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Approximation of solutions of fractional diffusions in compact
metric measure spaces

Marcelo Actis and Hugo Aimar

Abstract. In this note we prove that the solutions to diffusions associated with fractional powers of the
Laplacian in compactmetricmeasure spaces can be obtained as limits of the solutions to particular rescalings
of some non-local diffusions with integrable kernels. The abstract approach considered here has several
particular and interesting instances. As an illustration of our results, we present the case of dyadic metric
measure spaces where the existence of solutions was already been proven in Actis and Aimar (Fract Calc
Appl Anal 18(3):762–788, 2015).

1. Introduction

The Cauchy problem for the heat equation in R
n , i.e., ut = �u in R

n+1+ , with
u(x, 0) = u0 in R

n , admits an immediate generalization to the case of non-local
diffusions. In this case, the Laplacian in the space variables is replaced by the fractional
Laplacian operator of order s with 0 < s < 2, which is given by

− (−�)s/2 f (x) = cn,s v.p.
∫

f (x) − f (y)

|x − y|n+s
dy, (1.1)

and is a representation of the generalized Dirichlet to Neumann operator (see [7]).
For the semigroup approach to the theory see also [16]. The standard linear evolution
equation ut = −(−�)s/2u involving the fractional Laplacian has been widely studied
and usually used in modeling processes like anomalous diffusion (see [17] and the
references therein).
The aim of this paper is to approach the study of fractional diffusions in metric mea-

sure spaces where despite of the lack of differential structure in these contexts, some
problems associated with non-local operators can be considered. As it is explicitly
observed in [5], usually the solutions to non-local evolution equations with integrable
kernels approximate solutions of some classical local evolution problems such as the
heat equation (see [10]). What we do here is to extend this basic principle both to
non-local and to non-Euclidean settings. For a related approach in the Euclidean case,
see [11,12].
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Let us observe that there are several settingswhere the application of ourmain result,
contained in Theorem 9, can provide good approximation of solutions: Euclidean
domains, the n-dimensional torus, classical fractals, etc. These seemingly diverse
settings can be unified in their approach by noticing that all of them have the same
structural form inAhlfors regular spaces.We say that ametricmeasure space (X, d, μ)

is an Ahlfors α-regular space if there exists two positive constants, say c1 and c2, such
that

c1r
α ≤ μ(B(x, r)) ≤ c2r

α,

for all x ∈ X and for all real number r < 2 diam(X), where B(x, r) denotes the
d-ball centered in x of radius r and diam(X) = sup{d(x, y) : x, y ∈ X} denotes the
diameter of the whole space X .

In this generalized context, the fractional diffusion problem takes the form

{
ut (x, t) = −Dsu(x, t), x ∈ X, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ X,
(1.2)

where Ds is the natural extension given by (1.1) of the fractional Laplacian to Ahlfors
α-regular spaces, i.e.,

Ds f (x) =
∫
X

f (x) − f (y)

d(x, y)α+s
dμ(y).

The basic difficulty in this problem is the (local) non-integrability of the kernel ks =
d(x, y)−α−s , so that themethods in [9] are not directly applicable. Nevertheless, in this
note we prove that problem (1.2) can be regarded as the limit of a family of problems,
each of them built on a adequate rescaling of an integrable kernel J .

As a first elementary step, in order to approximate (1.2), we use the Banach fixed
point method to solve the problems of the type

⎧⎪⎨
⎪⎩
ut (x, t) =

∫
X
J (x, y)[u(y, t) − u(x, t)]dμ(y), x ∈ X, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ X.

(1.3)

where the kernels J : X × X → R
+ are integrable and Lipschitz continuous on each

variable uniformly in the other. Some previous work in this direction can be found
in [6,15], nevertheless we shall deal with different function spaces. Then we obtain
approximations of ks by a family {Jε : ε > 0} of kernels with the above described
properties. We prove that the solution u of (1.2), provided its existence, is the uniform
limit of the solutions uε of (1.3) associated with the kernels Jε .
The paper is organized in six sections. In the second one we give the description

of the setting, we prove existence of solutions of (1.3) and we state a comparison
principle. In Sect. 3 we consider the approximation of Ds by non-local operators with
integrable kernels. In Sect. 4 we state and prove our main result, where we show how
the solutions of the scaled problems with integrable kernels approximates solutions
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of the fractional diffusion. In the Sect. 5 we provide an application of our result to a
non-classic context: dyadic metric measure spaces. Finally in Sect. 6 we present some
conclusion and remarks.

2. Setup and preliminary results

The results of this section are quite general and do not depend on any doubling
or homogeneity property of the underlying metric measure space (X, d, μ). Let us
start by introducing some basic notation and definitions. The homogeneous Lipschitz
continuous space of order r > 0, denoted by �r (X, d, μ), is the space of functions in
L∞(X, d, μ) such that for some positive constant C

| f (x) − f (y)| ≤ Cd(x, y)r , (2.1)

for all x, y ∈ X . Actually, �r (X, d, μ) can be equipped with the norm

‖ f ‖�r := ‖ f ‖∞ + [ f ]�r ,

where [ f ]�r is the seminorm given by

[ f ]�r := sup
x∈X

sup
y∈X\{x}

| f (x) − f (y)|
d(x, y)r

.

Let J : X × X → R
+ be a nonnegative measurable function with respect to the

product σ -algebra in X × X satisfying the following properties

(i) J (x, y) = J (y, x), for all x, y ∈ X ;
(ii) J is integrable in each variable uniformly in the other, i.e.

∫
X
J (x, y)dμ(y) ≤ β, for every x ∈ X.

(iii) J (·, y) is Lipschitz continuous of order r > 0 uniformly in y ∈ X , i.e.,

[J (·, y)]�r ≤ λ, for every y ∈ X.

Note that in our case X is compact, so the L∞-norm is controlled by the Lipschitz
seminorm. Then property (iii) implies (ii).
Given T ∈ R

+ fixed and u0 ∈ �r (X, d, μ) we consider the non-local problem

{
ut (x, t) = ∫

X J (x, y)[u(y, t) − u(x, t)]dμ(y), x ∈ X, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ X.

(2.2)

We say that a function u is a solution of (2.2) if u belongs to mixed space

B�r = C1((0, T );�r (X, d, μ)) ∩ C(([0, T ];�r (X, d, μ))
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and satisfies

u(x, t) = u0(x) +
∫ t

0

∫
X
J (x, y)(u(y, s) − u(x, s)) dμ(y) ds,

where the integral in the right hand side is formally understood as a Bochner integral.
Existence anduniqueness of solutions of problem (2.2) are consequences of theBanach
fixed point theorem and will be proved in Theorem 3. Before, let us state two auxiliary
lemmas.
Given t0 > 0, letXt0 be the spaceof continuous functions from [0, t0] to�r (X, d, μ),

i.e.,

Xt0 = C([0, t0];�r (X, d, μ)),

which is a Banach space equipped with the norm

|||w|||r = max
t∈[0,t0]

‖w(·, t)‖�r .

For any w0 ∈ �r (X, d, μ), let Tw0 be the operator defined on Xt0 by

Tw0(w)(x, t) = w0(x) +
∫ t

0

∫
X
J (x, y)(w(y, s) − w(x, s)) dμ(y) ds. (2.3)

LEMMA 1. The operator Tw0 maps Xt0 into Xt0 .

Proof. Note that for any t ∈ R
+ and any x, z ∈ X we have that

|Tw0(w)(x, t) − Tw0(w)(z, t)| ≤
∣∣∣∣
∫ t

0

∫
X
[J (x, y) − J (z, y)]w(y, s) dμ(y) ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
X
[J (x, y) − J (z, y)]w(z, s) dμ(y) ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
X
J (x, y)[w(x, s) − w(z, s)] dμ(y) ds

∣∣∣∣
≤ 2tμ(X) sup

y∈X
[J (·, y)]�r sup

t∈[0,t0]
‖w(·, t)‖∞d(x, z)r

+ tμ(X)

∫
X
J (x, y)dμ(y) sup

t∈[0,t0]
[w(·, t)]�r d(x, z)

r

Hence, from properties (ii) and (iii) of the kernel J , we obtain

|Tw0(w)(x, t) − Tw0(w)(z, t)| ≤ Ct |||w|||r d(x, z)r . (2.4)

Then [Tw0(w)(·, t) − w0]�r ≤ Ct , which proves the continuity at t = 0. In a similar
way, if t1, t2 ∈ R

+ such that 0 < t1 < t2 ≤ 0 we see that

[Tw0(w)(·, t1) − Tw0(w)(·, t2)]�r ≤ C(t1 − t2).

Hence Tw0(w) ∈ Xt0 . �
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LEMMA 2. Let w, v ∈ Xt0 then

∣∣∣∣∣∣Tw0(w) − Tw0(v)
∣∣∣∣∣∣
r ≤ Ct0 |||w − v|||r .

Proof. Let 0 < t < t0 and u := w−v. Note that [Tw0(w)−Tw0(v)]�r = [Tw0(u)]�r .
Since by (2.4)

|Tw0(u)(x, t) − Tw0(u)(z, t)| ≤ Ct |||u|||r d(x, z)r ,

then [Tw0(u)]�r ≤ Ct |||u|||r . Therefore [Tw0(w) − Tw0(v)]�r ≤ Ct0 |||w − v|||r as
desired. �

THEOREM 3. (Existence and uniqueness) Let u0 ∈ �r (X, d, μ) and J satisfy-
ing (i), (ii) and (iii). Then there exists a unique solution u ∈ B�r of (2.2).

Proof. Taking t0 in Lemma 2 satisfying Ct0 < 1 we obtain that Tu0 is a contractive
operator on Xt0 . Then the existence and uniqueness of a solution satisfying (2.2)
follows from the Banach fixed point theorem on the interval [0, t0].

To extend the solution to [0, T ], we take as initial data u(x, t0) ∈ �r (X, d, μ)

to obtain a solution up to [0, 2t0]. Iterating this process we get a solution defined
on [0, T ]. �

Finally, we present our last preliminary result before dealingwith the approximation
of Ds . It is a comparison principle which shall be useful at proving our main result.
We say that a function u ∈ BC = C1((0, T ),C(X)) ∩ C([0, T ],C(X)) is a super-

solution of (2.2) if

⎧⎪⎨
⎪⎩
ut (x, t) ≥

∫
X
J (x, y)[u(y, t) − u(x, t)] dμ(y), x ∈ X, t ∈ (0, T ),

u(x, 0) ≥ u0(x), x ∈ X.

LEMMA 4. (Comparison principle) Let u ∈ BC be a supersolution of (2.2) with
initial datum u0 ∈ C(X) and such that u0 ≥ 0. Then u ≥ 0.

Proof. Suppose that u is negative somewhere. Let v(x, t) = u(x, t)+εt , with ε small
enough to make v negative at some point. So, if (x0, t0) is the point where v reaches
its minimum, then t0 > 0 (since v(x, 0) = u(x, 0) ≥ 0). Further

vt (x0, t0) = ut (x0, t0) + ε >

∫
X
J (x, y)[u(y, t0) − u(x, t0)]dμ(y)

=
∫
X
J (x, y)[v(y, t0) − v(x, t0)]dμ(y) ≥ 0.

Therefore, vt (x0, t0) > 0 which contradicts the fact that (x0, t0) is a point where v

reaches its minimum. Then, u ≥ 0. �
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3. Approximation of Ds by rescaling kernels

In this section (X, d, μ) is Ahlfors α-regular space. Precisely, (X, d) is a metric
space and measure and metric are related by

c1r
α ≤ μ(B(x, r)) ≤ c2r

α, (3.1)

for some positive constants c1 and c2 and for every x ∈ X and r < 2 diam(X). This
situation, although restrictive, is natural in several classic geometric contexts such as
Riemannian manifolds and even fractals coming from iterated function systems like
the Cantor set or the Sierpinski gasket (see [14]).
The first result in this section is an elementary lemma which reflects the α dimen-

sional character of X under the assumption (3.1). The result is well known (see for
example [1]), but we include it for the sake of completeness. For notational simplicity
we shall write A 	 B when the quotient A/B is bounded above and below by positive
and finite constants. In a similar way, we write A � B when A/B is bounded above.

LEMMA 5. Let (X, d, μ) be an Ahlfors α-regular space. Then for any δ > 0 and
any ε > 0 we have that ∫

B(x,ε)

dμ(y)

d(x, y)α−δ
	 εδ,

and ∫
X\B(x,ε)

dμ(y)

d(x, y)α+δ
	 ε−δ

where the hidden constants only depend on α and δ.

Proof. In order to prove the first estimate, let us rewrite B(x, ε) as the union of annuli
of the form A j = B(x, 2−( j−1)ε)\B(x, 2− jε), with j ∈ N. Hence

∫
B(x,ε)

dμ(y)

d(x, y)α−δ
=

∞∑
j=1

∫
A j

dμ(y)

d(x, y)α−δ

≤
∞∑
j=1

(
2− jε

)−α+δ
∫
A j

dμ(y)

≤
∞∑
j=1

(
2− jε

)−α+δ

μ(B(x, 2−( j−1)ε)).

Therefore, from the upper bound in (3.1) we obtain

∫
B(x,ε)

dμ(y)

d(x, y)α−δ
≤ c2

∞∑
j=1

(
2− jε

)−α+δ

(2−( j−1)ε)α ≤ c2
2α

2δ − 1
εδ.

In an analogous way, it can be proved the lower bound and also the second estimate
over X\B(x, ε). �
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LEMMA 6. For f ∈ �r (X, d, μ) with s < r ≤ 1, the integral
∫
X

f (x) − f (y)

d(x, y)α+s
dμ(y)

is absolutely convergent and bounded by the �r norm of f .

Proof. Setting B := B(x, 1), then
∫
X

f (x) − f (y)

d(x, y)α+s
dμ(y) =

∫
B

f (x) − f (y)

d(x, y)α+s
dμ(y) +

∫
X\B

f (x) − f (y)

d(x, y)α+s
dμ(y).

(3.2)

Since f satisfies (2.1) then
∫
B

f (x) − f (y)

d(x, y)α+s
dμ(y) ≤ [ f ]�r

∫
B

dμ(y)

d(x, y)α−(r−s)
.

Then from Lemma 5 we obtain∫
B

f (x) − f (y)

d(x, y)α+s
dμ(y) � [ f ]�r . (3.3)

To estimate the integral over X\B of (3.2) we use the fact that f is bounded and again
the Lemma 5,∫

X\B
f (x) − f (y)

d(x, y)α+s
dμ(y) ≤ 2‖ f ‖L∞

∫
X\B

dμ(y)

d(x, y)α+s
� ‖ f ‖L∞ . (3.4)

Therefore, from (3.2), (3.3) and (3.4) we get that
∣∣∣∣
∫
X

f (x) − f (y)

d(x, y)α+s
dμ(y)

∣∣∣∣ � ‖ f ‖�r ,

so the proof is completed. �

The operator that assigns to every f ∈ �r (X, d, μ) the function

Ds f (x) =
∫
X

f (x) − f (y)

d(x, y)α+s
dμ(y),

is called the fractional derivative operator of order s. Note that Ds has a (local) non-
integrable kernel ks = d(x, y)−α−s . However, ks can be regarded as the limit of a
family of integrable kernels. In order to build this kernels, takeψ : R+ → R

+
0 defined

by

ψ(t) =
{
1, si t < 1,
t−α−s, si t ≥ 1.

For each 0 < ε ≤ 1 we define the kernels Jε in the following way,

Jε(x, y) := 1

εα
ψ

(
d(x, y)

ε

)
. (3.5)
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LEMMA 7. The kernels Jε defined by (3.5) are symmetric and positive. Moreover,

∫
X
Jε(x, y) dμ(y) 	 C, (3.6)

where C is a constant independent of ε, and for any r ∈ (0, 1] we have

[Jε(·, y)]�r � ε−(α+r). (3.7)

Proof. The symmetry and the positivity are inherited from the distance d and the
function ψ , respectively. Besides,

∫
X
Jε(x, y) dμ(y) = 1

εα

∫
X

ψ

(
d(x, y)

ε

)
dμ(y)

= 1

εα

[∫
B(x,ε)

dμ(y) + εα+s
∫
X\B(x,ε)

dμ(y)

d(x, y)α+s

]
.

Hence, by (3.1) and Lemma 5 we obtain (3.6).

On the other hand, since |ψ ′| ≤ α + s we have

|Jε(x, y) − Jε(z, y)| = 1

εα

∣∣∣∣ψ
(
d(x, y)

ε

)
− ψ

(
d(z, y)

ε

)∣∣∣∣
≤ [ψ]�r

εα

∣∣∣∣d(x, y)ε
− d(z, y)

ε

∣∣∣∣
r

≤ α + s

εα+r
d(x, y)r ,

which implies (3.7), so the proof is completed. �

Finally let Lε be an operator given by

Lε f (x) = 1

εs

∫
X
Jε(x, y)[ f (x) − f (y)] dμ(y).

The next statement shows that Lε converge weakly to Ds as ε → 0.

THEOREM 8. (Weak approximation) Let f ∈ �r (X, d, μ) then

sup
x∈X

|Lε f (x) − Ds f (x)| � [ f ]�r ε
r−s .

Proof. Since f ∈ �r (X, d, μ) then Ds f and Lε f are well defined. Furthermore note
that

∣∣∣∣ 1εs Jε(x, y) − ks(x, y)

∣∣∣∣ ≤ χ{d(x,y)<ε}
d(x, y)α+s

.
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Hence we obtain that

|Lε f (x) − Ds f (x)| =
∣∣∣∣
∫
X

[
1

εs
Jε(x, y) − ks(x, y)

]
[ f (x) − f (y)] dμ(y)

∣∣∣∣
≤

∫
B(x,ε)

| f (x) − f (y)|
d(x, y)α+s

dμ(y)

≤ [ f ]�r

∫
B(x,ε)

dμ(y)

d(x, y)α−(r−s)
.

Thus, by Lemma 5 we get that

|Lε f (x) − Ds f (x)| � [ f ]�r ε
r−s

and so the result is immediate. �

4. Main result

Since by Lemma 7 for each ε ∈ (0, 1) the kernel Jε defined in (3.5) satisfies (i), (ii)
and (iii), then from Theorem 3 the problem

{
ut (x, t) = −Lεu(x, t), x ∈ X, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ X.
(4.1)

has a unique solution uε ∈ B�r .
The next theorem shows that, provided the existence of a solution u of problem 1.2

then the solutions uε of the problems (4.1) converge to u as ε → 0+.

THEOREM 9. Let u0 ∈ �r (X, d, μ) and let s, r ∈ R be such that 0 < s < r ≤ 1.
Suppose there exists a solution u(x, t) ∈ B�r of the problem (1.2). Then the solutions
uε of the problems (4.1) satisfy

sup
t∈[0,T ]

sup
x∈X

|u(x, t) − uε(x, t)| � T εr−s .

Proof. Let wε = u − uε . Observe that

{
wε
t (x, t) = −Lεw

ε(x, t) + Fε(x, t), x ∈ X, t ∈ (0, T ),

wε(x, 0) = 0, x ∈ X,

where Fε(x, t) = Lεu(x, t) − Dsu(x, t).
Define z = kεr−s t − wε , where k is a arbitrary constant. Observe that

zt (x, t) = kεr−s − wε
t (x, t) = kεr−s − (Fε(x, t) − Lεw

ε(x, t)).
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We already know by Theorem 8 that |Fε(x, t)| � εr−s . Thus, choosing k large enough
we have that kεθ − Fε(x, t) ≥ 0. Then

zt (x, t) ≥ Lεw
ε(x, t) = −Lεz(x, t).

Therefore z is a supersolution of the problem (4.1). Since z(x, 0) = 0 then byLemma 4
it turns out that z(x, t) ≥ 0. Hence wε(x, t) ≤ kεr−s t . In a similar way, if we define
z(x, t) = kεr−s t + wε(x, t) we can prove that z(x, t) ≥ 0 and so wε(x, t) ≥ kεr−s t .
Thereby

|v(x, t) − uε(x, t)| = |wε(x, t)| ≤ kεr−s t

which implies that

sup
t∈[0,T ]

sup
x∈X

|v(x, t) − uε(x, t)| � T εr−s .

�

One main disadvantage of the abstract approach considered here is that we required
the a priori existence of solution of problem (1.2), which is not known in plenty of
contexts. However, in the next section, we will exemplify how this theorem works
in a context where we already know the existence and, even more, the structure of a
solution for (1.2).

5. Application to dyadic operators

Let us provide a non-classic context in which our main result applies and where the
approximation process can be appreciated. Our example deals with a dyadic version
of the operator Ds considered in [1] in the case of spaces of homogeneous type. Let
us briefly introduce the setting. For a more detailed approach, see [1].

Let (X, d, μ) be a compact space of homogeneous type (see [13]). Let D be a
dyadic family in X as constructed by Christ in [8]. Let H be a Haar system for
L
p(X, μ) = { f ∈ L p(X, μ) : ∫

X f dμ = 0} associated with D as built in [4]. The
system H is an unconditional basis for Lp(X, μ), for 1 < p < ∞ (see [4]). By
Q(h) we denote the dyadic cube on which h is based, i.e., the smallest member of D
containing the set {x ∈ X : h(x) �= 0}.

A distance in X associated with D can be defined by δ(x, y) = min{μ(Q) : Q ∈
D such that x, y ∈ Q}when x �= y and δ(x, x) = 0. The space X equippedwith δ and
μ turns out to be a 1-Ahlfors regular space. In this context, the fractional differential
operator of order s, with 0 < s < 1, is given by

Ds f (x) =
∫
X

f (x) − f (y)

δ(x, y)1+s
dμ(y).
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Since the Haar functions are Lipschitz functions of order 1 with respect to δ, the opera-
tor Ds is well defined on the Haar system. Moreover, each h ∈ H is an eigenfunction
of Ds , indeed

Dsh(x) = mhμ(Q(h))−sh(x),

where mh are real numbers bounded above and below by positive constants (see
Theorem 3.1 in [1]). Hence, in this context Ds also takes the form

Ds f (x) =
∑
h∈H

mhμ(Q(h))−s〈 f, h〉h(x).

The solution of problem (1.2) is given by

u(x, t) =
∑
h∈H

e−mhμ(Q(h))−s t 〈u0, h〉h(x) (5.1)

(see Theorem 4.2 in [1]). If the initial datum u0 belongs to �r (X, δ, μ) it can easily
be prove that u also belongs to �r (X, δ, μ) for every t > 0 (see Theorem 1.2 in [3]).
Therefore, all the hypothesis of Theorem 9 are fulfilled, and it can be applied in this
case. However, following the same techniques developed in [1] it can also be shown
that the operator Lε would take the form

Lε f (x) =
∑

h∈H \Hε

mhμ(Q(h))−s〈 f, h〉h(x) +
∑
h∈Hε

mε
hμ(Qε(h))−s〈 f, h〉h(x),

where Hε = {h ∈ H : μ(Q(h)) < ε}, Qε(h) is the biggest cube containing Q(h)

such μ(Qε(h)) < ε and mε
h are real numbers bounded above and below by positive

constants. Even more the solution of problem (4.1) is given by

uε(x, t) =
∑

h∈H \Hε

e−mhμ(Q(h))−s t 〈u0, h〉h(x)

+
∑
h∈Hε

e−mε
hμ(Qε (h))−s t 〈u0, h〉h(x). (5.2)

Knowing the explicit formof the solutions uε and u, we can estimate |u(x, t)−uε(x, t)|
directly as follows.

|u(x, t) − uε(x, t)| ≤
∑
h∈Hε

|e−mhμ(Q(h))−s t − e−mε
hμ(Qε (h))−s t ||〈u0, h〉||h(x)|

≤ 2
∑
h∈Hε

|〈u0, h〉||h(x)|

≤ 2‖u0‖�r

∑
h∈Hε

μ(Q(h))rμ(Q(h))1/2
χQ(h)(x)

μ(Q(h))1/2
,
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where the last inequality is consequence of Theorem 1.1 in [3]. SetH x
ε = {h ∈ Hε :

x ∈ Q(h)}, then

|u(x, t) − uε(x, t)| ≤ 2‖u0‖�r

∑
h∈H x

ε

μ(Q(h))r

≤ 2‖u0‖�r ε
r
∑
k∈N

(Cr )k

� εr .

Note that the last estimate gives a better order of convergence than our main theorem.
This is because we have the exact solutions of problems (4.1) and (1.2) in this case,
allowing us to compute explicitly the estimate. In the general context the better we
have is order εr−s .

6. Conclusions and remarks

We have presented a new approach to approximate the solution of diffusions as-
sociated with fractional powers of the Laplacian as limits of the solutions to partic-
ular rescalings of some non-local diffusions with integrable kernels. The theory is
valid in a general setting of compact metric measure spaces, which include fractal-
s, manifolds and domains of Rn as particular cases. We proved error estimates in
L∞([0, T ]; L∞(X, μ)) whenever the initial datum belongs to a Lipschitz spaces with
regularity greater than the order of the fractional derivative.
We also have studied some existence theorems for non-local diffusions associated

with integrable and Lipschitz kernels and a comparison principle.
The abstract approach considered here has several particular and interesting in-

stances. One main disadvantage is that we required the a priori existence of solution
of problem (1.2). However, we believe that is possible to prove the Cauchy character
of the approximant sequence even when no assumption on the existence of solution
for the fractional diffusion is made. To make this possible, we must prove some sta-
bility of the Lipschitz norm of the solutions of (4.1) in terms of the Lipschitz norm of
the initial data independently of the norm of the kernel. Some numerical experiments
made in [2] support empirically this conjecture. However we did not dwell on this
matter in this article, but rather on the proposal of a first approximation method for
fractional diffusions on Ahlfors regular spaces, and the proof of error estimates. We
think this work can be approach in a future paper.
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