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Abstract

We prove an extrapolation theorem saying that the weighted weak type (1,1) inequality for A1 weights
implies the strong Lp(w) bound in terms of the Lp(w) operator norm of the maximal operator M . The
weak Muckenhoupt–Wheeden conjecture along with this result allows us to conjecture that the following
estimate holds for a Calderón–Zygmund operator T for any p > 1:

‖T ‖Lp(w) � c‖M‖p
Lp(w)

.

The latter conjecture would yield the sharp estimates for ‖T ‖Lp(w) in terms of the Aq characteristic of w

for any 1 < q < p. In this paper we get a weaker inequality

‖T ‖Lp(w) � c‖M‖p
Lp(w)

log
(
1 + ‖M‖Lp(w)

)
with the corresponding estimates for ‖w‖Aq

when 1 < q < p.
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1. Introduction

In this paper we continue to study the sharp weighted inequalities for singular integrals T in
terms of the Ap characteristic of the weight:

‖w‖Ap ≡ sup
Q

(
1

|Q|
∫
Q

w dx

)(
1

|Q|
∫
Q

w
− 1

p−1 dx

)p−1

(1 < p < ∞).

For p = 1 we set

‖w‖A1 ≡ sup
x

Mw(x)

w(x)
,

where M is the Hardy–Littlewood maximal function.
The main conjecture concerning the behavior of T on Lp(w) says that

‖T ‖Lp(w) � c(T ,n,p)‖w‖max(1, 1
p−1 )

Ap
(1 < p < ∞). (1.1)

Currently this conjecture is proved by Petermichl for the Hilbert transform [12] and Riesz trans-
forms [13] and by Petermichl and Volberg for the Ahlfors–Beurling operator [14]. The proofs
in [12–14] are based on the so-called Haar shift operators combined with the Bellman function
technique. Recently, new approaches to these proofs have been found in [3,8].

We consider several questions related to conjecture (1.1), and which are of independent in-
terest. Suppose T is a general Calderón–Zygmund operator (see Section 2 below for its precise
definition). The first question is about the sharp relation between the Lp(w) operator norms of
T and M . Observe that for any p > 1,

‖w‖Sp � ‖M‖Lp(w) � c(p,n)‖w‖Sp , (1.2)

where

‖w‖Sp = sup
Q

(∫
Q

(M(σχQ))pw∫
Q

σ

)1/p (
σ = w

− 1
p−1

)
.

The left-hand side of (1.2) is trivial, while the right-hand side is a recent interesting result by
Moen [11]. Its proof is based on a close examination of Sawyer’s two weighted characterization
for M [16] applied to the case of equal weights. Taking into account (1.2), our first question can
be interpreted as the question about the sharp estimates for T in terms of the Sp characteristic of
the weight.

Our second question is about the sharp estimates for T in terms of the Aq characteristic of the
weight for 1 < q < p. The case when q = 1 was recently solved by Lerner, Ombrosi and Pérez
in [10]: for any Calderón–Zygmund operator T ,

‖T ‖Lp(w) � c(T ,n)
p2

‖w‖A1 (1 < p < ∞). (1.3)

p − 1
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Note that (1.3) in the case p � 2 for classical convolution singular integrals was proved previ-
ously by Fefferman and Pipher [5] by means of different methods. However, the main difficulty
was in establishing (1.3) for 1 < p < 2 with the sharp dependence both on ‖w‖A1 and on p. Such
estimates are motivated by the following so-called weak Muckenhoupt–Wheeden conjecture:

‖Tf ‖L1,∞(w) � c(T ,n)‖w‖A1‖f ‖L1(w). (1.4)

Observe that the question whether (1.4) holds is still open even for the Hilbert transform. Us-
ing (1.3), it was shown in [10] that for any Calderón–Zygmund operator T ,

‖Tf ‖L1,∞(w) � c(T ,n)‖w‖A1 log
(
1 + ‖w‖A1

)‖f ‖L1(w). (1.5)

As we shall see below, both our questions could be solved under the assumption that the weak
Muckenhoupt–Wheeden conjecture is true. This follows from the next theorem, which is the
main result of this paper.

Theorem 1.1. Let T be a linear operator satisfying∥∥T ∗f
∥∥

L1,∞(w)
� c(T ,n)ϕ

(‖w‖A1

)‖f ‖L1(w), (1.6)

where T ∗ is a formal adjoint of T , and ϕ is a non-decreasing function on [1,∞) such that
ϕ(2t)� cϕ(t) for t � 1. Then for any 1 < p < ∞,

‖T ‖Lp(w) � c(T ,n,p)‖M‖p−1
Lp(w)ϕ

(‖M‖Lp(w)

)
.

Since for a given Calderón–Zygmund operator T , its adjoint is also a Calderón–Zygmund op-
erator, the weak Muckenhoupt–Wheeden conjecture (1.4) along with Theorem 1.1 immediately
leads to the following.

Conjecture 1.2. Let T be a Calderón–Zygmund operator. Then

‖T ‖Lp(w) � c(T ,n,p)‖M‖p

Lp(w) (1 < p < ∞). (1.7)

As it was observed by Buckley (see [1, Remark 2.8]), ‖M‖Lp(w) � c‖w‖1/p
Aq

for q < p (when
q = 1 this follows from the Fefferman–Stein inequality [4]). This along with (1.7) leads to the
following.

Conjecture 1.3. Let T be a Calderón–Zygmund operator. Then

‖T ‖Lp(w) � c(T ,n,p, q)‖w‖Aq (1 < q < p < ∞). (1.8)

Since ‖w‖Aq � ‖w‖A1 , and (1.3) is best possible in terms of ‖w‖A1 , we clearly have that
(1.8) is best possible with respect to ‖w‖Aq and the exponent p on the right-hand side of (1.7) is
sharp.

Note that (1.1) in the case p � 2 implies Conjecture 1.3. Therefore, in this case we have
that (1.8) holds for the Hilbert, Riesz and Ahlfors–Beurling transforms. However, in the case
1 < q < p < 2 Conjecture 1.3 is open even for the Hilbert transform.
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By the same reasons as above, inequality (1.5) combined with Theorem 1.1 yields the follow-
ing particular results related to our questions and to Conjectures 1.2 and 1.3.

Theorem 1.4. Let T be a Calderón–Zygmund operator. Then

‖T ‖Lp(w) � c(T ,n,p)‖M‖p

Lp(w)
log

(
1 + ‖M‖Lp(w)

)
(1 < p < ∞)

and

‖T ‖Lp(w) � c(T ,n,p, q)‖w‖Aq log
(
1 + ‖w‖Aq

)
(1 < q < p < ∞).

Some words about the proof of Theorem 1.1. Suppose that we use (1.6) directly with T instead
of T ∗. Then, by the Rubio de Francia extrapolation argument, this implies

‖Tf ‖Lp,∞(w) � c(T ,n,p)ϕ
(‖M‖

Lp′
(σ )

)‖f ‖Lp(w) (1 < p < ∞). (1.9)

Now, the standard approach to (1.9) is based on Buckley’s work [1]. First, by [1], ‖M‖
Lp′

(σ )
�

c‖w‖Ap . Second, as in [1], applying (1.9) with ‖w‖Ap on the right-hand side to p − ε and

p + ε, where ε = c‖w‖1−p′
Ap

, and using that ‖w‖Ap−ε � c‖w‖Ap along with the Marcinkiewicz
interpolation theorem, we obtain

‖T ‖Lp(w) � c(T ,n,p)‖w‖
1

p(p−1)

Ap
ϕ
(‖w‖Ap

)
.

However, it is easy to see that if, for example, ϕ(t) = t , the latter estimate does not yield (1.8).
In our approach we do not pass to ‖w‖Ap in (1.9). Instead of this, we apply (1.9) to p − ε

and p + ε but with ε = c‖M‖−p′
Lp′

(σ )
. The most complicated part of the proof was to show that for

such a choice of ε we have properties similar to ‖w‖Ap−ε � c‖w‖Ap but for the corresponding

L(p−ε)′(σ ) and L(p+ε)′(σ ) operator norms of M . Here we use essentially Moen’s recent estimate
(1.2) along with several other ingredients. We get

‖T ‖Lp(w) � c(T ,p,n)‖M‖p′/p
Lp′

(σ )
ϕ
(‖M‖

Lp′
(σ )

)
.

In order to have the same operator norms on both sides of this inequality, we use the initial
assumption (1.6) with T ∗ along with the dual relation ‖T ‖

Lp′
(σ )

= ‖T ∗‖Lp(w). Finally, replacing
p′ by p and σ by w, we obtain the desired inequality.

The paper is organized as follows. Section 2 contains some preliminaries along with the stan-
dard ingredients used in the proof. In Section 3 we prove Theorem 1.1.

2. Preliminaries

Throughout the paper we use the standard notations: p′ = p
p−1 , σ = w

− 1
p−1 ,wQ =

1 ∫
w dx and w(Q) = ∫

w dx.
|Q| Q Q
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By a Calderón–Zygmund operator we mean a continuous linear operator T : C∞
0 (Rn) →

D′(Rn) that extends to a bounded operator on L2(Rn), and whose distributional kernel K coin-
cides away from the diagonal x = y in R

n ×R
n with a function K satisfying the size estimate∣∣K(x,y)
∣∣ � c

|x − y|n
and the regularity condition: for some ε > 0,

∣∣K(x,y) − K(z, y)
∣∣ + ∣∣K(y,x) − K(y, z)

∣∣ � c
|x − z|ε

|x − y|n+ε
,

whenever 2|x − z| < |x − y|, and so that

Tf (x) =
∫
Rn

K(x, y)f (y) dy,

whenever f ∈ C∞
0 (Rn) and x /∈ supp(f ).

Recall that the Hardy–Littlewood maximal operator M is defined by

Mf (x) = sup
Q	x

1

|Q|
∫
Q

∣∣f (y)
∣∣dy,

where the supremum is taken over all cubes Q containing the point x.
We shall need the following particular case of the Marcinkiewicz interpolation theorem (see,

e.g., [6, p. 31]).

Lemma 2.1. Let T be a sublinear operator such that

‖Tf ‖Lp−ε,∞(w) �A‖f ‖Lp−ε(w) for all f ∈ Lp−ε(w),

where 0 < ε < p, and

‖Tf ‖Lp+ε,∞(w) � A‖f ‖Lp+ε(w) for all f ∈ Lp+ε(w).

Then for any f ∈ Lp(w) we have

‖Tf ‖Lp(w) � 2(2p)1/p A

ε1/p
‖f ‖Lp(w).

The proof of the next statement is well known, and we give it for the sake of completeness.

Lemma 2.2. Let f and g be measurable functions such that for any w ∈ A1,

‖f ‖L1,∞(w) � ϕ
(‖w‖A1

)‖g‖L1(w).

Then for any 1 < p < ∞ and for all w ∈ Ap ,

‖f ‖Lp,∞(w) � 2cϕ
(‖M‖

Lp′
(σ )

)‖g‖Lp(w),

where c is the doubling constant of ϕ: c = supt�1 ϕ(2t)/ϕ(t).
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Proof. Given ψ � 0 with ‖ψ‖
Lp′

(σ )
= 1, following Rubio de Francia’s method [15], set

Rψ(x) =
∞∑

k=0

Mkψ(x)

(2‖M‖
Lp′

(σ )
)k

.

Then ψ(x)�Rψ(x), ‖Rψ‖
Lp′

(σ )
� 2, and Rψ ∈ A1 with

‖Rψ‖A1 � 2‖M‖
Lp′

(σ )
.

Therefore,

λ

∫
{|f |>λ}

ψ � λ

∫
{|f |>λ}

Rψ � ϕ
(‖Rψ‖A1

)∫
Rn

|g|Rψ dx

� cϕ
(‖M‖

Lp′
(σ )

)‖g‖Lp(w)‖Rψ‖
Lp′

(σ )
� 2cϕ

(‖M‖
Lp′

(σ )

)‖g‖Lp(w).

Taking the supremum over all ψ � 0 with ‖ψ‖
Lp′

(σ )
= 1 completes the proof. �

It is a classical result that the Ap weight satisfies the reverse Hölder inequality (see, e.g., [2]).
We will use the following version of this result.

Lemma 2.3. If w ∈ Ap and δ = 1
2n+2‖M‖

Lp′
(σ )

, then for any cube Q,

(
1

|Q|
∫
Q

w1+δ dx

) 1
1+δ

� 2
1

|Q|
∫
Q

w dx.

Proof. Let Md
Q denote the dyadic maximal operator restricted to a cube Q. It was shown in the

proving of [9, Lemma 3.1] that∫
Q

(
Md

Qw
)δ

w dx � (wQ)δ
∫
Q

w dx + 2nδ

δ + 1

∫
Q

(
Md

Qw
)1+δ

dx. (2.1)

Next, by Hölder’s inequality,∫
Q

(
Md

Qw
)1+δ

dx =
∫
Q

(
Md

Qw
)δ/p

w1/p
(
Md

Qw
)1+δ/p′

w−1/p dx

�
( ∫

Q

(
Md

Qw
)δ

w dx

)1/p( ∫
Q

(
Md

Qw
)p′+δ

σ dx

)1/p′

� ‖M‖1+δ/p′
Lp′+δ(σ )

( ∫
Q

w1+δ dx

)1/p′( ∫
Q

(
Md

Qw
)δ

w dx

)1/p

� ‖M‖1+δ/p′
Lp′

(σ )

∫ (
Md

Qw
)δ

w dx
Q



A.K. Lerner, S. Ombrosi / Journal of Functional Analysis 262 (2012) 4475–4487 4481
(we have used here an obvious fact that ‖M‖Lp1 (μ) � ‖M‖Lp2 (μ) if p1 � p2). Combining this
with (2.1) yields∫

Q

(
Md

Qw
)δ

w dx � (wQ)δ
∫
Q

w dx + 2nδ

δ + 1
‖M‖1+δ/p′

Lp′
(σ )

∫
Q

(
Md

Qw
)δ

w dx.

Letting δ = 1
2n+2‖M‖

Lp′
(σ )

, we get

2nδ

δ + 1
‖M‖1+δ/p′

Lp′
(σ )

� 1

4
‖M‖

1
2n+2p′‖M‖

Lp′
(σ )

Lp′
(σ )

� 1

4
e

1
2n+2p′e � 1

2
.

This along with the previous inequality implies∫
Q

(
Md

Qw
)δ

w dx � 2(wQ)δ
∫
Q

w dx,

which, by Lebesgue’s differentiation theorem, completes the proof. �
Remark 2.4. Lemma 2.3 can be restated in a dual form as follows: if w ∈ Ap and δ =

1
2n+2‖M‖Lp(w)

, then for any cube Q,

(
1

|Q|
∫
Q

σ 1+δ dx

) 1
1+δ

� 2
1

|Q|
∫
Q

σ dx.

Lemma 2.5. For any w ∈ Ap ,

‖w‖
1
p

Ap
� ‖M‖Lp(w) � c(n,p)‖w‖

1
p−1
Ap

. (2.2)

The right-hand side of (2.2) was proved by Buckley [1]. The left-hand side follows easily
from Mf � ( 1

|Q|
∫
Q

|f |)χQ applied to f = σχQ.

3. Proof of the main result

The key ingredient in our proof is the following lemma.

Lemma 3.1. Let ν ∈ Ar, r > 1, and ε = r−1
c(n,r)(1+2n+2)

1
‖M‖r′

Lr′ (νr )

, where c(n, r) is the constant

from (2.2) and νr = ν− 1
r−1 . Then

‖M‖
L(r+ε)′ (ν− 1

r+ε−1 )
� c1(n, r)‖M‖

Lr′ (νr )
(3.1)

and

‖M‖
L(r−ε)′ (ν− 1

r−ε−1 )
� c2(n, r)‖M‖

Lr′ (νr )
. (3.2)
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Observe that ε is chosen so that r − ε > 1. Before proving the lemma, let us show how the
proof of Theorem 1.1 follows.

Proof of Theorem 1.1. Take ε as in Lemma 3.1 and apply Lemma 2.2 with p = r − ε and
p = r + ε. Using (3.1) and (3.2), we get

∥∥T ∗f
∥∥

Lr−ε,∞(ν)
� cϕ

(‖M‖
L(r−ε)′ (ν− 1

r−ε−1 )

)‖f ‖Lr−ε(ν) � cϕ
(‖M‖

Lr′ (νr )

)‖f ‖Lr−ε(ν)

and

∥∥T ∗f
∥∥

Lr+ε,∞(ν)
� cϕ

(‖M‖
L(r+ε)′ (ν− 1

r+ε−1 )

)‖f ‖Lr+ε(ν) � cϕ
(‖M‖

Lr′ (νr )

)‖f ‖Lr+ε(ν).

From this and from Lemma 2.1,

‖T ‖
Lr′ (νr )

= ∥∥T ∗∥∥
Lr(ν)

� c‖M‖r ′/r

Lr′ (νr )
ϕ
(‖M‖

Lr′ (νr )

)
.

Taking here r = p′ and ν = w
− 1

p−1 completes the proof. �
We turn now to the proof of Lemma 3.1.

Proof of (3.1). By Moen’s estimate (1.2),

‖M‖
L(r+ε)′ (ν− 1

r+ε−1 )
� c sup

Q

(∫
Q

M(νχQ)(r+ε)′ν− 1
r+ε−1 dx

ν(Q)

)1/(r+ε)′

.

Further, by Hölder’s inequality and by Lemma 2.3,

1

|Q|
∫
Q

M(νχQ)(r+ε)′ν− 1
r+ε−1 dx �

(
1

|Q|
∫
Q

M(νχQ)
r+ε
r−1 νr dx

) r−1
r+ε−1

� ‖M‖(r+ε)′

L
r+ε
r−1 (νr )

(
1

|Q|
∫
Q

ν1+ε/(r−1) dx

) 1
1+ε/(r−1)

� 2‖M‖(r+ε)′
Lr′ (νr )

1

|Q|
∫
Q

ν dx.

Combining this with the previous estimate gives (3.1) �
It turns out that the proof of (3.2) is more complicated. We shall need the following covering

lemma.

Lemma 3.2. Let f be a non-negative integrable function on a cube Q. Assume that fQ < λ and
Ωλ = {x ∈ Q: M(f χQ)(x) > λ} is not empty. Then there exists a sequence {Qj } of cubes such
that (f χQ)Q = λ/2n and
j
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(i) Ωλ ⊂ ⋃Bn

k=1

⋃
j∈Fk

Qj , where each of the family {Qj }j∈Fk
is formed by pairwise disjoint

cubes and a constant Bn depends only on n;
(ii) the ratio of any two sidelengths of rectangles Q ∩ Qj is bounded by 2;

(iii) for any j , |Qj |� 2n|Q ∩ Qj |.
Proof. Let x ∈ Q and Q′ be an arbitrary cube centered at x and such that �(Q′) < 2�(Q), where
�(Q) denotes the sidelength of Q. It is a simple geometric observation that Q′ ∩Q is a rectangle
where the ratio of any two sidelengths is bounded by 2 and |Q′| � 2n|Q′ ∩ Q|.

Further, since Mf (x) � 2nMcf (x), where Mcf is the centered maximal function, we have
that if x ∈ Ωλ, then Mc(f χQ)(x) > λ/2n. Hence, there exists a cube Q′ centered at x such that
(f χQ)Q′ > λ/2n. Setting ψ(r) = (f χQ)Q(x,r), where Q(x, r) denotes the cube centered at x

with sidelength equal to r , we have that ψ(r) is a continuous function and ψ(r) � fQ/2n < λ/2n

for r � 2�(Q). Therefore, there exists r ′ = r ′(x) such that 0 < r ′ < 2�(Q) and (f χQ)Q(x,r ′) =
λ/2n.

Applying to the family
⋃

x∈Ωλ
{Q(x, r ′(x))} the Besicovitch covering theorem [7], we get the

required sequence of cubes {Qj }. �
Lemma 3.3. Let P be a rectangle satisfying property (ii) of Lemma 3.2, and let f ∈ L1(P ). Then
there exists a cube Q ⊂ P such that |P | � 2n|Q| and∫

P

|f |dx � 2n

∫
Q

|f |dx. (3.3)

Proof. Subdividing each side of P into two equal parts, we get 2n pairwise disjoint rectangles
Pk ⊂ P such that P = ⋃2n

k=1 Pk and |Pk| = |P |/2n. Hence, there is k0 such that∫
P

|f |dx � 2n

∫
Pk0

|f |dx.

Since P satisfies property (ii), we get that the biggest side of Pk0 is less or equal than the smallest
side of P . Therefore, there is a cube Q such that Pk0 ⊂ Q ⊂ P . From this we have (3.3). Also,
|P | = 2n|Pk0 | � 2n|Q|, and hence the proof is complete. �
Proof of (3.2). First, using again (1.2), we get

‖M‖
L(r−ε)′ (ν− 1

r−ε−1 )
� c sup

Q

(∫
Q

M(νχQ)(r−ε)′ν− 1
r−ε−1 dx

ν(Q)

)1/(r−ε)′

.

Fix a cube Q and set Ωλ = {x ∈ Q: M(νχQ)(x) > λ}. Write

∫
Q

M(νχQ)(r−ε)′ν− 1
r−ε−1 dx = (r − ε)′

νQ∫
0

λ(r−ε)′−1
∫
Ωλ

ν− 1
r−ε−1 dx dλ

+ (r − ε)′
∞∫

ν

λ(r−ε)′−1
∫

ν− 1
r−ε−1 dx dλ ≡ I1 + I2.
Q Ωλ
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In order to estimate I1, we use a simple argument. It is easy to see that

I1 � (νQ)(r−ε)′
∫
Q

ν− 1
r−ε−1 dx = (νQ)(r−ε)′

∫
Q

(νr)
1+ ε

r−ε−1 dx.

Further, by Lemma 2.5,

‖M‖r ′
Lr′ (νr )

� ‖νr‖Ar′ = ‖ν‖
1

r−1
Ar

� 1

c(n, r)
‖M‖Lr(ν), (3.4)

and hence,

ε

r − ε − 1
� 1

2n+2‖M‖Lr(ν)

.

Therefore, by Remark 2.4 and by the left-hand side of (3.4) we obtain

I1 � 3|Q|(νQ)(r−ε)′
(

1

|Q|
∫
Q

νr dx

) r−1
r−1−ε

= 3|Q|νQ

(
νQ

(
1

|Q|
∫
Q

νr dx

)r−1) 1
r−1−ε

� 3ν(Q)‖ν‖
1

r−1−ε

Ar
� 3ν(Q)‖M‖

r
r−1−ε

Lr′ (νr )
.

Now we estimate I2. We are going to prove that for any λ > νQ,

∫
Ωλ

ν− 1
r−ε−1 dx � c(r, n)

(
1

λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx. (3.5)

Assuming for a moment (3.5) to be true, let us show how to finish the proof of (3.2). Using
(3.5), we get

I2 � c

∞∫
0

λ
1

r−ε−1 − ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx dλ

� c

∞∫
0

λr ′−1
∫
Ωλ

νr dx dλ

� c

∫
M(νχQ)r

′
νr dx � cν(Q)‖M‖r ′

Lr′ (νr )
.

Q
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Combining the estimates for I1 and I2 yields

I1 + I2 � cν(Q)‖M‖
r

r−1−ε

Lr′ (νr )
,

and thus,

(∫
Q

M(νχQ)(r−ε)′ν− 1
r−ε−1 dx

ν(Q)

)1/(r−ε)′

� c‖M‖1+ ε
r−ε

Lr′ (νr )
.

But since ‖M‖
Lr′ (νr )

� 1, we easily have that

‖M‖
ε

r−ε

Lr′ (νr )
� ‖M‖

c‖M‖−r′
Lr′ (νr )

Lr′ (νr )
� c,

which combined with the previous estimate completes the proof of (3.2).
It remains to prove (3.5). Let λ > νQ. Applying Lemma 3.2 to the set Ωλ, we get a sequence

of cubes {Qj } satisfying properties (i)–(iii) of the lemma and such that (νχQ)Qj
= λ/2n. Set

Pj = Q ∩ Qj . By Lemma 3.3 choose a cube Q̃j corresponding to Pj and f = ν− 1
r−ε−1 . Using

(3.3) and arguing exactly as in the above argument for I1, we get

∫
Pj

ν− 1
r−ε−1 =

∫
Pj

(νr )
1+ ε

r−ε−1 � 2n

∫
Q̃j

(νr )
1+ ε

r−ε−1

� 3 · 2n|Q̃j |
(

1

|Q̃j |
∫
Q̃j

νr dx

)1+ ε
r−ε−1

= 3 · 2nνr(Q̃j )

(
1

|Q̃j |
∫
Q̃j

νr dx

) ε
r−ε−1

. (3.6)

Next, observe that by (iii) of Lemma 3.2 and by Lemma 3.3,

|Qj | � 2n|Pj |� 4n|Q̃j |.

Also, by the left-hand side of (3.4),

ε � c‖ν‖− 1
r−1

Ar
.

Using these estimates and the fact that ‖ν‖Ar � 1, we get

(
(νr )Q̃j

) ε
r−ε−1 = (

2n/λ
) ε

(r−1)(r−ε−1)
(
(νχQ)Qj

) ε
(r−1)(r−ε−1)

(
(νr )Q̃j

) ε
r−ε−1

� c

(
1
(νQj

)
(
(νr )Qj

)r−1
) ε

(r−1)(r−ε−1)
λ
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� c

(
1

λ
‖ν‖Ar

) ε
(r−1)(r−ε−1)

� c

(
1

λ

) ε
(r−1)(r−ε−1) ‖ν‖c‖ν‖− 1

r−1
Ar

Ar

� c

(
1

λ

) ε
(r−1)(r−ε−1)

,

where the constant c depends only on n and r . Combining this with (3.6) yields

∫
Pj

ν− 1
r−ε−1 � cνr(Q̃j )

(
1

λ

) ε
(r−1)(r−ε−1)

. (3.7)

Since Q̃j ⊂ Qj , we have that M(νχQ)(x) � λ/2n for any x ∈ Q̃j . Also, for each k, 1 � k �
Bn the cubes {Q̃j }j∈Fk

are pairwise disjoint. From this and from (3.7),

∑
j∈Fk

∫
Pj

ν− 1
r−ε−1 dx � c

(
1

λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx.

Therefore,

∫
Ωλ

ν− 1
r−ε−1 dx �

Bn∑
k=1

∑
j∈Fk

∫
Pj

ν− 1
r−ε−1 dx � cBn

(
1

λ

) ε
(r−1)(r−ε−1)

∫
Ωλ/2n

νr dx.

We have proved (3.5), and therefore the proof is complete. �
Added in proof. Since the paper was submitted for publication, a number of important results
have been appeared in this subject. We mention briefly only some of them.

First, conjecture (1.1) has been completely proved for any Calderón–Zygmund operator. We
refer to

T.P. Hytönen, The sharp weighted bound for general Calderón–Zygmund operators,
http://arxiv.org/abs/1007.4330

and

T.P. Hytönen, C. Pérez, S. Treil, A. Volberg, Sharp weighted estimates for dyadic shifts and
the A2 conjecture, http://arxiv.org/abs/1010.0755.

Second, Conjecture 1.3 has been proved in

J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct.
Anal. 260 (2011) 1886–1901.

Third, the weak Muckenhoupt–Wheeden conjecture (1.4) has been disproved (F. Nazarov,
A. Reznikov, V. Vasyunin, A. Volberg, personal communication).
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