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Theory and computation of directional nematic phase ordering
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A computational study of morphological instabilities of a two-dimensional nematic front under directional
growth was performed using a Landau—de Gennes-type quadrupolar tensor order parameter model for the
first-order isotropic-nematic transition of 5CB (pentyl-cyanobiphenyl). A previously derived energy balance,
taking anisotropy into account, was utilized to account for latent heat and an imposed morphological gradient
in the time-dependent model. Simulations were performed using an initially homeotropic isotropic-nematic
interface. Thermal instabilities in both the linear and nonlinear regimes were observed and compared to past
experimental and theoretical observations. A sharp-interface model for the study of linear morphological
instabilities, taking into account additional complexity resulting from liquid-crystalline order, was derived.
Results from the sharp-interface model were compared to those from full two-dimensional simulation identi-
fying the specific limitations of simplified sharp-interface models for this liquid-crystal system. In the nonlin-
ear regime, secondary instabilities were observed to result in the formation of defects, interfacial heterogene-

ities, and bulk texture dynamics.
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I. INTRODUCTION

Directional growth of materials undergoing a phase tran-
sition consists of pulling the material through a temperature
gradient, usually from a higher to a lower temperature (rela-
tive to the phase-transition temperature), such that an inter-
face between the two phases is established in the central
region of the sample. A schematic of this setup is shown in
Fig. 1. Directional growth configurations have practical uses
such as producing single crystals with defined crystal orien-
tation, producing eutectic composite materials, and as a pu-
rification method. In addition to these applications, direc-
tional growth configurations are also widely used to study
the fundamental nature of phase transitions.

One important characteristic present in general growth
processes that involve phase transitions, and in the direc-
tional growth system in particular, is the occurrence of mor-
phological instabilities [1]. These instabilities arise in a great
variety of materials undergoing different types of transitions,
ranging from diffusive phase transitions to phase ordering.
The study of these instabilities has seen substantial advances
since the seminal work of Mullins and Sekerka [2,3] and
Coriell et al. [4]. Since then, some examples of systems that
have been studied, in addition to the solidification of binary
alloys [4-8], include silicon wafer production in the semi-
conductor industry [9], polymer crystallization [10], and
liquid-crystal growth [11-14].

The fundamental understanding of morphological insta-
bilities is important to the science of phase transformations.
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These instabilities also affect the final material morphology
(cellular, dendritic, textures in liquid crystals, etc.) and, sub-
sequently, the structural and functional material properties.
For example, the internal structure of a liquid-crystal spheru-
lite controls the optical performance of polymer-dispersed
liquid crystals. Previous work [15,16] has shown that liquid-
crystal spherulite growth on the nanoscale leads to a series of
orientational events, including defect nucleation and shape
instabilities, showing that a better understanding of growth
laws may be useful to develop improved optical materials.
The study of directional growth in liquid-crystalline ma-
terial systems has been the focus of much previous work.
These materials offer accessible time scales for experimental
observations as well as the combination of soft and aniso-
tropic behavior. The anisotropic character of liquid crystals
results in many secondary instabilities, in addition to those
described by Mullins and Sekerka [2,3] and Coriell et al. [4].

FIG. 1. Schematic of a directional growth experimental system
where a slide (thin film) enclosing a material is pulled at a constant
velocity v from a plate or oven at a temperature above the phase
transition temperature to one that is below the phase transition tem-
perature; the opaque portion of the slide represents the ordered or
solid phase and the translucent portion represents the disordered or
liquid phase.
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FIG. 2. Schematic representation of the Mullins-Sekerka insta-
bility [2—4] where the bold vertical line represents a flat ordered or
solid front growing into the disordered or liquid phase under an
imposed temperature gradient, where the temperature profile is
shown by the stippled line. A perturbance in the front growth, the
dotted line, is both inhibited by capillary forces and promoted by a
greater decrease in free energy from phase transition as temperature
decreases [see Eq. (1)]; note that the temperature of the ordered
phase, in the vicinity of the interface (as shown), is greater than in
the disordered phase due to latent heat effects.

While liquid-crystalline systems are templates for the over-
arching study of morphological instabilities, they are also
pervasively used in industrial applications. Their typical use
in thin-film geometries, where large temperature gradients
can be easily produced, places further importance on the
need to characterize and understand the occurrence of mor-
phological instabilities.

Much past experimental [11,13,14,17-19] and theoretical
[12,20] work has focused on studies of thermal and other
types of instabilities of isotropic-nematic mesophase transi-
tions in directional growth experiments. This system is a
convenient starting point since the nematic phase is the sim-
plest of the liquid-crystal mesophases. Instabilities in smectic
and columnar liquid crystals have been less studied [21].
Much of the work on morphological instabilities in nematic
fronts has focused on explaining discrepancies between cap-
illary lengths, determined experimentally [11,19] and theo-
retically [14,22]. Experimental investigations of the effects
of convection and impurity concentration [11] have been
conducted, but the diverse set of possible morphological in-
stabilities [13,17,22,23] resulting from the inherent aniso-
tropy and anchoring effects have not yet been completely
explored. The experimental study of these instabilities is in-
herently difficult due to the length and time scales involved.
On the other hand, computational studies are able to access
these scales and shed light on the governing principles.

The overall mechanism, which typically results in mor-
phological instabilities, is rooted in the existence of a tem-
perature gradient, where the velocity of the interface v is
proportional to [15]

v |AF|-C,

|AF|oc T~ T, (1)

where |AF| is the free-energy difference between the ordered
or disordered phases, C is the capillary force, T is the coex-
istence temperature of the two phases, and T is the tempera-
ture of the material.

When a shape perturbation arises in a moving interface, in
the presence of a temperature gradient (refer to Fig. 2), it
finds a relatively increased |AF|. Subsequently, this promotes
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perturbation growth, increasing its relative velocity Eq. (1)
(with respect to the unperturbed front). In addition to this
effect, the perturbation has curvature, and thus a capillary
force is exerted upon it, inhibiting growth. This thermocap-
illary competition results in the growth of perturbations with
a wavelength (or radius of curvature) greater than a critical
value, which decreases as the temperature gradient increases.

Although not studied in this work, it is also possible to
observe instabilities induced by gradients in concentration.
This is referred to as constitutional supercooling [24], and is
the case in mixtures or when impurities are present. The
ordered or solid phase has a lower equilibrium concentration
of the solute or impurities than the disordered or liquid
phase, thus the impurities are rejected to the disordered or
liquid phase. This results in the concentration of the impurity
at the interface being higher than in the bulk disordered or
liquid phase. Any perturbation in the interface will find a
lower concentration of impurity, resulting in a higher coex-
istence temperature and increased front velocity [refer to Eq.
(1)]. For a more in-depth explanation of morphological in-
stabilities see Refs. [24-27].

In a directional growth system, an appropriate tempera-
ture gradient, in the vicinity of the interface (see Fig. 2), can
be produced via latent heat resulting from the phase transi-
tion. Thus, even though the externally imposed temperature
gradient stabilizes the interface (higher temperature in the
disordered or liquid phase than in the ordered or solid phase),
a destabilizing temperature gradient can exist locally in the
vicinity of the interface (depending on the magnitude of the
heat of phase transition). For some value of the externally
imposed temperature gradient, the local gradient at the inter-
face will be exactly zero, thus for external gradients greater
than this value, the shape instability will not be observed. If
the external gradient is lower than this value (or if it is nega-
tive), there will be some wavelength range for which the
perturbations grow, so a shape instability is observed. At
relatively low pulling velocity, stationary sinusoidal shape
patterns are observed, produced by this temperature gradient.
As velocity is increased, the patterns remain periodic but
lose sinusoidal shape. At further increased velocities, nonlin-
ear effects, including nonperiodic or chaotic instabilities can
be observed in some cases [22] [see Fig. 3(a)]. Finally, for
very high velocities, a restabilization is possible, which re-
forms a flat interface.

Mullins and Sekerka were the first to model morphologi-
cal instabilities using a sharp-interface model, in the linear
regime, considering that growth was limited by diffusion
[2,3]. In these models, the equations for heat or mass diffu-
sion are solved in each phase, and the boundary is discon-
tinuous. Utilizing this formulation, dispersion diagrams,
where the growth velocity versus wavelength are plotted, are
able to be obtained analytically for a sinusoidal perturbation.
This type of model has been extended to account for some
types of nonlinear phenomena [20,22,28] and other effects,
but are generally not feasible for use to model complex sce-
narios where nonlinear instabilities occur.

Phase field models [29] have also been used to model
morphological instabilities. These models inherently capture
a more complete set of physics involved in that the material
is modeled as a continuum. Thus the interface is no longer
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FIG. 3. (a) Schematics of the different regimes of morphological
instabilities where the control variables include the pulling velocity
v and the imposed global temperature gradient AT/, where [ is the
distance between the heat sources. (b) Schematic of the liquid-
crystal physics taken into account in the nonisothermal tensorial
Landau-de Gennes model [35] for the isotropic-nematic transition
employed in this work: nonisothermal conditions (7,/T, are the
imposed boundary temperatures), bulk texture (Q® is the tensor or-
der parameter field in the bulk), interfacial gradients and heteroge-
neities (Q is the tensor order parameter field at the interface), heat
of transition (L), and anisotropy or capillary forces (k/b is the in-
terface normal or curvature tensor).

assumed discontinuous and, in the case of liquid crystals,
texturing processes can be resolved. Furthermore, interfacial
and bulk properties are determined implicitly by the model
and its parameters. A general comparison of both types of
models (for a scalar phase field model) can be found in Ref.
[6].

The Landau—de Gennes tensorial model for the isotropic-
nematic transition [30] is one of the most effective theoreti-
cal approaches to capture the kinetics and dynamics of this
transition at mesoscopic scales [31,32]. The phenomenologi-
cal nature of this model is conducive to experimental valida-
tion and, as a result of these comparisons, this model has
been shown to be relatively successful at capturing the phys-
ics of the isotropic-nematic transition [31]. The more coarse-
grained approach of the Landau-type models allows access
to multiscale phenomena, which are relevant to experimental
observations, but at a resolution unattainable other than
through numerical simulation. Thus, this model has been ap-
plied to study a broad range of phase-ordering phenomena,
from use as a template to study the formation of the early
universe [33] to the structure of liquid-crystalline fibers,
membranes, films, and drops [34].

With respect to this model of isotropic-nematic liquid-
crystalline transition, Fig. 3(b) elucidates the key physics
captured in a schematic of morphological instabilities in di-
rectional growth of nematic phase ordering; Q is the quadru-
polar tensor order parameter, k is the outward unit normal,
and b is the curvature tensor of the interface. In nematic
liquid crystals, the interface shape is coupled to the tempera-
ture and the order parameter Q. The coupling between the
degree of phase ordering and temperature is implicitly ac-
counted for in the Landau—de Gennes tensorial model. The

PHYSICAL REVIEW E 79, 021702 (2009)

incorporation of a previously derived energy balance [35]
accounts for the heat of transition and anisotropy in heat
conduction (arising from the imposed boundary temperatures
and the heat of phase ordering). The Q-tensor model implic-
itly incorporates the nontrivial couplings between growth,
shape, and texturing dynamics.

The majority of theoretical approaches to the study of
morphological instabilities in directional growth, both in the
isotropic-nematic mesophase transition and the general case,
utilize simple sharp-interface [22] models and focus mainly
on the linear regime. The main advantage to this approach is
that simple analytical solutions can be obtained, and there is
good agreement between the predictions of these types of
models and experimental observations in the linear regime.
These models are not suitable for the study of instabilities in
the nonlinear regime, where much of the physics that is ne-
glected in linearized sharp-interface models plays a role. An
example of these complex physics is, in the case of liquid
crystals, defect formation and texturing processes, which
have been experimentally observed [13,17,22,23]. Thus, past
theoretical work was focused on modeling the linear regime
and some simple nonlinear effects, but the complex texturing
and defect formation in directional growth of liquid crystals
has not been modeled before. The state of the art in the study
of this seminal problem is summarized in Chap. B.VI of Ref.
[36] where it is explained in detail that current simulation
and theoretical work are limited to low-dimensional,
director-type macroscopic models. In the present case multi-
scaling and multidimensionality are extended to the current
computational limits.

The main objectives of this work on modeling the direc-
tional solidification of calamitic low molar mass nematic lig-
uid crystals are to compare the Q(x,y,7) and T(x,y,?) pre-
dictions of two-dimensional (x,y) transient simulation of the
nonisothermal Landau—de Gennes model [15,30,35] results
in the linear (small amplitude) regime with those from the
standard analytical (sharp-interface) method and to use the
nonisothermal Landau—de Gennes model to simulate
Q(x,y,t) and T(x,y,) in the nonlinear regime, where sec-
ondary instabilities result in texturing and defect formation.

The main assumptions of this work are that the physical
setup and geometry correspond to the classical directional
solidification experiment, as shown in Fig. 1, the liquid crys-
tal is a pure thermotropic calamitic low molar mass material
(see Table I), directional growth is considered to be driven by
an externally imposed temperature gradient, thermal fluctua-
tions are neglected, constant physical properties correspond-
ing to the 5CB (pentyl-cyanobiphenyl) liquid crystal [16],
including thermal conductivity [37], are used, and a periodic
perturbation to the interface is assumed in the initial condi-
tions.

This work is organized in three parts: introducing the rel-
evant physics of nematic directional growth, modeling and
simulation using the tensorial Landau—de Gennes model, and
presentation of the results. Section II A presents a descrip-
tion of the isotropic-nematic phase transition and quadrupo-
lar tensor order parameter used in the Landau—de Gennes
model. Section II B presents a brief description of the
Landau-de Gennes model and the nematic thermal energy
balance (the latter accounts for dissipation, anisotropic heat
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TABLE 1. Material properties for 5CB used in simulation
[15,37].

Parameter Value Units
n 0.084 Ns/m?
Tnp 307.2 K
ag 1.4%10° J/m3 K
b 1.8 107 J/m3
c 3.6 X 10° J/m3
I3 3.0x 10712 J/m
I, 3.1x10712 J/m
I 0.0x 10712 J/m
k, 0.2009 W/mK
k| 0.1364 W/mK
., 1800 J/kg K
p 1000 kg/m?

conduction, and latent heat of transition). Section II C de-
scribes the simulation conditions and complexities resulting
in the use of the high-order Landau—de Gennes model. Sec-
tion III is divided into two subsections presenting results of
both linear and nonlinear regime morphological instabilities.
The linear regime results were found through analytical so-
lutions of a derived sharp-interface model and through simu-
lation of the higher-order Landau—de Gennes model. Nonlin-
ear regime results were only accessible through simulation.
Finally, Sec. IV summarizes the findings and presents con-
clusions. These conclusions focus on the limitations to sharp-
interface model approaches compared to the Landau-de
Gennes model. Additionally, interesting results in the nonlin-
ear regime are presented where an interfacial reorientation
mechanism is found to occur through defect shedding.

II. BACKGROUND AND THEORY
A. Liquid-crystalline order

Liquid-crystalline phases or mesophases are materials
which exhibit partial orientational and/or translational order.
They are composed of anisotropic molecules which can be
disklike (discotic) or rodlike (calamitic) in shape. Thermo-
tropic liquid crystals are compounds that exhibit mesophase
ordering in response to temperature changes. Lyotropic lig-
uid crystals most greatly exhibit mesophase behavior in re-
sponse to concentration changes. Effects of pressure and ex-
ternal fields also influence mesophase behavior. This work
focuses on the study of calamitic thermotropic liquid crys-
tals, which exhibit a first-order mesophase transition.

An unordered liquid, where there is neither orientational
nor translational order (apart from an average intermolecular
separation distance) of the molecules, is referred to as isotro-
pic. Uniaxial nematic liquid-crystalline order in rodlike me-
sogens involves partial orientational order and positional dis-
order, where an average orientational axis, known as the
director, is observed. Schematic representations of these
uniaxial nematic and isotropic orderings are shown in Fig. 4.

PHYSICAL REVIEW E 79, 021702 (2009)

= L nJ

b
1,0 f
}:/\/\‘,‘7 I\ ”,:\’/

FIG. 4. (Color online) Schematics of the (a) isotropic and (b)
uniaxial nematic phases with rodlike mesogens.

B. Order parameters and the phenomenological model

Theoretical characterization of nematic order is accom-
plished using an order parameter that adequately captures the
physics involved. This order parameter has an amplitude and
phase associated with it. In order to characterize the partial
orientational order of the nematic phase, a second-order sym-
metric traceless tensor can be used [30]:

Q:S(nn —%I) +§P(mm—ll), (2)

where n/m/l are the eigenvectors of @, which characterize
the average molecular orientational axes, and S/ P are scalars
which represent the extent to which the molecules conform
to the average orientational axes [34,38,39]. Uniaxial order is
characterized by S and n, which correspond to the maximum
eigenvalue (and its corresponding eigenvector) of Q, S
:%,u,,,. Biaxial order is characterized by P and m/l, which

correspond to the lesser eigenvalues and eigenvectors, P
3
==3 (k=)

The Landau—de Gennes model for the first-order
isotropic-nematic phase transition [30] is

TP RN B
[~ 1y=30(@:0)~ Q- Q)0+ 1c(@:0)
1 . 1
£ JL(VQ VO + (T -0)-(V-0)
+310:(V0:5Q), ®)

a= aO(T_ TNI)? (4)

where ag,b,c are bulk parameters, Ty; is the lower stability
limit of the isotropic phase, and /y,/,,/5 are the elastic con-
stants. An equibend-splay assumption is used in this work,
resulting in /;,/,>0 and /3=0. This assumption is made
based upon previous studies of nematic spherulite morphol-
ogy resulting from the interplay of splay, twist, and bend
elastic constants [15,16,40,41]. Interfacial contributions im-
plicitly result from the inclusion of the gradients terms in Eq.
(3). Detailed past work has studied the interfacial contribu-
tions of these gradient terms including anchoring, curvature,
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and heterogeneous effects. See Refs. [15,16,40,41] for a
comprehensive study of these effects.

The Landau-Ginzburg time-dependent formulation [42] is
used to minimize the free energy functional (5) of the simu-
lation volume:

F=fde, (5)
\%4

@_ ﬁ ST
M&l __|:§Q:| s (6)

where F is the total free energy, u is the rotational viscosity,
and only the symmetric-traceless component of the func-
tional derivative is utilized (denoted by the superscript ST).
The general differential energy balance, neglecting convec-

tion, is [35]

ST

T _ @.@+T{18_f‘} 0 o
aQIT| " or

Por "ot o
where C,, is the specific heat and g is the total heat flux. The
first right-hand side term in Eq. (7) is dissipation due to
nematic-order dynamics, the second the heat of transition to
nematic order, and the last thermal diffusion. Temperature
fluctuations are neglected in this model but could be incor-
porated via stochastic terms.

The heat flux can be calculated from the anisotropic Fou-
rier’s law

q=K-VT, (8)

where the thermal conductivity tensor K is used due to the
anisotropy of the nematic phase. The thermal conductivity
tensor can be written as the sum of isotropic and anisotropic
contributions

ki + 2k,

3 )5+ (kj=k,)Q, 9)

K= k1505+ kanQ = (
where k;, and k,, are the isotropic and anisotropic contribu-
tions to the thermal conductivities and k; and k, are the
conductivities in the directions parallel and perpendicular to
the director, respectively.

C. Simulation method

A schematic of the geometry of the two-dimensional
simulation domain and boundary condition types are shown
in Fig. 5. A central subdomain, with a very refined mesh, is
used in order to resolve the details at the nematic-isotropic
interface. Two outer subdomains, with coarser meshes, are
used to resolve the gradients in the order parameter in the
bulk nematic phase and in temperature. These bulk gradients
are at length scales orders of magnitude greater than those at
the interface. Thus, the use of the fine mesh in these subdo-
mains is not necessary to resolve the textures. In the right
subdomain, a bulk isotropic phase is assumed (verified a
posteriori), only the thermal energy balance (7) was solved.

Due to computational limitations, the length scales acces-
sible via simulation in the present work are on the order of
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FIG. 5. Schematic of the computational domain where the bot-
tom subdomain is the bulk homogeneously oriented bulk nematic
domain, the center subdomain encompasses the isotropic or nematic
interface, the top subdomain is fully isotropic, and the height and
width of the domain are 2B and [, respectively; numbering corre-
sponds to the boundary conditions used where (1) T7=T, and Neu-
mann conditions are used for @, (2) T/Q are coupled, (3) T is
coupled and @=0, (4) T=T, and Neumann conditions are used for
0, and (5) symmetry boundary conditions for 7/Q, see Eq. (11);
note that in this work both 7'} and 7, are below the bulk isotropic-
nematic transition temperature and 7,<<7; due to computational
limitations (see Sec. II C).

microns. Experimental observations of morphological insta-
bilities [11,13,14,17-19] have observed characteristic length
scales on the order of tens and hundreds of microns. To cir-
cumvent this, a destabilizing temperature gradient is im-
posed, where T, >T,, with both temperature boundary con-
ditions (see Fig. 5, boundary conditions 1 and 4) below the
bulk transition temperature and lower stability limit of the
isotropic phase (for the material parameters used, refer to
Fig. 2 for more details on stabilizing or destabilizing interfa-
cial temperature profiles). Latent heat released at the inter-
face increases the magnitude of the gradient locally, driving
the instability [see Eq. (1)]. These conditions allow for the
observation of morphological instabilities at wavelengths ac-
cessible in the limited domain size that is computationally
accessible, but would be difficult to reproduce experimen-
tally due to the presence of thermal fluctuations and nucle-
ation events.

For symmetry boundary conditions of Q, vector symme-
try considerations result in the the following invariants [35]:

aQ}C}C _
oX;

l

30, T
0, 220, 0,=0,=0. =0, (10)
(9)6,- ox

i

where x; is the coordinate associated with the basis vector
normal to the symmetry axis. A reference system moving
with velocity v, in the x direction and equal to the negative
of the velocity of the moving isotropic-nematic interface,
was used. This maintains a static interface position, where
time derivatives are replaced by material derivatives

a9 9
— o=y, (11)
a o dy
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Initial conditions resulting in an initially flat unperturbed
homeotropic interface were achieved using the Heaviside
step function

0 =0, He(y-y), (12)

where Q is the bulk Q tensor value corresponding to the
interface temperature, He(- - ) is the Heaviside step function,
and y, is the initial position of the interface. Simulations
were run to determine steady-state, or stationary, interface
profiles. Using these computed profiles a perturbation condi-
tion was applied using the following transformation:

0(x) :Qstat[)""aCOS()\zx)e_ay]’ (13)
0

where Q,(y) is the stationary (computed) profile of Q, a is
the initial amplitude of the sinusoidal perturbation, A is the
initial half-wavelength, and the coefficient & is the decay
factor. The characteristic decay length 5! was chosen to
equal 200 nm so that the perturbation decays rapidly in the
bulk relative to initial length scale of the nematic domain (on
the order of microns).

The initial condition (13) represents a flat stationary inter-
face with a small sinusoidal perturbation. A half-wavelength
was resolved in the simulation domain, where symmetry was
used to capture a periodicity and the simulation domain size
[ was varied, to represent different wavelengths. Due to the
limitations of the finite-element software used (COMSOL MUL-
TIPHYSICS), a static mesh was iteratively determined for each
simulation where mesh density ranged from a maximum of
approximately one second-order Lagrange element per
4 nm? to the minimum of 1 element per 0.5 um?. Conver-
gence, mesh independence, and accuracy were implemented
using standard numerical procedures. Validation of the nu-
merical results were established using homogeneous states.

II1. RESULTS AND DISCUSSION
A. Linear regime: Shape instability

A sharp interface model for the isotropic-nematic me-
sophase front growth is presented in the Appendix. This deri-
vation differs from standard sharp interface models [24,26]
in that it accounts for different thermal conductivities of both
phases, there is no assumption that the ordered phase is iso-
thermal, and it uses an interfacial nematodynamic model [15]
for the velocity of the interface as a function of temperature
(and not the typically used Gibbs-Thompson relation [24]).
The final expression derived from the simple sharp-interface
model (refer to the Appendix) for the dispersion diagrams, in
the low amplitude linear regime is

—1 _ -
Oz{d(f"ﬁl)} U_§Cn+z{d(f”ﬂ 1)] 1K2

dr 2 dar
v+s;[ v v 2 L v \?
+ —C"-—C'|+ — -, — | C"
S, 48\ a, a; s,+s;L pCp a,

v 2 .
+0[,<_> Cl:|,
«;
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FIG. 6. Sample order parameter and temperature profiles for
initial flat interfaces from the sharp-interface model (solid lines)
and stationary simulation results (dotted lines), (a) (top) tempera-
ture versus y coordinate over full domain, (b) (middle) uniaxial
nematic scalar-order parameter versus y coordinate over full do-
main, and (c) uniaxial nematic scalar-order parameter versus y co-
ordinate magnified in the interface region.

2 5 L
s;i=\v +da(k +0), j=in,
no =T

_ev/a/'_l

>

T -T
ci=—2-L (14)

]
ev/a_l

where k=2/\ is the wave vector, \ is the wavelength, o is
the growth coefficient, f* is the bulk nematic free energy at
the interface temperature, 3 is a surface viscosity (defined in
the Appendix), L is the heat of phase transition, a=k/pCp is
the thermal diffusivity, v is the interface velocity, and v is the
surface tension. The superscripts # and i refer to the nematic
and isotropic phases, respectively.

The sharp-interface model used to derive Eq. (14) uses an
important approximation: the value of the order parameter is
assumed uniform in the nematic phase. This approximation,
although convenient for the derivation of an analytical solu-
tion, is not physically realistic. The order parameter in the
bulk nematic phase changes due to its dependence on tem-
perature. This nonuniformity in the order parameter, ob-
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TABLE II. Simulation parameters and growth coefficient (o) results.

No. B (um) T, (K) T,(K) Ng(em) v(mfs) a(um) T;(K) o (x107"s™)
la 15 3074 305.0 0.01955 0.06 306.27 -9.23
1b 15 3074 305.0 2 0.0195 0.06 306.27 4.134
lc 15 3074 305.0 4 0.0195 0.06 306.27 5.784
1d 15 3074 305.0 7.5 0.0196 0.09 306.27 5.282
2a 15 306.8 3054 0.0202 0.06 306.23 -9.744
2b 15 306.8 3054 2 0.02035 0.06 306.23 3.467
2¢ 15 306.8 3054 4 0.02045 0.06 306.23 4.979
2d 15 306.8  305.4 75 0.02005 0.09 306.23 4.615

served in the simulations, has an effect on the temperature
profile, which is not accounted for in the sharp interface
model. These effects result from the presence of temperature
gradients, which is accounted for in the energy balance [see
term 3 of Eq. (7)]. The sample order parameter and tempera-
ture profiles are shown in Fig. 6(a)-6(c) for both the sharp-
interface model and the nonisothermal Landau-de Gennes
model to elucidate this point.

Simulations were performed using different initial wave-
lengths, under two different temperature gradients, where the
initial perturbation amplitude used was much less than the
wavelength. The material properties and individual simula-
tion parameters are given in Tables I and II. The boundary
temperatures were selected so that the initially imposed in-
terfacial temperature was equal for both gradients. The per-
turbation amplitude, defined as the difference of the vertical
positions of the interface at the symmetry axes (see Fig. 5)
was obtained from the simulations as a function of time. The
position of the interface was determined from the contour at
which the uniaxial nematic scalar-order parameter equaled
S

Sp(T;
S i= %l) > (15 )
where S, bulk value of the uniaxial nematic-order parameter
that corresponds to the initial interface temperature (7;). The
lack of biaxiality at the interface on the symmetry axes was
verified a posteriori. Finally, the amplitude versus time was
fitted with an exponential and the growth coefficient (o), was

obtained:
A(t) =Ag exp(ot). (16)

The results are shown in Fig. 7, where the growth coeffi-
cient obtained from simulations for different wavelengths in
the small-amplitude regime are compared with those ob-
tained from the sharp-interface model using two different
values of the surface energy: a value from previous work
[40] and the values estimated from both sets of simulations.
The sharp interface model predicts a sharp decrease in the
growth coefficient in the vicinity of k=0, which is shown in
the insets of Fig. 7.

As previously explained (see Sec. I), a value of « exists
for which the growth coefficient is maximum. For large val-
ues of « (low wavelength), curvature effects are predomi-

nant, and thus the growth coefficient is negative (the pertur-
bation shrinks). At intermediate values, the growth
coefficient is positive because of the increased destabilizing
effect of the temperature gradient at the interface. As the
value of k approaches zero, when the wavelength becomes
much larger than the characteristic length of the temperature
profile, the interface behaves as a flat interface, and the prob-

T T T

1000} ° /

-1000

-15001

-20001

8 4 5
(0) k(M) x10°

FIG. 7. Dispersion diagram results directly from simulation
(circles), using the analytical solution (dashed line, calculated using
surface energy obtained from the definition in Ref. [15], 4.5
X 10™* J/m?), and using the analytical solution (full line, dispersion
diagram calculated using surface energy=3.0X 107 J/m? best fit
from simulation). Insets in the upper right corner of the plots show
initial regime (low «) are shown for reference, (a) (top) results
corresponding to simulations la—1d, (b) (bottom) results corre-
sponding to simulations 2a—2d.

021702-7



SOULE, ABUKHDEIR, AND REY

PHYSICAL REVIEW E 79, 021702 (2009)

FIG. 8. (Color online) Initially homeotropic transition from the linear regime (i) t=156.0 us, (ii) t=175.5 us, (iii) r=195.0 ws, (iv) ¢
=214.5 us; the surface corresponds to the scalar uniaxial nematic-order parameter [red/black (gray/black in print) corresponds to isotropic/
nematic], and the horizontal length scale of the figure is 1 wm.

lem becomes essentially one dimensional. When the external
length B (see Fig. 5) is larger than the characteristic thermal
length (as in the present case), the temperature at the inter-
face in this one-dimensional problem depends only slightly
on the position of the interface. Thus, recalling Eq. (1), the
growth coefficient will be small. As B approaches <« (as usu-
ally assumed in theoretical studies), the temperature at the
interface becomes independent of position, and the growth
coefficient is zero.

The parameters involved in the calculation of the sharp-
interface dispersion diagrams have been calculated from
simulation results, as in Ref. [40] (see Fig. 7). The calculated
dispersion diagram with these parameters reproduces the
maximum value of the growth coefficient well, as compared
with simulations, but the curve resulting from the surface
tension definition from Ref. [40] is more narrow than that
determined from direct numerical simulation.

B. Nonlinear regime: Structural dynamics

The shape instability due to the presence of temperature
gradients was not the only interfacial instability that was
observed. A process of defect formation, shedding, and the
growth of a disoriented planar domain was also observed
following the initial linear regime. It is important to note that
results presented in the previous section were in the transient
linear instability regime. The nonlinear regime instabilities
presented in this section were observed to follow the initially
linear instabilities.

These nonlinear regime instabilities are shown in Figs.
8-10, which correspond to simulation 2¢ (see Table II). Re-
ferring to Fig. 8, a cusp is formed at the interface as the
instability transitions from the linear regime, discussed in
Sec. IIT A, to the nonlinear regime. As the cusp sharpens, it
forms a +% disclination, which is then shed into the bulk,
similar to the defect shedding mechanism found by Wincure
and Rey in growing initially homogeneous nematic spheru-
lites under isothermal conditions [16]. As the defect sheds, a

-
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planar anchored interfacial regime nucleates and grows with
the moving front. Figure 10(a) shows the full view of the
computational domain with the director profile. Figure 10(b)
shows the temperature profile and biaxial nature of the +%
disclination and planar isotropic-nematic interface, computed
as [43,44]

_ e 0:0r
Q0

ranging from fully uniaxial 8?>=0 to fully biaxial g>=1.

Biaxiality has a key role in this process, where the tran-
sition to an inherently biaxial planar interface from a uniaxial
homeotropic interface is achieved through the shedding of a
biaxial disclination defect. Exhaustive past work has ad-
dressed these interfacial texturing processes for isothermal
isotropic-nematic interfaces, see Refs. [15,40] for a full treat-
ment. This defect formation, shedding, and planar interfacial
growth phenomena are driven by planar anchoring having a
lower energy than that of a homeotropic anchoring. This is
shown in Fig. 11, which shows the gradient free-energy den-
sity f, [terms 4 and 5, Eq. (3)]:

B = (17)

1 . 1
fg:EZI(VQ:VQ)+512(V'Q)'(V'Q) (18)

across the interface at the horizontal position at which the
defect forms, as a function of the position (across the inter-
face) and time. Before the defect formation, the interfacial
anchoring is homogeneous in the high-energy homeotropic
state. As the disclination forms, the interfacial anchoring be-
comes heterogeneous where an energetically favorable pla-
nar regime forms trailing the shed defect. In the vicinity of
the disclination defect the free energy is greatly increased; it
is important to note that the total free energy of the system is
minimized in that the energetically favorable interfacial re-
gion of planar anchoring grows, decreasing the total free
energy.

|

ey
T Y eYY 4

FIG. 9. (Color online) Initially homeotropic defect formation (i) r=214.5 us, (i) t=219.4 us, (iii) 1=229.1 us; the surface corresponds
to the scalar uniaxial nematic-order parameter [red/black (gray/black in print) corresponds to isotropic/nematic], arrows correspond to the
uniaxial nematic director (should be considered headless), and horizontal length scale is 0.65 wm.
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FIG. 10. (Color online) t=229.1 us [corresponds to Fig. 8(iii)],
(a) (left) view of full computational domain where the surface cor-
responds to the scalar uniaxial nematic-order parameter (red/black
(gray/black in print) corresponds to isotropic/nematic), arrows cor-
respond to the uniaxial nematic director (should be considered
headless), and the horizontal length scale is 2 um, (b) (right) mag-
nified view of the planar interface with the surface corresponding to
% [see Eq. (18)] and the contours corresponding to temperature
(the minimum/maximum/increment is 306.285 K/306.295 K/
0.002 K) the horizontal length scale is 0.6 wm.

In order to exhaustively confirm that this instability re-
sults from the difference in anchoring energies, a simulation
was performed with /,=0. This is based upon the notion that
for an interface, neglecting curvature and biaxiality, the sur-
face energy is predicted to be [45]

D3l + 12+ 31(n - k)2

, 19
486c7" (19)

Y
where k is the unit vector normal to the interface. Equation
(19) shows that the sign of I/, determines which orientation
has the lower surface energys; if it is positive it will planar
(n Lk), and if it is negative, homeotropic (n=k). When [,
=0, neither of the interfacial anchorings are preferred. Thus
if the surface free energy is the driving force for defect for-
mation; no defect would be expected to form when [,=0,
which was confirmed via this simulation where, for long
times, no defect formation was observed.

IV. CONCLUSIONS

In this work, two-dimensional multiscale simulation of
the isotropic-nematic mesophase was used to study both lin-
ear and nonlinear morphological instabilities under direc-
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FIG. 11. (Color online) Surface plot of the gradient free-energy
density [refer to Eq. (18)] as a function of time and y coordinate
(um); features of the energy surface include the initial homeotro-
pically oriented interface, defect shedding (the high-energy peak),
and the relatively lower-energy planar oriented interface.

tional growth. The major contributions of this work are an
extended sharp-interface model was derived (refer to Sec.
IIT A and the Appendix) and applied to linear morphological
instabilities of the isotropic-nematic mesophase transition.
Results from comparing the sharp-interface model and the
two-dimensional simulation of the tensorial Landau—de
Gennes model (refer to Sec. II B) identify the limitations of
sharp-interface models to predict the maximum value of the
growth coefficient (see Fig. 7). It is shown that this type of
model fails to adequately capture the time-dependent mor-
phological instability growth compared to full two-
dimensional simulation of a nonisothermal Landau—de
Gennes model [35]. Nonlinear instabilities were studied for
an initially homeotropic isotropic-nematic interface, where
the phenomenological model predicts the planar isotropic-
nematic interface being more stable. Disclination shedding at
the interface, similar to experimentally [22] and theoretically
observed phenomena [16], and the formation and growth of
bulk texturing were found to result (see Figs. 8—11). While
these results confirm the validity of sharp-interface models
for the well-studied problem of linear morphological insta-
bilities, a substantial conclusion can be drawn from simula-
tion results in the nonlinear regime. That conclusion being
that, using the full tensorial Landau—de Gennes model for the
isotropic-nematic phase transition, extended to the noniso-
thermal case [35], nonlinear morphological instabilities can
be accessed that are both inaccessible using more simple
theoretical approaches and difficult to characterize experi-
mentally.

Furthermore, three-dimensional simulation using the ten-
sorial Landau—de Gennes model [35], based upon the current
results, will enable the study of geometries that are more
directly representative of experimentally conditions. For ex-
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ample, some of the physics that can be accessed include
surface anchoring, meniscus formation [17], three-
dimensional textures or defects, etc.
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APPENDIX: SHARP INTERFACE MODEL FOR LINEAR
STABILITY OF A PLANAR INTERFACE GROWING
IN AN EXTERNAL TEMPERATURE GRADIENT

The objective of this appendix is to derive an analytical
expression for the dispersion diagram, considering a sharp-
interface model. The energy balance for the bulk nematic and
isotropic phases, in a frame moving with velocity v are

o T (azr 327")
——-v—=a" , (A1)
ot dy ay*  ox?

o or [ FT FT

a Uy N\t ) (A2)

where « is the thermal diffusivity. The superscripts i and n
refer to the isotropic and nematic phases, respectively. We
are assuming that the order parameter is uniform in the
whole nematic phase.

The boundary conditions are

Tlyep=T), T|op=T, (A3)

and, additionally, at the interface y=h(x) the temperature
must be continuous and the heat released by the phase tran-
sition must equal to the net heat flux.

For a steady-state flat interface (base solution), we take
the velocity of the moving reference system v as the velocity
of the interface, and place the interface at the origin, so
h(x)=0. The temperature is only a function of y, and the
solution to Egs. (A1) and (A2) is

T = C”{exp(— iy) - l} + T,
al‘l
. . v
T = C{exp(— —y) - 1} + 1,
@;

where C" and C' are integration constants and 7} is the tem-
perature at the interface. The boundary conditions (A3) and
previously mentioned interface conditions are then used to
find the particular solution from the general solution (A4)

(A4)

I;= {Tl[fi(_ v) = 1]=T[f,(v) - 1]

L) - 1 0) - 1]} / =) - £},
pCp

filv) = eXP<— 53); fulv) = eXp(aLB>,

i n
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T -T T,-T,

C'=—F7——, C=—F—7—. (A5)
v v
exp(—”> -1 exp( ) -1
a o
Now a perturbation to the base solution is considered:
=T+ T,
T'=T,+T", (A6)

where 7% and T*" are the perturbations and the subscript b is
the base solution. Replacing Eq. (A6) in Egs. (A1) and (A2):

or<r  gr" FPT" FPT"
-v =d' >+, (A7)
ot dy dy ox
ors ort ([ PTH FPTH
— —-v—/—=da >+ . (A8)
ot dy dy ox

As long as the perturbations are small and do not reach the
borders of the simulation domain, boundary conditions at
infinity can be used:

T, =0, T*|_.=0. (A9)

Writing the boundary conditions at the interface, considering
that now h=h(x) and linearizing, the following boundary
conditions are obtained, where the temperatures and their
derivatives are evaluated at y=0:

aT, T, :
—Lp = —Lp 4T (A10)
ay dy

n &zy + &zy +

The velocity of the nematic-isotropic interface can be calcu-
lated from a nematodynamic interfacial model [15]

pw=(L+V,-T) k+ uQ*" Qs (A12)
YoQ .
A= f N’ 6’)\ M, (A13)

where 8 is the interfacial viscosity, L is the temperature-
dependent net stress load (which reduces to the free-energy
difference between the nematic and the isotropic phase),
V,- T, is the capillary force (neglecting anisotropy in surface
tension, it is the product of the surface tension and the bidi-
mensional curvature of the interface), and the last term is the
change in the value of the order parameter at the interface
(assumed to be 0). If the perturbation is small, Eq. (A12)
reduces to

7d2h

L (A14)

pw=—-f"+
where f" is the bulk nematic free energy and 7 is the surface
tension. The surface tension, neglecting curvature, is found
to be
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(™ i )
y= EIS'LN (f"ls—m.(vgﬂ dn, (A15)

where I is the surface 2 X 2 identity matrix. After lineariza-
tion, considering that for small perturbations the normal to
the interface is approximately the y direction, the change in
the velocity with respect to the base solution (the velocity of
the interface in the moving frame) is

@__d(f”/%“){ T

dr dr dy

d*h
h+ T +l—2,
2B dx

(A16)

y=0

where the derivative with respect to temperature is a total
derivative and thus the equilibrium order parameter as a
function of the temperature must be used in the free energy.

The solution, for a sinusoidal perturbation at the interface,
is

T* = T}, exp(a;y)exp(ot)sin(kx),

T+ = Tf) exp(a,y)exp(ot)sin(kx),

PHYSICAL REVIEW E 79, 021702 (2009)

h = hye" sin(kx) (A17)
replacing in Eq. (A7) results in
o—-va;= ajal - k),
_ 2 2
o-va,=a,la, - «°). (A18)

The system formed by Egs. (A10) and (A16)—(A18) is a
homogeneous system. In order to have a nontrivial solution,
the following dispersion relation must be satisfied:

0= {—d(fn'g_l) }_10'— Ecn + l|:—d(}m'8_1)}_lK2

dT 28| ar
+ (lC" - KC’) (v+s)(s,+s)7"
a, Q;
L v\ v\? . o
+2lo— -, — | C"+a| — | C"|(s,+5)7,
pCp a, a;
(A19)
where
SJ-=\‘"U2+4(1’J-(K2+O'), j=i,n. (A20)
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