
zo € X, the condition w™! € Wiro} gays

[ HBE 0 Brorhul) [ p(Bentiut)
0 3 0 t

dt < C u(B(xo,r))w(r).

1
Analogously, w1 € W{#o} is equivalent to

/’" M(B(lﬂfo,t) gt < C M(B(lﬂfo,r))_

0 twr1(t) wr=1(r)

The above two conditions are required in [KS08| uniformly in x in order to
obtain w(d(x,x0)) € Ap(X,d, ). Nevertheless, following the proof there,
one can see that it is sufficient that both conditions hold just for xzg. Then,
for the case of FF = {x¢}, hypotheses in our theorem are the same as

in [KS08].

In order to show the above theorem, we shall need the following result
that will be proved at the end of this section.

Lemma 2. Let (X, d, p) be a space of homogeneous type and let w € W([O, )
with both m(w) and M(w) finite. If w € WF, there exists a constant C' such
that for every x € X and 0 < r < { we have

(i) if d(z, F) > 2Kr,

(2:2) MHW”AWwWMWSQ
(i) if d(z, F) < 2Kr,
_w(r) _duly)
(2:3) MMWWAWwWMWSG

Here K denotes the triangular constant for d.
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Proof of Theorem 1. Let ¢ = pi We shall apply Lemma 2 to w™! and w9,
If d(z, F') > 2Kr, from (2.2) we obtain

1
M) gy 20 FV) < Crlda, )

and

1 / du(y) C
w(B(@,7)) Jp(es [wd(y, )7~ [w(d(z, F))]*
If d(z, F) < 2Kr we proceed in the same way but applying (2.3). Then we

have that w(d(y, F')) € Ay(X,d, p).
U

In order to prove Lemma 2, we shall use the following result.

Lemma 3. Let w € W with both m(w) and M (w) finite. Then there exists
a constant C' such that

du(y) w(B(z,r))
LQMMﬂ%m>§C w(r)

foreveryx € F and 0 < r < £.

Proof. Fix x € F and 0 < r < £. For each non-negative integer k£ we define
Xp = Xp(z,7) == {y € B(z,r) : 27" r < d(y, F) < 27"r}.

Since d(y, F) < d(y,x) for every y, we have B(z,r) = [Jpeq Xk. Also for
every y € Xy, it holds that d(y, F)™ < ¢(27%r)~¥, with ¢ = 2m&{»:0} Then,
for a fixed v < m(w) since w, is almost increasing we obtain

/B(x,r) w(d(y Z/X 'T’l“())
<CZ/ w2 deL))

S S
< c2v4P (“;ig) + ki) (()2(’“?;1))>

where 3 is any fixed real number satisfying 8 > M(w) fixed, since wg is
almost decreasing.
We claim that

pXk1) _ o (5 p((Flir 0 Bla,r)

— dt
w(27kr) = 7 Joka tw(tr)
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Assuming that the above claim holds, we have that

du(y) w(B(z,r)) L u([Fler 0 Bz, 7))
(L@mma%m>§0 w(r) *CA ()
o pBan) [ plFLNBar)
= *CA w(z)

and the result is proved since w € WF'.

Then it only remains to prove the claim. In order to do this, notice that
from the definition we have that X1 C [Fly—x—1, N B(x, ). Also, since we
can assume v # 1, we have that

2—k
/ (tr)™Vdt = C27% (27 Fr)7".
2—k—1
Then, since w, is almost increasing we have
p(Xpi1) _ p([Fla-s1, 0 Bz, 7))
w(2=Fkr) — w(2=kr)
—k
_ A b([Fla-s1, N Bz, 7))y [ —v
=C w27 2 , (tr)~V dt
—k
7 u([Fle 0 B(x,r))
9—k—1 wy, (tr)
—k
27 u([Fle 0 B(x,r))
9—k—1 tw(tr)

—k—1

<C 2k (tr) = dt

dt.

<C
O

Proof of Lemma 2. Fix © € X and 0 < r < {. In order to prove (i), fix
y € B(x,r) and 9 € F. Since we are assuming d(z, F) > 2Kr, then
d(x,zo) > 2Kr and

d(y,zo0) >
Hence, taking supremum on zg € F,
(2.4) 2Kd(y, F) > d(x, F).

Then, for afixed v < m(w), since w,, is almost increasing we have w, (5jzd(z, F)) <
Cw,(d(y, F')). On the other hand, fix 8 > M(w). Due to wg is almost de-
creasing we obtain

d(z,z0)
K

w(d(z, F)) w (zgd(@, F))
dw. P = C (shed(z, 7))’
so that w(d(z, F)) < Cgw(5%d(z, F)). Hence we can conclude that
wy(d(z, F)) < Cw,(d(y, F)).
Then
w(d(z, F)) / du(y) —_ d(z, F)” / wy(d(z, F))dp(y)
/,L(B(:L’,’I“)) B(z,r) w(d(va)) “(B(:L"T)) B(z,r) wl/(d(ya F))d(y¢ F)V

d(z, F)” dp(y)
SCMmeyL@ﬂw%MV
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So that the result is proved from (2.4) if we can choose v > 0. Otherwise, if
v < 0 we use that

1
dlyan) < K(d(p,2) + dlo,an)) < K e, F) + do,zo) )
for every zp € F, to obtain again d(y, F') < Cd(x, F') and then (i) is proved.
We shall now prove (ii). Let us assume first r < #. Since d(z, F) <
2Kr, there exists xy € F such that d(z,z9) < 3Kr. Then, for every z €

B(z,r) we have

d(z,20) < K(d(z,z) + d(z, z0)) < 4K°r.

In a similar way we can see that B(zg,4K?r) C B(z,7K?r). So that from
the doubling property of p we have that

u(B(xo,4K>r)) < Cu(B(a, ).

Then, since in this case we have 4K?r < ¢, from Lemma 3 we obtain

/ du(y) / du(y)
B(z,r) w(d(yaF)) N B(z0,4K2r) w(d(va))
(B(xo,4K°%r))
w(4K?r)
n(B(z,r))
w(4K?r)

<ot

<C

So that the result is proved if w(r) < Cw(4K?r), which follows from the
fact that w, is almost increasing for every fixed v < m(w).

Finally, we shall consider the case # < r < {. Define t = #. Since
(X, d) has finite metric dimension, there exists a finite t-net U in B(z,r), let
us say U = {x1,22,...,25}, where N is a constant which does not depend
on z and r (see [CW71]). Hence {B(x;,t) : i = 1,...,N} is a cover of
B(z,r), and B(z;,t) C B(z,2Kr) for every i, so that

/ du(y) / du(y)
B(z,r) w(d(va)) B Uil B(xz;,t) w(d(y> F))

/ du(y)
N 1 J B(z;,t) w(d(yv F))

where we have applied the previous case since t < £/(4K?) and the doubling
property of u. Finally, from the facts that w, is almost increasing for every
fixed v < m(w) and that wg is doubling for every fixed § > M (w), we can
conclude that w(r) < Cw(¢) < Cw(t), and the result is proved. O
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3. PARTICULAR CASES AND EXAMPLES

In this section we explore sufficient conditions under which w~" and wPlTl
belong to W in some particular cases of the underlying space X and of sets
F.

We shall denote H the class of all right continuous monotone increasing
doubling functions A : [0, +00] — [0, +-00] such that h(u) > 0 if u > 0. We
refer to H as to the set of all gauge functions or dimension functions.
Given g € H, we shall say that (X,d,u) is an g-Ahlfors space if there
exists a constant C' > 1 satisfying the inequalities

C7lg(r) < p(B(x,1)) < Cyg(r),

for every z € X and every 0 < r < diam(X). Notice that in the particular
case g(r) = r®, we have the classical a-regular Ahlfors spaces. It is easy to
see that if (X,d, ) is an g-Ahlfors space, then it is a non-atomic space of
homogeneous type with doubling constant for p which only depends on C
and g.

Also, given h € H, a subset F' of X is said to be h-set with measure
v if v is a Borel measure supported in F' such that there exists a constant
C > 1 satisfying the inequalities

C'h(r) < v(B(z,r)) < Ch(r),
for every x € F and every 0 < r < diam(F'). In the particular case h(r) = r°,
we deal with the class of sets which are known as s-sets in some references

related to problems of harmonic analysis and partial differential equations
(see for example [Sj697]).

Following again [KS08], we shall denote Z° the class of functions f(t)

satisfying the condition
Tt
/ fi) dt < Cf(r),
0

for a constant C' > 0 which does not depend on r > 0.

In this particular case of space X and set F', we obtain a direct relationship
between the behavior of the functions ¢ and h and the condition w € W¥.
This result is contained in the next theorem, and allows us obtain a large
class of examples.

Theorem 4. Let (X,d,u) be an g-Ahlfors space and let F' be an h-set. If

w(gtgz)(t) € 29 then w e WF.

In order to proof the above result, we shall use the following lemma.

Lemma 5. Let F' be an h-Ahlfors set in (X,d, ). Then there exist a finite

subset {x1,2,...,21,,} of F' and a constant C such that
It,r
p([Fle N Ba,r) < C Y p(B(xi,1)),
i=1

with I, < C% foreveryx e F,r>0and 0 <t <r.
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Proof. Fix x € F, r > 0 and 0 < t < r. Since (X,d) has finite metric
dimension and F' N B(z,2Kr) is bounded, there exists a finite ¢-net U in
FnNB(xz,2Kr), let us say U = {z1,22,...,2r,,}. Hence {B(x;,2Kt) :i =
1,...,I;:,} is a cover of [F]; N B(x,r), so that

It,r Itr
p([Fle N Ba,r) <> u(B(xi, 2Kt)) < C Y p(B(@i 1)),
=1 1=1

To estimate I;,, notice that B (wi, ﬁ) NB (a:j, ﬁ) = () for i # j. Then,
since F' is h-set with a measure v and h is doubling, we have

s (o)
C U] !
=Cv Z_LJIB <£L’i, QK)
< Cv(B(z,3K?r))
< Ch(r)
So that I, < Ch(r)/h(t). O

Proof of Theorem 4. Fix © € F and r > 0. For each 0 < t < r, let
{z1,72,...,21,,} C F as in Lemma 5. Then

/OT”([ ]tﬂgxr dt<C/r
(t)

g
< Ch(r)/o fo(Dh(®) dt

t'r

x“ MBib)

O

Remark 5. Observe that if we take h(t) = t°, g(t) = t* and w(t) = t* we
recover the result given in [ACDT14], that is, if (X,d, ) is an a-Ahlfors
regular space and F is an s-set with 0 < s < «, then d(z, F)? € Ap(X,d, )
for every (s —a) < f < (a—s)(p — 1). Indeed, in this case it is easy to see
that £9=5+8 and 2~ 71 belong to Z°. This implies that w1, wiT € wr,
so that w(d(z, F)) € Ap(X,d, n) from Theorem 1.

The class of function that satisfies the hypothesis of Theorem 4 are not
only the power functions. In fact, we can use more general functions g and
h. To prove this we shall need the following definitions.

Let ¢ : [0,400] — [0,+00]. The function ¢(t) is said to be of lower
type a, 0 < a < oo, if there exists a constant C' > 0 such that

P(At) < CA%o(t),
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for every 0 < X\ < 1. Similarly, ¢(¢) is of upper type o, 0 < o < oo if there
exists a constant C' > 0 such that

P(At) < CA%o(t),
for every A > 1.
It is clear that if ¢ is of lower type o and 0 < 3 < «, then ¢ is of lower
type 5. Analogously, if ¢ is of upper type a and 8 > «, then ¢ is of upper
type 8. Then we define the lower and upper indices respectively by

i(¢) = sup{a : ¢ is of lower type a},
and
I(¢) = inf{« : ¢ is of upper type a}.
Next lemma summarizes some useful and known facts about the above
functions that we will need in the following.
Lemma 6. Let ¢ : [0, +o0] — [0, +o0] given. Then:
(i) ¢ is of lower type a for some 0 < a < o0 if and only if it is quasi-
INCreasing;
(ii) ¢ is of upper type « if and only if the function ¢(t)/t* is quasi-
decreasing;
(iii) ¢ is of upper type o for some 0 < a < oo if and only if it satisfies
the doubling condition.

Theorem 7. Let (X,d,pn) be an g-Ahlfors regular space, F' an h-set and
w(t) = h(t)/g(t). If I(h) < i(g), then w(d(x, F))? € Ay(X,d,u) for every
(1-p<pB<l.

Proof. Fix (1 — p) < 8 < 1. From Theorem 4 and 1, it is sufficient to see

that the functions (g/h)!~# and (g/h)HP‘%l belong to ZY.

Notice that g is of lower type « for every a < i(g) and h is of upper type
7 for every v > I(h). We shall fix ¢ > 0 and define o = i(g) —¢ and v = i(g).
For each 0 <t < r we have

s=c(t) o am=c(f) .

Then, if § > 0, we have
r 6 o pr ad —~é
[ Ga) f=cl) LG 6%

c (7;8)5 /0 g

<(25)

In other words, (g/h)’ € Z° for every § > 0. Since (1 —p) < 8 < 1, we
8
obtain (g/h)'?, (g/h)' 71 € Z°, as desired. O

IN

We shall finish this note with an example of Muckenhoupt weight obtained
as a consequence of Theorem 7.

Let us consider R™ equipped with the usual distance d and the n-dimensional
Lebesgue measure . So that (R™,d, i) is an g-Ahlfors space, with g(t) = t".
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We shall fix constants s and 7y, and we shall consider the function h defined
on (0,1) by

h(t) = t*ellostl”
From [Bri02, Prop. 7.5], there exists a compact h-set F' for each 0 < s < n
and 0 < v < % given. Since el°8!" is decreasing, for each A > 1 we have

h(At) < X°h(t),
so that I(h) < s <n =1i(g). Then, from Theorem 7 we have that
d(z, F)Ps=n) fllogd(z. I ¢ A, (R™),
for every (1 —p) < B < 1.
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