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In this paper we prove that the free algebras in a subvariety ) of the variety SH of semi-Heyting algebras are
directly indecomposable if and only if V satisfies the Stone identity.
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1 Introduction and preliminaries

The variety SH of semi-Heyting algebras was introduced by Sankappanavar in [11] as an abstraction of Heyting
algebras. This variety includes Heyting algebras and share with them some rather strong properties. For example,
the variety of semi-Heyting algebras is arithmetical and their congruences are determined by filters. Also, semi-
Heyting algebras are pseudocomplemented distributive lattices, with the pseudocomplement given by z* = = —
0 (see [11]).

But at the same time, semi-Heyting algebras present remarkable differences from Heyting algebras. For
example, the implication operation on a semi-Heyting algebra A is not determined by the lattice order of A;
in fact, we can have many semi-Heyting operations on an given distributive lattice, being the greatest of then, the
Heyting implication.

It is known that Heyting algebras play a fundamental role in the study of Intuitionistic Logic. In [7], J. M.
Cornejo defines a new logic SZ called Semi-intuitionistic Logic such that the semi-Heyting algebras are the
semantics for SZ, and the Intuitionistic Logic is an axiomatic extension of SZ. As Sankappanavar states in
[11], we believe that semi-Heyting algebras will be of interest from the point of view of Many Valued Logic.
For example, there are ten non-isomorphic semi-Heyting algebras on a 3-element chain, only one of which, of
course, is a Heyting algebra. Each of the other nine algebras can provide a new interpretation for the implication
connective: for instance, if T', I, U stand respectively for “true”, “false” and “unsure”, it is reasonable to have
F—-T=U,F—>U=UandU —T =U.

The set of regular elements of a pseudocomplemented distributive lattice L forms a subuniverse of a subalgebra
of L if and only if L satisfies the Stone condition z* V ** ~ 1 (see [3]). This result easily extends to Heyting
algebras, that is, the regular elements of a Heyting algebra A form a subalgebra of A if and only if A satisfies
the Stone condition [8, 9]. Nevertheless, this Stone condition is not longer sufficient in the case of semi-Heyting
algebras. We shall prove that the regular elements of a semi-Heyting algebra A form a subalgebra of A if and
only if, in addition to the Stone condition, A satisfies the identity (0 — 1) V (0 — 1)* ~ 1.

In this paper we derive a Glivenko style theorem for the variety of semi-Heyting algebras and we prove that
the class of Boolean semi-Heyting algebras (algebras with an underlying structure of Boolean lattice) constitutes
a reflective subcategory of SH.
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Finally we obtain a characterization of the decomposability of free semi-Heyting algebras, the main result of
this paper. In fact, we prove that the free algebras in a subvariety } of SH are directly indecomposable if and
only if V satisfies the Stone identity.

A semi-Heyting algebra is an algebra A = (A, V, A, —,0,1) such that (A4, V, A, 0, 1) is a lattice with 0 and 1
and the following equations hold:

@ zA(z—y) ~zAy,
b)) zA(y—=2z)=zA[(zAy) = (zA2)],
) z—zxz~1.

For basic notation and results, the reader is referred to [3], [4], [5] and [11]. We will denote SH the class of
semi-Heyting algebras.
Sankappanavar obtained the following characterization of subdirectly irreducible semi-Heyting algebras.

Theorem 1.1 [11] Let A € SH with |A| > 2. The following are equivalent:
(a) A is subdirectly irreducible.
(b) A has a unique coatom.

Observe that as a consequence of this theorem, if A is subdirectly irreducible, then 1 € A is join irreducible.
Since semi-Heyting algebras are pseudocomplemented lattices, the following properties hold.

Lemma 1.2 (a) Ifa < bthenb* < a*.
) a < a**.
(¢) anb=0ifand only ifa™* Nb=0.
D IfbAa* =0thenb < a**.
(e (aAb)*™ =a** Ab*.
) a*** = a*.
(g) IfaNb=0thena < b".

(h) (aVb)* =a* AD".

The set of regular elements of a semi-Heyting algebra A is Reg(A) = {a € A: a™ = a}, and the set of its
dense elements is D(A) = {a € A: a* = 0}. Itis easy to see that D(A) is a filter of A.

An element a € A is said to be complemented (Boolean) if there exists b € A such that a A b = 0 and
a V b = 1; the element b is called the complement of a. If a € A has a complement, it is unique and it is a*. If
B(A) denotes the set of complemented elements of A, then B(A) = {a € A: aV a* = 1} and, consequently,
B(A) C Reg(A).

If A € SH, then Reg(A) is not, in general, a subalgebra of A, as the following example shows.

Consider the three-element semi-Heyting algebra A = ({0,a,1},A,V,—,0,1), whose lattice order and
whose operation — is given below.

A
— |1 0]a]l
a 0O (1l]a]a
a |0|1|a
1 |{0fall
0
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We have that B(A) = {0,1}and 0 — 1 = a ¢ B(A), so B(A) is not a subalgebra of A.

The algebras 2 and 2, which have the two-element chain as their lattice reduct and whose — operation is
defined in the following figure, are two important examples of semi-Heyting algebras. One easily verifies that 2
is a Heyting algebra while 2 is not.

The varieties generated by 2 and 2, denoted by V(2) and V(2) respectively, are the only atoms in the lattice of
subvarieties of SH. Let V(2, 2) denote the subvariety of SH generated by 2 and 2. Then we have the following
lemma.

Lemma 1.3 [11] V(2,2) is characterized within SH by the equation x \V x* ~ 1.

Observe that if A € V(2,2). then its {A, V, *,0, 1}-reduct is a Boolean algebra. We say that a semi-Heyting
algebra A is a Boolean semi-Heyting algebra if A € V(2,2).

2 Glivenko’s theorem

In this section we prove a Glivenko style theorem for semi-Heyting algebras, as a generalization of similar results
for Heyting algebras as presented, e.g., in [9]. We also prove that the category of Boolean semi-Heyting algebras
constitutes a reflective subcategory of the category of semi-Heyting algebras and homomorphisms.

In Heyting algebras, as well as in pseudocomplemented distributive lattices, the regular elements form a
Boolean algebra. The following lemma provides a similar result for semi-Heyting algebras, namely Reg(A) €
V(2,2), that is, Reg(A) has an underlying structure of complemented distributive lattice, although we must
emphasize that the implication on Reg(A) is not the classical implication.

Lemma 2.1 Let A be a semi-Heyting algebra. If we define the following operations on Reg(A)
sANBy=zny, zVvEy=(zVvy*™, 0r=0, Ig=1 and z=y=(z —y)*

then (Reg(A), /\Ij, VE = 0g,1r) € SH and satisfies the equation xNFx* ~ 1, or equivalently, (Reg(A), N, VE =
,0R, 1R> S V(Z, 2).

Proof. From Lema 1.2, a A® b,a VE b,a = b € Reg(A) whenever a,b € Reg(A). In addition, 03 =
0 =1*=0=0gand 1} = 1** = 0" = 1 = 1R, so Reg(A) with the above defined operations is a bounded
lattice. Let us see that = is a semi-Heyting implication.

aN(a=b) = aA(a—=b*"=a"A(a—b)*
= [aA(a=D)]"*=(aAND)* =a™* AV* =aAb;
anN(b=c) = an(b—oo)*=a"*Nb—=c)*=[aNn(b— )™

= Jan((and) = (ane)]** =a™* A((aAb) = (aAc))**
= a*AN((anbd)=(anc))=aA((aNb) = (aNc));
a=a = (a—a)*=1"=1=1p.
Thus (Reg(A), AN, VE = 0g, 15) is a semi-Heyting algebra.
Finally, Reg(A) satisfies the equation V¥ 2* ~ 1. Indeed, by Lema 1.2 (h), (aV a*)** = (a* Aa**)*. Then
aVEBa* = (aVa*")™ = (a* Na*™)* =0*=1=1pg. O

From this lemma, there exists an embedding o : Reg(A) — [] 2! x 2”7 for some subsets ,J. Observe that
in the semi-Heyting algebra 2, a — b = a* Vb, while in 2, a — b = (a* Vb) A (b* Va). Hence, if a,b € Reg(A)
and 7, is the i-th projection of [] 27 x EJ, then

mi(a(a = b)) = ala=b)(i) = ala)(i) = «(b)(7) =
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(aa)(@)” v ab)(@) A (a(b) ()" V ala)(@) if  mi(a(Reg(A))) =2

Lemma 2.2 The mapping ra : A — Reg(A) defined by rs(a) = a** is a homomorphism of semi-Heyting
algebras.

{ a(a)(i)* V a(b)(7) if m;(a(Reg(A))) =2

Proof. The mapping ra preserves A, V, 0 and 1, as in the case of psudocomplemented distributive lattices.
Observe that in order to prove that ra(a — b) = ra(a) = 7a(b) we can show that a(ra(a — b)) =
a(ra(a) = ra(b)), and then we may consider the cases in which m;( Reg(A)) = 2 and m;(Reg(A)) =2. O

The previous results can be stated as the Glivenko’s Theorem for semi-Heyting algebras.

Theorem 2.3 (Glivenko’s Theorem) Let A € SH. Then (Reg(A), A%,V —E Og, 1g) is a Boolean semi-
Heyting algebra. Moreover, the mapping ra : A — Reg(A) defined by ra(a) = a** is a homomorphism and
Reg(A) ~ A/D(A).

We will say that a subcategory A of the category SH is reflective if there is a functor R : SH — A, called
a reflector, such that for each A € Obj(SH) there exists a morphism & (A) : A — R(A) of SH with the
following properties:

a) If f € Hom(SH) with f : A — A’ then r(A') o f = R(f) o DPr(A).

b) If A € Obj(A) and f € Hom(SH) with f : A — A then there exists a unique morphism f € Hom/(A)
with f: R(A) — A such that f' o P (A) = f.

Theorem 2.4 [3, Thm. 1.18.2] Let A be a subcategory of SH. A is a reflective subcategory of SH if and
only if there exists a function which assigns to every object A of SH an object R(A) of A and a function which
assigns to every object A of SH a morphism ®r(A) : A — R(A) of SH such that for every A € Obj(A) and
f € Hom(SH) with f : A — A there exists a unique morphism ' € Hom(A) with ' : R(A) — A such that
fro®r(A)=f.

Let us prove now that the class of Boolean semi-Heyting algebras constitutes a reflective subcategory of SH.

Lemma 2.5 V(2,2) is a reflective subcategory of SH.

Proof. Define R : Obj(SH) — Obj(V(2,2)) by R(A) = Reg(A). For A € Obj(SH) we define
Pr(A) : A — R(A) by Pr(A)(a) = ra(a). From lemma 2.2, P (A) = ra is well defined. Let B €
Obj(V(2,2)) and let f : A — V(2,2) a semi-Heyting homomorphism. We want to prove that there exists
a unique morphism in the category V(2,2), f’ : Reg(A) — B such that f’ o ®r(A) = f. Define [’ :
Reg(A) — Bby [/ = f|Reg A)- Let us see that (f' o ®r(A))(c) = f(c) for any ¢ € Reg(A). Since
c=c" (f o ®r(A))(c) = f'(ra(c)) = f'(c*) = f'(c) = flreg(a)(c) = f(c). For the uniqueness, let " :
Reg(A) — B such that (7 o & (A))(c) = £(c). Then f"(¢) = "(c**) = F"(rale)) = f"(®r(A)(c)) =
fle) = f'(Pr(A)(c)) = f'(ralc)) = f'(c**) = f'(c). By theorem 2.4, we have that V(2,2) is a reflective
subcategory of SH. 0

3 Decomposability of free semi-Heyting algebras

It is known that for a pseudocomplemented distributive lattice L, Reg(L)is a sublattice of L if and only if L
satisfies the Stone identity x* V 2** = 1 (see [3]). In the case of a Heyting algebra A, Reg(A) is closed under
the operation of implication, so we also have that Reg(A) is a subalgebra of A if and only if A satisfies the
Stone condition [8, 9]. This result is no longer true in the general case of semi-Heyting algebras, as it is shown
by the example of Section 1, where we have an algebra A that satisfies the Stone equation but Reg(A) is not a
subalgebra of A. In what follows we denote by S HS the subvariety of Stone semi-Heyting algebras, that is the
subvariety of SH defined by the Stone identity z* V z** = 1.

Let D denote the subvariety of SH that satisfies the identities * V2** ~ 1 and (0 — 1)V (0 — 1)* &~ 1. The
next lemma gives a necessary and sufficient condition on an algebra A € SH for Reg(A) to be a subalgebra of
A.

Lemma 3.1 Let A € SH. Then Reg(A) is a subalgebra of A if and only if A € D.
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Proof. Suppose that Reg(A) is a subalgebra of A. Observe that the fact that Reg(A) is a subalgebra of A
implies that VE® =V and a V a* = 1 for each a € Reg(A). So for any a € A, since a* € Reg(A) we have that
a* V ¢** = 1. On the other hand, 0,1 € Reg(A), and then 0 — 1 € Reg(A). So (0 - 1)V (0 — 1)* = 1.

For the converse, suppose that A € D. Let a,b € Reg(A) and let us prove that a V b = a VI b. From
a*Va** =1and a = a** we have a* V a = 1, and similarly, b* V b = 1. Observe that (a V b)* V (a V b) =
(@* AV )V (aVb)=(a*V(aVb)ADB*V(aVvb)=1V1i=1SoaVEb=(aVb)*™ =(aVbh)*™ Al=
(aVh)* Al(aVb)*V(aVb)] = (aVb)**A(aVb) = (aVEb)A(aVb). Consequently, aVb < aVb. The inequality
aVb < (aVb)*™* = aVRbfollows from lemma 1.2 (b). Let us now prove that Reg(A) is closed under —. Since
A € D, A is a subdirect product of a family {A;};cs of subdirectly irreducible algebras in D. In addition, since
A satisfies the Stone condition, it is easy to see that Reg(A) = B(A). Soifa,b € Reg(A), a,b can be identified
as sequences of 0’s and 1’s in [, ; A;. On the other hand, in a subdirectly irreducible algebra A;, the equation
(0= 1)V (0 — 1)* ~ 1is satisfied if and only if {0, 1} is a subalgebraof A;. As0 -1 =10r0 — 1 =0in
each A, then it is clear that a — b is a sequence of 0's and 1’s, that is, a — b € B(A) = Reg(A). O

For a given class K of algebras, let §ic(X) denote the free algebra in K over the set X of free generators.

Now we are going to give a description of §y (2 3) (X,), the free algebra in the variety V(2,2), with X,, =
{x1,29,. .., 2, }. We will prove that the Boolean reduct of §y, (5 3)(X,) is isomorphic to the free Boolean algebra
over n + 1 free generators Fz(n + 1).

Observe that V(2, 2) is a discriminator variety [11, Theorem 7.3]. In addition, V(2, 2) is a finitely generated
variety, and so it is locally finite. Let us determine §y(2 3) (X, ) finite. Since V(2, 2) is a discriminator variety,
then §y(2,3)(X») is a Boolean product of the algebras 2 and 2, that is, §y(2,3)(X») is isomorphic to a subalgebra
of 2%t x (2)*2. We have that vy = [Hom(Fy(23)(Xn),2)| = [{f: f: X, — 2[} = 2", and similarly,
ay = 2", Hence Fy(,3)(Xn) = 22" x (2)?" and, consequently, [Fy(2,3)(Xn)| = 22"

Hence the generators x, € X,,, 1 < k < n, can be represented in the following way: z; = (f1, f2) where
f1:2" =2, fo:2" — 2and f1(i) = f2(i), 1 <i <27, thatis, f; and f are both equal 2" —tuples of 0’s and
I’s. So there exists I C {1,2,...,2"} such that

. 1 si iel Con oem
xk(z)—{ 0 si gl ,and for 1 <4 < 2" z(2" +14) = x(4).

Lemma 3.2 Let I, = {1,2,...,n}. If ais an atom of §y(2,3)(X») then, for some J C I,

a:/\mj/\/\m;/\(O—>1)

JjeJ Jg¢J

or

O¢=/\1‘j/\/\3};/\(0—>1)*.

JjEJ J¢J

Proof. Let a be an atom of §y23)(X,). Then a = (a(1),(2),...,(2"*!)) where for some k €
{1,...,2""1} a(k) = 1 and a(i) = 0 for i # k.

If £ < 2", let & be the element (a(1), a(2),...,a(2"), a(1), a(2),...,a(2™)) (observe that o and & differ
only in the coordinate 2" + k). Then, since the first half of & is an atom of 3’1}(2) (X,,), there exists J C X, such
that @ = A\ ; 2jANjg s 5. Now, in §y (2 3)(Xn), the element 0 — 11is the 2"+ _tple (1,1,...,1,0,0,...,0),
ie, (0= 1)(i) =1for0 <i<2%and (0 — 1)(i) = 0, for 2" +1 < i < 2"*L since 0 — 1 ~ 1in 2 and
0—>1~0in2. Soa=aA(0—1)thatisa= A;c;z; A Njg 25 A0 —1).

If k> 2" then @ = (a(2" + 1), (2" + 2),...,a(2"), (2" + 1), a(2" + 2), ..., a(2"1)) is such that
a= Njeszj AN Njgsx; and wehave o = a A (0 — 1)%, thatis, . = Ao ;25 ANz 25 A (0= 1) O

Corollary 3.3 {z1,...,2,,0 — 1} is a generating set for the (Boolean) { A, V, *,0, 1}-reduct of By(2.3) (X,)

Lemma 3.4 The {A,V,*,0,1}-reduct of §\(2 3)(Xy) is isomorphic to the free Bolean algebra over n + 1
free generators Fg(n + 1).
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Proof. Let Y, = {y1,%2,-..,Yn+1} be a generating set for Sg(nf 1). Leth:Y, - X,U{0 = 1}
be defined by h(y;) = z; for 1 <4 < nand h(yn41) = 0 = 1. Leth : §p(n + 1) = §y23),(Xn) be the

extension homomorphism of 4. From lemma 3.2, k is onto. As |§5(n + 1)| = Sv2,2)(Xn) = 22" then h is
an isomorphism. O

Since the varieties V(2) (Boolean algebras) and V(2) are the only atoms in the lattice of subvarieties of SH,
then any non-trivial subvariety V of SH satisfies one of the following properties:

D V(2)CVandV(2) €V, or
() V(2) CVand V(2) € V, or
I V(2,2) C V.

Then we have the following.

Theorem 3.5 For every subvariety V C SH, Reg(Fv (X)) is isomorphic to Fy2)(X**) if V satisfies (1), is
isomorphic to Fy,3)(X**) if V satisfies (1) and is isomorphic to §y(2,2)(X ™) if V satisfies (1T, with X** =
{z**: z € X}.

Recall that D denote the subvariety of SH that satisfies the identities * V2** &~ 1and (0 — 1)V (0 — 1)* =~
1.

Corollary 3.6 IfV is a subvariety of D, then Reg(§y (X)) is isomorphic to either v (2)(X ™) or §y(z)(X™),
or Fy(2,3)(X*), and Reg(§y (X)) is a retract of Fy (X).

In what follows we study the decomposability of §y,(X), for a given subvariety V of SH.

Assume that V is a subvariety of SH* that satisfies (I) or (II), and X is a set with | X| > 0. Since every term
depends only on a finite set of variables, then we can assume, without loss of generality, that X is finite. Let

X, ={z1,...,z,}and I,, = {1,...,n}. Forany I C I,,, consider the element
ar(zy, ..., x,) = /\x’f* A /\:E;k
i€l gl
The correspondence I — ay(x1,...,x,) gives a one-to-one map from P(I,,), the power set of I,,, onto the

set of all atoms of the free Boolean semi-Heyting algebra Reg(§v(Xn)) = Fy(2)(X™) = §yy3) (X ™). Hence
for any b € Reg(Fy(X,)), there exists N C P(I,,) such that

b= (\/ a;(ml,...,xn)>

IeN

where N = {I € P(l,) : ar <b}.

Lemma 3.7 [6] For any J C I,, and x € §(X), consider the n-tuple ?J whose i-th component is © for
i€ J,and 1 fori ¢ J. Forany I C I, we get

ifI=1I,and J =0
* fl=I,and J#0
* ifl=I,\Jand J #£0

otherwise

@I(7J) =

o8 8 =

Now we prove that main result of the paper.

Theorem 3.8 Let V be a non-trivial subvariety of SH. Then §v(X) is directly decomposable if and only if V
satisfies the Stone identity.

Proof. Suppose that Fy(X) is directly decomposable. Then there exists « € §,(X) such that o V a* =1
and o #£ 0, 1.
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Suppose first that V satisfies either (I) or (IT). We can assume that « = «a(x1,...,z,) € Fp(X,), as above.
Since a € Reg(Fv (X)), there exists N C P(I,), N # (), P(I,), such that

oz, ..., xy) = (\/ a1> .

IeN

Let us prove that z* V 2** = 1, for any = € Fy(X).
Suppose that I, ¢ N. Fix K € N andlet J = I, \ K. Since K # I,,, J # () and the previous lemma implies
that

*

o I =K
af(?J)_{o ifIeN,I#K.

It follows that a; (7 ;) = (z*)** = x*. Therefore, as a V a* = 1 we get 2** V 2* = 1, as desired. Now
assume that I,, € N. Choose J C I, such that J # I, \ I for every I € N. Observe that this is possible since
N # P(I,). By the previous lemma we get

ok

e i I =1,
0‘1(?‘1)_{0 if 1€ N,I#I,.

Therefore, o 1(? J) = =** and the equation o V &* = 1 turns into Stone’s equation 2** V z* = 1. This shows
that V satisfies the Stone identity.

Suppose now that V satisfies (III). Then Reg(§ (X)) is isomorphic to §,(2 3, (X ™). Since @ € Reg(Fv(Xn)),
there exists N C P(I,,), N # 0, P(I,,), such that

Xy, .., T, 2) = (\/ (oq/\z))

IeN

where z € {(0 — 1)*,(0 — 1)**}, by lemma 3.2.

By Corollary 3.3 and lemma 3.4, z is a free generator of the Boolean reduct of SV(2,§) (X**), that is, z is a free
generator of §5(n+1) = Reg(Fv (X)) = Fyyp3) (X ™). Then, from a(z1, ..., 2n, 2)V(a(21, ..., 20, 2))" =1
we get

a(zy, .. xn, Tn) V(a(r, .. T, xp)) =1,

which evaluated in the same (n + 1)-tuple of the cases (I) and (IT) gives us ** V a* = 1, that is, V satisfies the
Stone identity. 0

Consider the following five-element pseudocomplemented distributive lattice Hs = ({0,a,b,¢,1}, A, V, —
,0,1):

1

H;
c

a b
0

Lemma 3.9 A semi-Heyting algebra A does not satisfy the equation x* NV x** =~ 1 if and only if A contains
a pseudocomplemented sublattice isomorphic to Hs.

Proof. Let A be a semi-Heyting algebra and suppose that there exists a € A such that a* vV a** # 1. Then
the set {0, a*, a**, a* V a**, 1} is the universe of a pseudocomplemented lattice isomorphic to Hs. The converse
is immediate. O
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We can summarize the above results in the next corollary:

Corollary 3.10 For any non-trivial variety V of SH, the following conditions are equivalent:

1.
2.
3.

Sv(X) is directly indecomposable,
V g SHY,

V contains an algebra whose pseudocomplemented lattice reduct is isomorphic to Hs.

Acknowledgment: We gratefully acknowledge helpful comments of the referee which improved the final version
of the paper.
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