Free-decomposability in Varieties of Semi-Heyting Algebras

M. Abad*1, J. M. Cornejo**1, and J. P. Díaz Varela***1,2

- ¹ Departamento de Matemática Universidad Nacional del Sur 8000 Bahía Blanca, Argentina
- ² Instituto de Matemática (INMABB) UNS CONICET

Key words Semi-Heyting algebra, free decomposability, Glivenko theorem. **Subject classification** *Primary* : 03G25, 06D20, 06D14; *Secondary* : 08B20, 08B15

The second author wishes to thank and dedicate this work to Oscar Foresi and Noemí Brustle.

In this paper we prove that the free algebras in a subvariety \mathcal{V} of the variety \mathcal{SH} of semi-Heyting algebras are directly indecomposable if and only if \mathcal{V} satisfies the Stone identity.

Copyright line will be provided by the publisher

1 Introduction and preliminaries

The variety SH of semi-Heyting algebras was introduced by Sankappanavar in [11] as an abstraction of Heyting algebras. This variety includes Heyting algebras and share with them some rather strong properties. For example, the variety of semi-Heyting algebras is arithmetical and their congruences are determined by filters. Also, semi-Heyting algebras are pseudocomplemented distributive lattices, with the pseudocomplement given by $x^* = x \rightarrow 0$ (see [11]).

But at the same time, semi-Heyting algebras present remarkable differences from Heyting algebras. For example, the implication operation on a semi-Heyting algebra \mathbf{A} is not determined by the lattice order of \mathbf{A} ; in fact, we can have many semi-Heyting operations on an given distributive lattice, being the greatest of then, the Heyting implication.

It is known that Heyting algebras play a fundamental role in the study of Intuitionistic Logic. In [7], J. M. Cornejo defines a new logic SI called Semi-intuitionistic Logic such that the semi-Heyting algebras are the semantics for SI, and the Intuitionistic Logic is an axiomatic extension of SI. As Sankappanavar states in [11], we believe that semi-Heyting algebras will be of interest from the point of view of Many Valued Logic. For example, there are ten non-isomorphic semi-Heyting algebras on a 3-element chain, only one of which, of course, is a Heyting algebra. Each of the other nine algebras can provide a new interpretation for the implication connective: for instance, if T, F, U stand respectively for "true", "false" and "unsure", it is reasonable to have $F \rightarrow T = U$, $F \rightarrow U = U$ and $U \rightarrow T = U$.

The set of regular elements of a pseudocomplemented distributive lattice L forms a subuniverse of a subalgebra of L if and only if L satisfies the Stone condition $x^* \vee x^{**} \approx 1$ (see [3]). This result easily extends to Heyting algebras, that is, the regular elements of a Heyting algebra A form a subalgebra of A if and only if A satisfies the Stone condition [8, 9]. Nevertheless, this Stone condition is not longer sufficient in the case of semi-Heyting algebras. We shall prove that the regular elements of a semi-Heyting algebra A form a subalgebra of A if and only if, in addition to the Stone condition, A satisfies the identity $(0 \rightarrow 1) \vee (0 \rightarrow 1)^* \approx 1$.

In this paper we derive a Glivenko style theorem for the variety of semi-Heyting algebras and we prove that the class of Boolean semi-Heyting algebras (algebras with an underlying structure of Boolean lattice) constitutes a reflective subcategory of SH.

^{*} Corresponding author: e-mail: imabad@criba.edu.ar

^{**} E-mail: ????@uns.edu.ar

^{***} E-mail: usdiavar@criba.edu.ar

Finally we obtain a characterization of the decomposability of free semi-Heyting algebras, the main result of this paper. In fact, we prove that the free algebras in a subvariety \mathcal{V} of \mathcal{SH} are directly indecomposable if and only if \mathcal{V} satisfies the Stone identity.

A semi-Heyting algebra is an algebra $\mathbf{A} = \langle A, \lor, \land, \rightarrow, 0, 1 \rangle$ such that $\langle A, \lor, \land, 0, 1 \rangle$ is a lattice with 0 and 1 and the following equations hold:

- (a) $x \wedge (x \to y) \approx x \wedge y$,
- (b) $x \land (y \to z) \approx x \land [(x \land y) \to (x \land z)],$
- (c) $x \to x \approx 1$.

For basic notation and results, the reader is referred to [3], [4], [5] and [11]. We will denote SH the class of semi-Heyting algebras.

Sankappanavar obtained the following characterization of subdirectly irreducible semi-Heyting algebras.

Theorem 1.1 [11] Let $\mathbf{A} \in S\mathcal{H}$ with $|\mathbf{A}| \geq 2$. The following are equivalent:

- (a) **A** *is subdirectly irreducible*.
- (b) A has a unique coatom.

Observe that as a consequence of this theorem, if A is subdirectly irreducible, then $1 \in A$ is join irreducible. Since semi-Heyting algebras are pseudocomplemented lattices, the following properties hold.

Lemma 1.2 (a) If $a \leq b$ then $b^* \leq a^*$.

- (b) $a \le a^{**}$.
- (c) $a \wedge b = 0$ if and only if $a^{**} \wedge b = 0$.

Α

- (d) If $b \wedge a^* = 0$ then $b \le a^{**}$.
- (e) $(a \wedge b)^{**} = a^{**} \wedge b^{**}$.
- (f) $a^{***} = a^*$.
- (g) If $a \wedge b = 0$ then $a \leq b^*$.
- (h) $(a \lor b)^* = a^* \land b^*$.

The set of *regular* elements of a semi-Heyting algebra \mathbf{A} is $Reg(\mathbf{A}) = \{a \in A : a^{**} = a\}$, and the set of its *dense* elements is $D(\mathbf{A}) = \{a \in A : a^* = 0\}$. It is easy to see that $D(\mathbf{A})$ is a filter of \mathbf{A} .

An element $a \in A$ is said to be *complemented* (Boolean) if there exists $b \in A$ such that $a \wedge b = 0$ and $a \vee b = 1$; the element b is called the *complement* of a. If $a \in A$ has a complement, it is unique and it is a^* . If $B(\mathbf{A})$ denotes the set of complemented elements of A, then $B(\mathbf{A}) = \{a \in A : a \vee a^* = 1\}$ and, consequently, $B(\mathbf{A}) \subseteq Reg(\mathbf{A})$.

If $\mathbf{A} \in S\mathcal{H}$, then $Reg(\mathbf{A})$ is not, in general, a subalgebra of \mathbf{A} , as the following example shows.

Consider the three-element semi-Heyting algebra $\mathbf{A} = \langle \{0, a, 1\}, \wedge, \vee, \rightarrow, 0, 1 \rangle$, whose lattice order and whose operation \rightarrow is given below.

$1 \bullet$				
	\rightarrow	0	a	1
	0	1	a	a
	a	0	1	a
	1	0	a	1
0 •				

We have that $B(\mathbf{A}) = \{0, 1\}$ and $0 \to 1 = a \notin B(\mathbf{A})$, so $B(\mathbf{A})$ is not a subalgebra of \mathbf{A} .

The algebras 2 and $\overline{2}$, which have the two-element chain as their lattice reduct and whose \rightarrow operation is defined in the following figure, are two important examples of semi-Heyting algebras. One easily verifies that 2 is a Heyting algebra while $\overline{2}$ is not.

The varieties generated by 2 and $\overline{2}$, denoted by $\mathcal{V}(2)$ and $\mathcal{V}(\overline{2})$ respectively, are the only atoms in the lattice of subvarieties of \mathcal{SH} . Let $\mathcal{V}(2,\overline{2})$ denote the subvariety of \mathcal{SH} generated by 2 and $\overline{2}$. Then we have the following lemma.

Lemma 1.3 [11] $\mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})$ is characterized within SH by the equation $x \vee x^* \approx 1$.

Observe that if $\mathbf{A} \in \mathcal{V}(2, \overline{2})$. then its $\{\wedge, \lor, *, 0, 1\}$ -reduct is a Boolean algebra. We say that a semi-Heyting algebra \mathbf{A} is a Boolean semi-Heyting algebra if $\mathbf{A} \in \mathcal{V}(2, \overline{2})$.

2 Glivenko's theorem

In this section we prove a Glivenko style theorem for semi-Heyting algebras, as a generalization of similar results for Heyting algebras as presented, e.g., in [9]. We also prove that the category of Boolean semi-Heyting algebras constitutes a reflective subcategory of the category of semi-Heyting algebras and homomorphisms.

In Heyting algebras, as well as in pseudocomplemented distributive lattices, the regular elements form a Boolean algebra. The following lemma provides a similar result for semi-Heyting algebras, namely $Reg(\mathbf{A}) \in \mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})$, that is, $Reg(\mathbf{A})$ has an underlying structure of complemented distributive lattice, although we must emphasize that the implication on $Reg(\mathbf{A})$ is not the classical implication.

Lemma 2.1 Let A be a semi-Heyting algebra. If we define the following operations on Reg(A)

$$x \wedge^R y = x \wedge y, \ x \vee^R y = (x \vee y)^{**}, \ 0_R = 0, \ 1_R = 1 \ and \ x \Rightarrow y = (x \to y)^{**}$$

then $\langle Reg(\mathbf{A}), \wedge^R, \vee^R, \Rightarrow, 0_R, 1_R \rangle \in SH$ and satisfies the equation $x \vee^R x^* \approx 1$, or equivalently, $\langle Reg(\mathbf{A}), \wedge^R, \vee^R, \Rightarrow, 0_R, 1_R \rangle \in \mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})$.

Proof. From Lema 1.2, $a \wedge^R b, a \vee^R b, a \Rightarrow b \in Reg(\mathbf{A})$ whenever $a, b \in Reg(\mathbf{A})$. In addition, $0_R^{**} = 0^{**} = 1^* = 0 = 0_R$ and $1_R^{**} = 1^{**} = 0^* = 1 = 1_R$, so $Reg(\mathbf{A})$ with the above defined operations is a bounded lattice. Let us see that \Rightarrow is a semi-Heyting implication.

$$a \wedge (a \Rightarrow b) = a \wedge (a \to b)^{**} = a^{**} \wedge (a \to b)^{**}$$

$$= [a \wedge (a \to b)]^{**} = (a \wedge b)^{**} = a^{**} \wedge b^{**} = a \wedge b;$$

$$a \wedge (b \Rightarrow c) = a \wedge (b \to c)^{**} = a^{**} \wedge (b \to c)^{**} = [a \wedge (b \to c)]^{**}$$

$$= [a \wedge ((a \wedge b) \to (a \wedge c))]^{**} = a^{**} \wedge ((a \wedge b) \to (a \wedge c))^{**}$$

$$= a^{**} \wedge ((a \wedge b) \Rightarrow (a \wedge c)) = a \wedge ((a \wedge b) \Rightarrow (a \wedge c));$$

$$a \Rightarrow a = (a \to a)^{**} = 1^{**} = 1 = 1_B.$$

Thus $\langle Reg(\mathbf{A}), \wedge^R, \vee^R, \Rightarrow, 0_R, 1_R \rangle$ is a semi-Heyting algebra.

Finally, $Reg(\mathbf{A})$ satisfies the equation $x \vee^R x^* \approx 1$. Indeed, by Lema 1.2 (h), $(a \vee a^*)^{**} = (a^* \wedge a^{**})^*$. Then $a \vee^R a^* = (a \vee a^*)^{**} = (a^* \wedge a^{**})^* = 0^* = 1 = 1_R$.

From this lemma, there exists an embedding $\alpha : Reg(\mathbf{A}) \to \prod \mathbf{2}^I \times \overline{\mathbf{2}}^J$ for some subsets I, J. Observe that in the semi-Heyting algebra $\mathbf{2}, a \to b = a^* \lor b$, while in $\overline{\mathbf{2}}, a \to b = (a^* \lor b) \land (b^* \lor a)$. Hence, if $a, b \in Reg(\mathbf{A})$ and π_i is the *i*-th projection of $\prod \mathbf{2}^I \times \overline{\mathbf{2}}^J$, then

$$\pi_i(\alpha(a \Rightarrow b)) = \alpha(a \Rightarrow b)(i) = \alpha(a)(i) \to \alpha(b)(i) =$$

$$\begin{cases} \alpha(a)(i)^* \lor \alpha(b)(i) & \text{if } \pi_i(\alpha(\operatorname{Reg}(\mathbf{A}))) = \mathbf{2} \\ (\alpha(a)(i)^* \lor \alpha(b)(i)) \land (\alpha(b)(i)^* \lor \alpha(a)(i)) & \text{if } \pi_i(\alpha(\operatorname{Reg}(\mathbf{A}))) = \mathbf{2} \end{cases}$$

Lemma 2.2 The mapping $r_{\mathbf{A}} : \mathbf{A} \to Reg(\mathbf{A})$ defined by $r_A(a) = a^{**}$ is a homomorphism of semi-Heyting algebras.

Proof. The mapping $r_{\mathbf{A}}$ preserves $\wedge, \vee, 0$ and 1, as in the case of psudocomplemented distributive lattices.

Observe that in order to prove that $r_{\mathbf{A}}(a \to b) = r_{\mathbf{A}}(a) \Rightarrow r_{\mathbf{A}}(b)$ we can show that $\alpha(r_{\mathbf{A}}(a \to b)) = \alpha(r_{\mathbf{A}}(a) \Rightarrow r_{\mathbf{A}}(b))$, and then we may consider the cases in which $\pi_i(Reg(\mathbf{A})) = \mathbf{2}$ and $\pi_i(Reg(\mathbf{A})) = \mathbf{\overline{2}}$. \Box

The previous results can be stated as the Glivenko's Theorem for semi-Heyting algebras.

Theorem 2.3 (Glivenko's Theorem) Let $\mathbf{A} \in S\mathcal{H}$. Then $\langle Reg(\mathbf{A}), \wedge^R, \vee^R, \rightarrow^R, 0_R, 1_R \rangle$ is a Boolean semi-Heyting algebra. Moreover, the mapping $r_{\mathbf{A}} : \mathbf{A} \to Reg(\mathbf{A})$ defined by $r_{\mathbf{A}}(a) = a^{**}$ is a homomorphism and $Reg(\mathbf{A}) \simeq \mathbf{A}/D(\mathbf{A})$.

We will say that a subcategory \mathcal{A} of the category \mathcal{SH} is *reflective* if there is a functor $\mathcal{R} : \mathcal{SH} \to \mathcal{A}$, called a *reflector*, such that for each $\mathbf{A} \in Obj(\mathcal{SH})$ there exists a morphism $\Phi_{\mathcal{R}}(\mathbf{A}) : \mathbf{A} \to \mathcal{R}(\mathbf{A})$ of \mathcal{SH} with the following properties:

- a) If $f \in Hom(\mathcal{SH})$ with $f : \mathbf{A} \to \mathbf{A}'$ then $\Phi_{\mathcal{R}}(\mathbf{A}') \circ f = \mathcal{R}(f) \circ \Phi_{\mathcal{R}}(\mathbf{A})$.
- b) If $\mathbf{A} \in Obj(\mathcal{A})$ and $f \in Hom(\mathcal{SH})$ with $f : \mathbf{A} \to \mathbf{A}$ then there exists a unique morphism $f' \in Hom(\mathcal{A})$ with $f' : \mathcal{R}(\mathbf{A}) \to \mathbf{A}$ such that $f' \circ \Phi_{\mathcal{R}}(\mathbf{A}) = f$.

Theorem 2.4 [3, Thm. I.18.2] Let \mathcal{A} be a subcategory of \mathcal{SH} . \mathcal{A} is a reflective subcategory of \mathcal{SH} if and only if there exists a function which assigns to every object \mathbf{A} of \mathcal{SH} an object $\mathcal{R}(\mathbf{A})$ of \mathcal{A} and a function which assigns to every object \mathbf{A} of \mathcal{SH} an object $\mathcal{R}(\mathbf{A})$ of \mathcal{A} and a function which assigns to every object \mathbf{A} of \mathcal{SH} a morphism $\Phi_{\mathcal{R}}(\mathbf{A}) : \mathbf{A} \to \mathcal{R}(\mathbf{A})$ of \mathcal{SH} such that for every $\mathbf{A} \in Obj(\mathcal{A})$ and $f \in Hom(\mathcal{SH})$ with $f : \mathbf{A} \to \mathbf{A}$ there exists a unique morphism $f' \in Hom(\mathcal{A})$ with $f' : \mathcal{R}(\mathbf{A}) \to \mathbf{A}$ such that $f' \circ \Phi_{\mathcal{R}}(\mathbf{A}) = f$.

Let us prove now that the class of Boolean semi-Heyting algebras constitutes a reflective subcategory of SH. Lemma 2.5 $\mathcal{V}(2, \overline{2})$ is a reflective subcategory of SH.

Proof. Define $\mathcal{R} : Obj(\mathcal{SH}) \to Obj(\mathcal{V}(2,\overline{2}))$ by $\mathcal{R}(\mathbf{A}) = Reg(\mathbf{A})$. For $\mathbf{A} \in Obj(\mathcal{SH})$ we define $\Phi_{\mathcal{R}}(\mathbf{A}) : \mathbf{A} \to \mathcal{R}(\mathbf{A})$ by $\Phi_{\mathcal{R}}(\mathbf{A})(a) = r_A(a)$. From lemma 2.2, $\Phi_{\mathcal{R}}(\mathbf{A}) = r_{\mathbf{A}}$ is well defined. Let $\mathbf{B} \in Obj(\mathcal{V}(2,\overline{2}))$ and let $f : \mathbf{A} \to \mathcal{V}(2,\overline{2})$ a semi-Heyting homomorphism. We want to prove that there exists a unique morphism in the category $\mathcal{V}(2,\overline{2})$, $f' : Reg(\mathbf{A}) \to \mathbf{B}$ such that $f' \circ \Phi_{\mathcal{R}}(\mathbf{A}) = f$. Define $f' : Reg(\mathbf{A}) \to \mathbf{B}$ by $f' = f|_{Reg(\mathbf{A})}$. Let us see that $(f' \circ \Phi_{\mathcal{R}}(\mathbf{A}))(c) = f(c)$ for any $c \in Reg(\mathbf{A})$. Since $c = c^{**}, (f' \circ \Phi_{\mathcal{R}}(\mathbf{A}))(c) = f'(r_A(c)) = f'(c^{**}) = f'(c) = f|_{Reg(\mathbf{A})}(c) = f(c)$. For the uniqueness, let $f'' : Reg(\mathbf{A}) \to \mathbf{B}$ such that $(f'' \circ \Phi_{\mathcal{R}}(\mathbf{A}))(c) = f(c)$. Then $f''(c) = f''(c^{**}) = f''(r_A(c)) = f''(\Phi_{\mathcal{R}}(\mathbf{A})(c)) = f'(c_{**}) = f'(c)$. By theorem 2.4, we have that $\mathcal{V}(2,\overline{2})$ is a reflective subcategory of $S\mathcal{H}$.

3 Decomposability of free semi-Heyting algebras

It is known that for a pseudocomplemented distributive lattice \mathbf{L} , $Reg(\mathbf{L})$ is a sublattice of \mathbf{L} if and only if \mathbf{L} satisfies the Stone identity $x^* \vee x^{**} \approx 1$ (see [3]). In the case of a Heyting algebra \mathbf{A} , $Reg(\mathbf{A})$ is closed under the operation of implication, so we also have that $Reg(\mathbf{A})$ is a subalgebra of \mathbf{A} if and only if \mathbf{A} satisfies the Stone condition [8, 9]. This result is no longer true in the general case of semi-Heyting algebras, as it is shown by the example of Section 1, where we have an algebra \mathbf{A} that satisfies the Stone equation but $Reg(\mathbf{A})$ is not a subalgebra of \mathbf{A} . In what follows we denote by $S\mathcal{H}^S$ the subvariety of Stone semi-Heyting algebras, that is the subvariety of $S\mathcal{H}$ defined by the Stone identity $x^* \vee x^{**} \approx 1$.

Let \mathcal{D} denote the subvariety of \mathcal{SH} that satisfies the identities $x^* \vee x^{**} \approx 1$ and $(0 \to 1) \vee (0 \to 1)^* \approx 1$. The next lemma gives a necessary and sufficient condition on an algebra $\mathbf{A} \in \mathcal{SH}$ for $Reg(\mathbf{A})$ to be a subalgebra of \mathbf{A} .

Lemma 3.1 Let $\mathbf{A} \in S\mathcal{H}$. Then $Reg(\mathbf{A})$ is a subalgebra of \mathbf{A} if and only if $\mathbf{A} \in \mathcal{D}$.

Proof. Suppose that $Reg(\mathbf{A})$ is a subalgebra of \mathbf{A} . Observe that the fact that $Reg(\mathbf{A})$ is a subalgebra of \mathbf{A} implies that $\vee^R = \vee$ and $a \vee a^* = 1$ for each $a \in Reg(\mathbf{A})$. So for any $a \in A$, since $a^* \in Reg(\mathbf{A})$ we have that $a^* \vee a^{**} = 1$. On the other hand, $0, 1 \in Reg(\mathbf{A})$, and then $0 \to 1 \in Reg(\mathbf{A})$. So $(0 \to 1) \vee (0 \to 1)^* = 1$.

For the converse, suppose that $\mathbf{A} \in \mathcal{D}$. Let $a, b \in Reg(\mathbf{A})$ and let us prove that $a \vee b = a \vee^R b$. From $a^* \vee a^{**} = 1$ and $a = a^{**}$ we have $a^* \vee a = 1$, and similarly, $b^* \vee b = 1$. Observe that $(a \vee b)^* \vee (a \vee b) = (a^* \wedge b^*) \vee (a \vee b) = (a^* \vee (a \vee b)) \wedge (b^* \vee (a \vee b)) = 1 \vee 1 = 1$. So $a \vee^R b = (a \vee b)^{**} = (a \vee b)^{**} \wedge 1 = (a \vee b)^{**} \wedge [(a \vee b)^* \vee (a \vee b)] = (a \vee b)^{**} \wedge (a \vee b) = (a \vee^R b) \wedge (a \vee b)$. Consequently, $a \vee^R b \leq a \vee b$. The inequality $a \vee b \leq (a \vee b)^{**} = a \vee^R b$ follows from lemma 1.2 (b). Let us now prove that $Reg(\mathbf{A})$ is closed under \rightarrow . Since $\mathbf{A} \in \mathcal{D}$, \mathbf{A} is a subdirect product of a family $\{\mathbf{A}_i\}_{i \in I}$ of subdirectly irreducible algebras in \mathcal{D} . In addition, since \mathbf{A} satisfies the Stone condition, it is easy to see that $Reg(\mathbf{A}) = B(\mathbf{A})$. So if $a, b \in Reg(\mathbf{A}), a, b$ can be identified as sequences of 0's and 1's in $\prod_{i \in I} \mathbf{A}_i$. On the other hand, in a subdirectly irreducible algebra \mathbf{A}_i , the equation $(0 \to 1) \vee (0 \to 1)^* \approx 1$ is satisfied if and only if $\{0, 1\}$ is a subalgebra of \mathbf{A}_i . As $0 \to 1 = 1$ or $0 \to 1 = 0$ in each \mathbf{A}_i , then it is clear that $a \to b$ is a sequence of 0's and 1's, that is, $a \to b \in B(\mathbf{A}) = Reg(\mathbf{A})$.

For a given class \mathcal{K} of algebras, let $\mathfrak{F}_{\mathcal{K}}(X)$ denote the free algebra in \mathcal{K} over the set X of free generators.

Now we are going to give a description of $\mathfrak{F}_{\mathcal{V}(2,\bar{2})}(X_n)$, the free algebra in the variety $\mathcal{V}(2,\bar{2})$, with $X_n = \{x_1, x_2, \ldots, x_n\}$. We will prove that the Boolean reduct of $\mathfrak{F}_{\mathcal{V}(2,\bar{2})}(X_n)$ is isomorphic to the free Boolean algebra over n + 1 free generators $\mathfrak{F}_{\mathcal{B}}(n + 1)$.

Observe that $\mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})$ is a discriminator variety [11, Theorem 7.3]. In addition, $\mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})$ is a finitely generated variety, and so it is locally finite. Let us determine $\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n)$ finite. Since $\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})$ is a discriminator variety, then $\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n)$ is a Boolean product of the algebras $\mathbf{2}$ and $\overline{\mathbf{2}}$, that is, $\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n)$ is isomorphic to a subalgebra of $\mathbf{2}^{\alpha_1} \times (\overline{\mathbf{2}})^{\alpha_2}$. We have that $\alpha_1 = |Hom(\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n), \mathbf{2})| = |\{f : f : X_n \to \mathbf{2}|\} = 2^n$, and similarly, $\alpha_2 = 2^n$. Hence $\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n) \cong \mathbf{2}^{2^n} \times (\overline{\mathbf{2}})^{2^n}$ and, consequently, $|\mathfrak{F}_{\mathcal{V}(\mathbf{2},\overline{\mathbf{2}})}(X_n)| = 2^{2^{n+1}}$.

Hence the generators $x_k \in X_n$, $1 \le k \le n$, can be represented in the following way: $x_k = (f_1, f_2)$ where $f_1 : 2^n \to \mathbf{2}$, $f_2 : 2^n \to \mathbf{\overline{2}}$ and $f_1(i) = f_2(i)$, $1 \le i \le 2^n$, that is, f_1 and f_2 are both equal 2^n -tuples of 0's and 1's. So there exists $I \subseteq \{1, 2, \ldots, 2^n\}$ such that

$$x_k(i) = \begin{cases} 1 & \text{si} \quad i \in I \\ 0 & \text{si} \quad i \notin I \end{cases}, \text{ and for } 1 \le i \le 2^n, \ x(2^n + i) = x(i).$$

Lemma 3.2 Let $I_n = \{1, 2, ..., n\}$. If α is an atom of $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)$ then, for some $J \subseteq I_n$

$$\alpha = \bigwedge_{j \in J} x_j \wedge \bigwedge_{j \not\in J} x_j^* \wedge (0 \to 1)$$

or

$$\alpha = \bigwedge_{j \in J} x_j \wedge \bigwedge_{j \notin J} x_j^* \wedge (0 \to 1)^*.$$

Proof. Let α be an atom of $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)$. Then $\alpha = (\alpha(1), \alpha(2), \ldots, \alpha(2^{n+1}))$ where for some $k \in \{1, \ldots, 2^{n+1}\}, \alpha(k) = 1$ and $\alpha(i) = 0$ for $i \neq k$.

If $k < 2^n$, let $\tilde{\alpha}$ be the element $(\alpha(1), \alpha(2), \ldots, \alpha(2^n), \alpha(1), \alpha(2), \ldots, \alpha(2^n))$ (observe that α and $\tilde{\alpha}$ differ only in the coordinate $2^n + k$). Then, since the first half of $\tilde{\alpha}$ is an atom of $\mathfrak{F}_{\mathcal{V}(2)}(X_n)$, there exists $J \subseteq X_n$ such that $\tilde{\alpha} = \bigwedge_{j \in J} x_j \land \bigwedge_{j \notin J} x_j^*$. Now, in $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)$, the element $0 \to 1$ is the 2^{n+1} -tuple $(1, 1, \ldots, 1, 0, 0, \ldots, 0)$, i.e. $(0 \to 1)(i) = 1$ for $0 \le i \le 2^n$ and $(0 \to 1)(i) = 0$, for $2^n + 1 \le i \le 2^{n+1}$, since $0 \to 1 \approx 1$ in **2** and $0 \to 1 \approx 0$ in $\overline{2}$. So $\alpha = \tilde{\alpha} \land (0 \to 1)$, that is $\alpha = \bigwedge_{j \in J} x_j \land \bigwedge_{j \notin J} x_j^* \land (0 \to 1)$.

If $k > 2^n$, then $\widetilde{\alpha} = (\alpha(2^n + 1), \alpha(2^n + 2), \dots, \alpha(2^{n+1}), \alpha(2^n + 1), \alpha(2^n + 2), \dots, \alpha(2^{n+1}))$ is such that $\widetilde{\alpha} = \bigwedge_{j \in J} x_j \land \bigwedge_{j \notin J} x_j^*$, and we have $\alpha = \widetilde{\alpha} \land (0 \to 1)^*$, that is, $\alpha = \bigwedge_{j \in J} x_j \land \bigwedge_{j \notin J} x_j^* \land (0 \to 1)^*$. \Box

Corollary 3.3 $\{x_1, \ldots, x_n, 0 \rightarrow 1\}$ is a generating set for the (Boolean) $\{\land, \lor, *, 0, 1\}$ -reduct of $\mathfrak{F}_{\mathcal{V}(\mathbf{2}, \overline{\mathbf{2}})}(X_n)$

Lemma 3.4 The $\{\wedge, \lor, *, 0, 1\}$ -reduct of $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)$ is isomorphic to the free Bolean algebra over n + 1 free generators $\mathfrak{F}_{\mathcal{B}}(n+1)$.

Proof. Let $Y_n = \{y_1, y_2, \dots, y_{n+1}\}$ be a generating set for $\mathfrak{F}_{\mathcal{B}}(n+1)$. Let $h: Y_n \to X_n \cup \{0 \to 1\}$ be defined by $h(y_i) = x_i$ for $1 \le i \le n$ and $h(y_{n+1}) = 0 \to 1$. Let $\bar{h}: \mathfrak{F}_{\mathcal{B}}(n+1) \to \mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)$ be the extension homomorphism of h. From lemma 3.2, \bar{h} is onto. As $|\mathfrak{F}_{\mathcal{B}}(n+1)| = |\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X_n)| = 2^{2^{n+1}}$, then h is an isomorphism.

Since the varieties $\mathcal{V}(2)$ (Boolean algebras) and $\mathcal{V}(\overline{2})$ are the only atoms in the lattice of subvarieties of \mathcal{SH} , then any non-trivial subvariety \mathcal{V} of \mathcal{SH} satisfies one of the following properties:

- (I) $\mathcal{V}(\mathbf{2}) \subseteq \mathcal{V}$ and $\mathcal{V}(\mathbf{\overline{2}}) \not\subseteq \mathcal{V}$, or
- (II) $\mathcal{V}(\overline{\mathbf{2}}) \subseteq \mathcal{V}$ and $\mathcal{V}(\mathbf{2}) \not\subseteq \mathcal{V}$, or

(III) $\mathcal{V}(\mathbf{2}, \overline{\mathbf{2}}) \subseteq \mathcal{V}$.

Then we have the following.

Theorem 3.5 For every subvariety $\mathcal{V} \subseteq S\mathcal{H}$, $Reg(\mathfrak{F}_{\mathcal{V}}(X))$ is isomorphic to $\mathfrak{F}_{\mathcal{V}(2)}(X^{**})$ if \mathcal{V} satisfies (I), is isomorphic to $\mathfrak{F}_{\mathcal{V}(2)}(X^{**})$ if \mathcal{V} satisfies (II) and is isomorphic to $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X^{**})$ if \mathcal{V} satisfies (III), with $X^{**} = \{x^{**} : x \in X\}$.

Recall that \mathcal{D} denote the subvariety of \mathcal{SH} that satisfies the identities $x^* \vee x^{**} \approx 1$ and $(0 \rightarrow 1) \vee (0 \rightarrow 1)^* \approx 1$.

Corollary 3.6 If \mathcal{V} is a subvariety of \mathcal{D} , then $Reg(\mathfrak{F}_{\mathcal{V}}(X))$ is isomorphic to either $\mathfrak{F}_{\mathcal{V}(2)}(X^{**})$ or $\mathfrak{F}_{\mathcal{V}(\bar{2})}(X^{**})$, or $\mathfrak{F}_{\mathcal{V}(2,\bar{2})}(X^{**})$, and $Reg(\mathfrak{F}_{\mathcal{V}}(X))$ is a retract of $\mathfrak{F}_{\mathcal{V}}(X)$.

In what follows we study the decomposability of $\mathfrak{F}_{\mathcal{V}}(X)$, for a given subvariety \mathcal{V} of \mathcal{SH} .

Assume that \mathcal{V} is a subvariety of \mathcal{SH}^S that satisfies (I) or (II), and X is a set with |X| > 0. Since every term depends only on a finite set of variables, then we can assume, without loss of generality, that X is finite. Let $X_n = \{x_1, \ldots, x_n\}$ and $I_n = \{1, \ldots, n\}$. For any $I \subseteq I_n$, consider the element

$$\alpha_I(x_1,\ldots,x_n) = \bigwedge_{i \in I} x_i^{**} \wedge \bigwedge_{i \notin I} x_i^{*}$$

The correspondence $I \mapsto \alpha_I(x_1, \ldots, x_n)$ gives a one-to-one map from $P(I_n)$, the power set of I_n , onto the set of all atoms of the free Boolean semi-Heyting algebra $Reg(\mathfrak{F}_{\mathcal{V}}(X_n)) \cong \mathfrak{F}_{\mathcal{V}(2)}(X^{**}) \cong \mathfrak{F}_{\mathcal{V}(\overline{2})}(X^{**})$. Hence for any $b \in Reg(\mathfrak{F}_{\mathcal{V}}(X_n))$, there exists $N \subseteq P(I_n)$ such that

$$b = \left(\bigvee_{I \in N} \alpha_I(x_1, \dots, x_n)\right)^*$$

where $N = \{I \in P(I_n) : \alpha_I \leq b\}.$

Lemma 3.7 [6] For any $J \subseteq I_n$ and $x \in \mathfrak{F}_{\mathcal{V}}(X)$, consider the *n*-tuple \overrightarrow{x}_J whose *i*-th component is x for $i \in J$, and 1 for $i \notin J$. For any $I \subseteq I_n$, we get

$$\overline{\alpha}_{I}(\overrightarrow{x}_{J}) = \begin{cases} 1 & \text{if } I = I_{n} \text{ and } J = \emptyset \\ x^{**} & \text{if } I = I_{n} \text{ and } J \neq \emptyset \\ x^{*} & \text{if } I = I_{n} \setminus J \text{ and } J \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Now we prove that main result of the paper.

Theorem 3.8 Let \mathcal{V} be a non-trivial subvariety of $S\mathcal{H}$. Then $\mathfrak{F}_{\mathcal{V}}(X)$ is directly decomposable if and only if \mathcal{V} satisfies the Stone identity.

Proof. Suppose that $\mathfrak{F}_{\mathcal{V}}(X)$ is directly decomposable. Then there exists $\alpha \in \mathfrak{F}_{\mathcal{V}}(X)$ such that $\alpha \vee \alpha^* = 1$ and $\alpha \neq 0, 1$.

Suppose first that \mathcal{V} satisfies either (I) or (II). We can assume that $\alpha = \alpha(x_1, \ldots, x_n) \in \mathfrak{F}_{\mathcal{V}}(X_n)$, as above. Since $\alpha \in Reg(\mathfrak{F}_{\mathcal{V}}(X_n))$, there exists $N \subseteq P(I_n)$, $N \neq \emptyset$, $P(I_n)$, such that

$$\alpha(x_1,\ldots,x_n) = \left(\bigvee_{I\in N} \alpha_I\right)^{**}$$

Let us prove that $x^* \vee x^{**} = 1$, for any $x \in \mathfrak{F}_{\mathcal{V}}(X)$.

Suppose that $I_n \notin N$. Fix $K \in N$ and let $J = I_n \setminus K$. Since $K \neq I_n$, $J \neq \emptyset$ and the previous lemma implies that

$$\alpha_I(\overrightarrow{x}_J) = \begin{cases} x^* & \text{if } I = K\\ 0 & \text{if } I \in N, I \neq K \end{cases}$$

It follows that $\alpha_I(\overrightarrow{x}_J) = (x^*)^{**} = x^*$. Therefore, as $\alpha \vee \alpha^* = 1$ we get $x^{**} \vee x^* = 1$, as desired. Now assume that $I_n \in N$. Choose $J \subseteq I_n$ such that $J \neq I_n \setminus I$ for every $I \in N$. Observe that this is possible since $N \neq P(I_n)$. By the previous lemma we get

$$\alpha_I(\overrightarrow{x}_J) = \begin{cases} x^{**} & \text{if } I = I_n \\ 0 & \text{if } I \in N, I \neq I_n \end{cases}$$

Therefore, $\alpha_I(\overrightarrow{x}_J) = x^{**}$ and the equation $\alpha \lor \alpha^* = 1$ turns into Stone's equation $x^{**} \lor x^* = 1$. This shows that \mathcal{V} satisfies the Stone identity.

Suppose now that \mathcal{V} satisfies (III). Then $Reg(\mathfrak{F}_{\mathcal{V}}(X))$ is isomorphic to $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X^{**})$. Since $\alpha \in Reg(\mathfrak{F}_{\mathcal{V}}(X_n))$, there exists $N \subseteq P(I_n)$, $N \neq \emptyset$, $P(I_n)$, such that

$$\alpha(x_1,\ldots,x_n,z) = \left(\bigvee_{I\in N} (\alpha_I \wedge z)\right)^*$$

where $z \in \{(0 \to 1)^*, (0 \to 1)^{**}\}$, by lemma 3.2.

By Corollary 3.3 and lemma 3.4, z is a free generator of the Boolean reduct of $\mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X^{**})$, that is, z is a free generator of $\mathfrak{F}_{\mathcal{B}}(n+1) \cong \operatorname{Reg}(\mathfrak{F}_{\mathcal{V}}(X)) \cong \mathfrak{F}_{\mathcal{V}(2,\overline{2})}(X^{**})$. Then, from $\alpha(x_1,\ldots,x_n,z) \lor (\alpha(x_1,\ldots,x_n,z))^* = 1$ we get

$$\alpha(x_1,\ldots,x_n,x_n) \lor (\alpha(x_1,\ldots,x_n,x_n))^* = 1,$$

which evaluated in the same (n + 1)-tuple of the cases (I) and (II) gives us $x^{**} \vee x^* = 1$, that is, \mathcal{V} satisfies the Stone identity.

Consider the following five-element pseudocomplemented distributive lattice $\mathbf{H}_5 = \langle \{0, a, b, c, 1\}, \land, \lor, \rightarrow , 0, 1 \rangle$:

Lemma 3.9 A semi-Heyting algebra **A** does not satisfy the equation $x^* \vee x^{**} \approx 1$ if and only if **A** contains a pseudocomplemented sublattice isomorphic to **H**₅.

Proof. Let A be a semi-Heyting algebra and suppose that there exists $a \in A$ such that $a^* \vee a^{**} \neq 1$. Then the set $\{0, a^*, a^{**}, a^* \vee a^{**}, 1\}$ is the universe of a pseudocomplemented lattice isomorphic to \mathbf{H}_5 . The converse is immediate.

We can summarize the above results in the next corollary:

Corollary 3.10 For any non-trivial variety V of SH, the following conditions are equivalent:

1. $\mathfrak{F}_{\mathcal{V}}(X)$ is directly indecomposable,

2. $\mathcal{V} \not\subseteq \mathcal{SH}^S$,

3. V contains an algebra whose pseudocomplemented lattice reduct is isomorphic to H_5 .

Acknowledgment: We gratefully acknowledge helpful comments of the referee which improved the final version of the paper.

References

- [1] M. Abad, J. M. Cornejo and J. P. Díaz Varela, *Semi-Heyting Algebras Term-equivalent to Linear Heyting Algebras*, preprint.
- [2] M. Abad, J. M. Cornejo and J. P. Díaz Varela, *The Variety of Semi-Heyting Algebras Satisfying the Equation* $(0 \rightarrow 1)^* \lor (0 \rightarrow 1)^{**} \approx 1$, to appear in Reports on Mathematical Logic.
- [3] R. Balbes and P. H. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, 1974.
- [4] G. Birkhoff, *Lattice Theory*, Third Edition, Colloq. Publ., vol. 25, Providence, 1967.
- [5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.
- [6] D. Castaño, J. P. Díaz Varela and A. Torrens, *Free-decomposability in Varieties of Pseudocomplemented Residuated Lattices*, preprint
- [7] J. M. Cornejo, Semi-intuitionistic Logic, to appear in Studia Logica.
- [8] P. T. Johnstone, Stone spaces, Cambridge University Press, Cambridge, 1982.
- [9] H. Rasiowa and R. Sokorski, The mathematics of metamathematics, PWN-Polish Scientific Publishers, Warsaw, third edition, 1970. Monografie Matematyczne, Tom 41.
- [10] H. P. Sankappanavar, *Heyting Algebras with a Dual Lattice Endomorphism*, Zeitschr. f. math. Logik und Grundlagen d. Math. 33 (1987), 712-724.
- [11] H. P. Sankappanavar, Semi-Heyting Algebras: an Abstraction from Heyting Algebras, Proceedings of the 9th "Dr. Antonio A. R. Monteiro" Congress (Spanish), Univ. Nac. del Sur, Bahía Blanca, 33–66, 2008.
- [12] H. P. Sankappanavar, Expansions of Semi-Heyting Algebras I: Discriminator Varieties, to appear in Studia Logica.