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ABSTRACT: This paper aims to solve the problem of
tracking optimal profiles for a nonlinear multivariable fed-
batch bioprocess by a simple but efficient closed-loop control
technique based on a linear algebra approach. In the proposed
methodology, the control actions are obtained by solving a
system of linear equations without the need for state
transformations. The optimal profiles to follow are directly
those corresponding to output desired variables, therefore,
estimation of states for nonmeasurable variables is considered
by employing a neural networks method. The efficiency of the
proposed controller is tested through several simulations, including process disturbances and operation under parametric
uncertainty. The optimal controller parameters are selected through the Montecarlo Randomized Algorithm. In addition, proof
of convergence to zero of tracking errors is analyzed and included in this article.

■ INTRODUCTION

Many bioprocesses, such as production of proteins, monoclonal
antibodies, and other therapeutic drugs, either cannot be
produced or are difficult to obtain by conventional manufactur-
ing methods. Most of these are classified as low-volume/high-
value products, and there is a tremendous economic potential in
this sector of the market.1 However, in these processes, the more
convenient operation is in fed-batch reactors since greater
flexibility is provided in terms of product optimization,2

especially when changing nutrient concentrations affect the
productivity and yield of the desired product.3

To increase the productivity of the fed-batch bioprocesses,
many efforts have been devoted on both modeling and
estimation as well as optimization of fed-batch fermentation
systems. In this way, mathematical modeling and analysis have
become fundamental tools in optimally designing and operating
production facilities in the biotechnology industry. Obviously,
once the optimal operating policies have been found, the next
stage is to implement them, that is, the closed loop control
problem to ensure the tracking of the desired values.4

From the control engineer’s viewpoint, the fed-batch
processes present the greatest challenge: the process model
usually contains strongly time-varying parameters, changes in
initial conditions, input saturation, external disturbances, and the
stiffness and nonlinearity of the model equations.2,5−8 Several
control techniques are studied today associated with optimiza-
tion and control of a bioprocess, such as bioinspired algorithms,9

genetic algorithms,10,11 robust control,6,12 nonlinear fuzzy
control,13 evolutionary algorithms,14 model predictive control

(MPC)15 and nonlinear MPC,16,17 adaptive stochastic algo-
rithms,18 and neural network model,19,20 etc. Much of the control
literature for fed-batch cultures focuses on open-loop operation
owing to the highly nonlinear and inherently difficult dynamic
behavior.21 These methods have good results in biological
processes; however, they have limitations regarding the need for
advanced specific knowledge, the difficulty of mathematical
processing (especially in nonlinear systems), trouble with real-
time implementation, and the need for a complicated database of
the processes.22 Besides that, in the open-loop control strategies,
the main disadvantage is that no compensation is made for
modeling mismatch or random disturbances during the process
operation.1,7,23,24 It is therefore important to design a controller
to track the optimal policy for desired variables considering
disturbance compensation for the closed-loop control problem.
Its noteworthy that there is not much background data in the
literature for the design of a closed-loop controller following
directly the optimal output profiles achieved.
The aim of this work is to solve the problem of tracking three

optimal output prof iles with two control actions through a closed-
loop control integrated with state estimation of an important
nonlinear bioprocess. To achieve the stated objective, the
proposed methodology is based on solving a system of linear
equations. The simple approach of this methodology suggests
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that, knowing the values of the desired variables and analyzing
the conditions for the system to have an exact solution, a system
of linear equations is solved to find the control actions that force
the process to get the desired state.
The main advantages of this method are its simplicity,

versatility and accuracy even under parametric uncertainty and
process disturbances. The methodology for the controller design
is simple, it can be implemented with only a basic knowledge of
linear algebra.
The main contributions of this work are the proposal of a

control technique based on linear algebra approach, which is
simple since it does not need to perform state transformations. In
each sampling period, a system of linear equations is solved to
calculate the control actions. By analyzing the conditions for the
system to have an exact solution, the trajectories for the
remaining states are obtained. Besides that, proof of convergence
to zero of tracking errors is included in this article. Others
contributions of this paper are the tuning procedure proposed for
the controller parameters that uses a Montecarlo Experiment
(MCE) in order to minimize a proposed cost index. Additionally,
to implement the proposed control technique, it is necessary to
have a good state estimation to feedback all control variables,
therefore, a states estimation for unmeasurable output variables
of the process by employing neural networks is developed herein.
The case study proposed for control, which has been well

documented in the literature, is the Lee−Ramirez fed-batch
bioreactor. Lee and Ramirez25 proposed a mathematical model
for the induced foreign protein production by recombinant
bacteria in a fed-batch bioreactor. The advantage of using this
system is that it has been already used by a number of researchers
using different techniques, so the available data can be used to
assess other methods.
The paper is organized as follows. In section 2, the

mathematical model of the proposed system is presented.
Then, the controller design theory is developed in section 3. The
state estimation methodology by using neural networks is
exposed in section 4. In section 5, the results and discussion of
the simulation tests including normal conditions operation,
perturbations in control actions and parametric uncertainty, are
shown. Finally, section 6 outlines the conclusions of the work.

2. BIOPROCESS MODEL

Lee and Ramirez25 developed a model describing the dynamics
of the process of induced foreign protein production by
recombinant bacteria. Then, they used it to obtain an optimal
control policy to maximize the foreign protein production with a
nutrient and inducer feeding strategy.26 Carrazco and Banga18

used adaptive stochastic algorithms to obtain better results. Since
the performance index exhibits a very low sensitivity with respect
to the controls, Tholudur and Ramirez27 constructed a modified
parameter function set to increase the sensitivity to the controls.
Balsa-Canto used the same parameter function set.28 A genetic
algorithm to optimize the same system considering multiple
control variables was presented in ref 10. The mathematical
model used here is taken from Tholudur and Ramirez.27

Although simple, it can effectively describe the dynamics of the
bioprocess. It is important to note that, in this work, the desired
trajectories to track are directly the optimal output desired
profiles. These trajectories were obtained by an open-loop
simulation of the bioprocess using the optimal feeding policies
achieved by Balsa-Canto et al.28

The operation of the fed-batch bioreactor considering two
control variables (nutrient and inducer feed rates) is described by
seven differential equations (eq 1).
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The state variables are the volume of bioreactor x1 (L), cell
density x2 (g/L), concentration of nutrient x3 (g/L), protein
concentration x4 (g/L), inducer concentration x5 (g/L), inducer
shock factor on the cell growth rate x6, and the inducer recovery
factor on the cell growth rate x7 (both dimensionless). The
model parameters set was validated by several simulations and is
experiments, which were developed by Lee and Ramirez.29 The
feed nutrient concentration stream is N (g/L), I (g/L) is the
concentration of inducer in the inducer feed stream, and Y is the
growth yield coefficient. In addition, μ is the specific growth rate,
and R is the foreign protein production rate. The two control
actions used in the proposed controller are the glucose feeding
rate, u1 (L/h), and inducer feeding rate u2 (L/h) to the fed-batch
bioreactor. The three desired (controlled) variables to follow are
the reactor volume x1, the cell density x2, and the foreign protein
concentration x4.

3. CONTROLLER DESIGN
“Most control structures are based on the use of a design model.
A mathematical model provides a map from inputs to responses.
The quality of a model depends on how closely its responses
match those of the true plant. Therefore, a model set which
includes the true physical plant can never be constructed”.30 This
is one of the reasons why it is necessary that the design of a
controller allows tracking, with minimal error, of previously
determined profiles (calculated with a model and specific initial
conditions) even in the presence of perturbations and parametric
uncertainty. The proposed controller methodology is based on
approximating the differential equations of the mathematical
model (1) through the Euler method; although simple, it works
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very well. Hence, the control problem for tracking optimum
profiles of volume (x1), cell density (x2), and protein
concentration (x4) is reduced to the resolution of a system of
linear equations. To achieve the control goal, the feed flow rates
of nutrient (u1) and inducer (u2) are available to be used as
control actions. Therefore, the aim is to find the values of u1 and
u2 such that the variables x1, x2, and x4 follow paths desired with
minimal tracking error.
Controller Methodology. The first step for this technique,

is to rearrange the system of eqs 1 in matrix form:
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Remark 1. The variables x6 and x7 are not directly related to the
control variables, therefore, are not considered in the controller
design.
According to the rule of numerical integration of Euler, the

differential equations can be approximated as follow:
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where Ts is the sample time, xi,n represents the state variable i in n
instant and xi,n+1 the state variable i in (n + 1) instant. Defining
the following expression:
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where xi,ref,n and xi,ref,n+1 are the reference values in the n instant
and the next sample time respectively, the constant ki is the
controller parameter for the variable i. Then, the immediately
reachable value of each state variable is
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Therefore, the values of the real state variables in the next
sample time (xi,n+1) are function of the reference profiles, the
actual state variable and the controller parameters. So, all values
are known. Consequently, substituting (8) in (eq 6):
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Now, replacing eq 9 in each differential expression appearing in
eq 5, the process model can be rewritten, see eq 10. The values of
x1, x2, and x4 are the references to follow, therefore are known
(the reference values as well as the real system values). Note that
eq 10 is a system of five equations and two unknowns variables,
which normally has no solution. Therefore, the unknown
variables of this system are defined as “sacrif iced variables” and
are written as xi,ez, corresponding in this case to x3,ez and x5,ez. The
key of this technique is that the values adopted by such variables

force the equation system (10) to have an exact solution, which
implies that the error be not only minimal, but also equal to zero.
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To simplify the mathematical treatment, the equations system is
expressed as follows:
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Note that the order of the rows are altered for the Gaussian
elimination because the system presents three linearly dependent
rows.
Generally, the equations system (10) has no exact solution, but

to accomplish the target of this control methodology, that system
must have an exact solution. Therefore, the vector b must be
contained in the space formed by the columns of A, that is, the
vector b must be a linear combination of the column vectors of
matrix A. Then, the necessary and sufficient condition for the
system to have exact solution is achieved by carrying out a
Gaussian elimination process (see Appendix A), leaving:
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This equations system is solved for each sampling period,
where the unknown variables x3,ez and x5,ez (sacrif iced variables)
are calculated. Once the values of x3,ez,n+1 and x5,ez,n+1 are found,
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the matrix A and b are completely know at (n) time. Therefore,
the system has an exact solution and the control variables u1,n and
u2,n (u vector) can be calculated solving the system (10) by the
least-squares method:

= ⇒ = −A A u A b u A A A b( ) ( )T T T 1 T
(13)

The solution allows finding the control actions (u1,n and u2,n) to
be applied at time n to follow the desired trajectories with a
minimal error.
The following constraints on the control variables are

considered:28 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1.
With respect to the parameters of the controller, in eq 8 note

that if ki = 0, the reference trajectory is reached in only one step.
The parameters ki, i = 1,2,3,4,5, satisfied 0 < ki < 1, which allows
the tracking error to tend to zero (demonstration in Appendix
B).
The tracking error is the value of the difference between the

reference and real trajectory and is calculated as
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where x1,ref,max = 1,9 L, x2,ref,max = 13,92 g/L, and x4,ref,max = 3,1 g/L.
Note that the tracking error is dimensionless.
Theorem 1. If the system behavior is ruled by eq 10 and the

controller is designed by eq 13, then, ei,n → 0, n → ∞, when
profile tracking problems are considered. Proof of Theorem 1 and
the convergence to zero of tracking errors can be seen in
Appendix B.
Figure 1 shows the architecture of the control system proposed

herein. In this work, the optimal profiles are calculated by an

open-loop simulation using the optimal policies of feeding
obtained by Balsa-Canto et al.,28 the focus is in the trajectory
tracking of such profiles. The controller block can be better
understood with Figure 2 showing a flowchart explaining how the
controller computes the control actions in the process control
system.

4. STATE ESTIMATION STRATEGY
The closed-loop control strategy supposes that measurements of
the state variables are available. As far as the sensors hardware is
normally expensive and not always available, an interesting
challenge consists in estimating the state variables. At present,
several techniques are studied for state and parameter estimation
for chemical and biochemical processes.29,31−36 In this paper, the
state estimation is proposed using neural networks. So that the
estimation responds well to perturbations and uncertainties, the
neural networks have been trained in a range of operations,
taking them into account.
In the recombinant protein production, the reactor volume,

cell mass, and glucose concentration are among the five
important state variables that can be calculated online by using
appropriate sensors. The protein concentration is determined
off-line. The inducer concentration can be calculated by
measuring the amount of inducer injected.29 Therefore, the
variables for estimation are the protein concentration x4 and cell
mass x2 (expensive sensor).
To implement the neural state estimation, first it is necessary

to define the estimated state error xñ as follows:

θ θ θ̃ = − ̂ ̃ = * −x k kx x ; ( ) ( )n n n (18)

where xn̂ is the estimated state variable of the nonlinear fed-batch
bioprocess (NFBBP), and xn is the off-line measured state, and its
components are xn = [xn2,xn4]. The nonlinear dynamics of the
NFBBP described in ref 1 can be represented by an exact neural
estimator, denoted by

θ ξ ε= * + =+x x u x x( , ) (0)n n n n1
T

0 (19)

where un is the input vector to neural estimator, being un =
[un,Sn,Vn] and θ* ∈ ℜmxl is the optimal weight vector, ε ∈ ℜn

lx1

is the neural approximation error, and ξ ∈ ℜi
mx1 is the RBF that
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The subindex i indicates the neuron number of RBF functions
ξ ∈ ℜmx1. The estimated variables number is l = 2, and m is the
maximum number of neurons (m = 10).

Figure 1. Architecture of the trajectory tracking controller.

Figure 2. Flowchart of the strategy proposed.
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Since the output state vector is nonmeasured or affected with
disturbances, there is then a need to estimate their values. A state
estimator function based on eq 19 is determined as follows:

θ ξ̂ = ̂
+x x u( , )n n n n1

T
(21)

Now, making the difference between eq 19 and eq 21, the neural
identification error can be described by

θ ξ θ ξ ε
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where θ̃n represents the neural weight vector estimation error
and it can defined as

θ θ θ̃ = * −n n (23)

To train the neural network for identification, several off-line data
sets of the pair x,uwere used. The learning rule to train the neural
network is stated in the next theorem:
Theorem 2: The NFBBP defined by eq 1, can be approximated

by the neural network eq 21 using a neuronal adjustment law
defined by

θ ξγΔ ̃ = − ̃x u x P( , )n n n n
T

(24)

where P is a diagonal definite positive matrix and γ is an arbitrary
positive constant.
Proof: the demonstration of this theorem has been developed

in Appendix C. The convergence of this estimator is very
important because an exact representation of the variables to be
estimated (xn̂ = [x2̂,n, x4̂,n]) is necessary.
The performance of the states estimation is shown in the next

section.

5. RESULTS AND DISCUSSION
To evaluate the performance of the controller, various simulation
tests employing Matlab were carried out:

• A Montecarlo algorithm to tuning the optimal controller
parameters (ki).

• Simulation under normal operating conditions with and
without state estimation.

• Simulation under perturbations in the control actions.
• Simulation considering uncertainty in the parameters.

Optimal Controller Parameters. The performance of a
controller depends directly on the correct selection of its
parameters ki. Therefore, in this subsection a Monte Carlo
randomized experiment is proposed to find the optimal values of
the controller parameters.
In the field of the processes and control systems, Monte Carlo

methods have been found effective to manage problems related
to robustness of uncertain systems.37

The Monte Carlo randomized algorithm (MCRA) is, by
definition, a randomized algorithm that may produce an
incorrect result, but the probability of such an incorrect result
is bounded.38 The number of simulations necessary to guarantee
a reliable degree of accuracy and confidence (confidence
boundaries) is achieved by using the following expression:37

≥ δ
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log

log

1

1
1 (25)

where δ = confidence and ϵ = accuracy. The procedure carried
out to implement this technique is as follows:
First, a confidence and accuracy degree is selected, then, the

number of trials (N) is computed according to eq 25. Below,
random values are selected for the controller parameters and a
simulation of the controlled system is carried out. Then, the total
tracking error (ET) is calculated for this set of parameters. This
procedure is repeated for N trials, then, the optimal controller
parameters set is one for which ET is minimal. For the
simulations, it is fixed δ = 0.01 and ϵ = 0.005. Therefore,N≥ 920.
The initial conditions needed for the simulations are shown in

Table 1. Parameter values and feeding concentrations can be
seen in Table 2.

The final time for the process is Tf = 10 h and the sample time
for simulations is Ts = 0.1 h.
The ki values found for the minimum total tracking error after

1000 simulations (total simulation time, 70min) are presented in
Table 3.

Simulation in Normal Operating Conditions. This
section shows the performance of the proposed controller
system without environmental disturbances. The set of optimal
controller parameters found previously is used. First, a simulation
without state estimation is carried out. Then, the state estimation
designed in a previous section is integrated with the closed-loop
control system.
A very good controller performance can be observed in Figure

3. The optimal desired profiles are successfully tracking as can be
seen in Figure 3(a−c). The performance of the state estimation
designed in a previous section is good, see Figure 3(d−f). The
control actions profiles (without state estimation) are similar
those obtained in Balsa-Canto et al.,28 see Figure 4a. Figure 4b
show the same profiles with the integrated state estimation.
It is important to note that the final optimum volume is

successfully achieved, which is very difficult since it is the sum of
the two control actions used. Note that the tracking error defined
by eq 14, remains low and acceptably bounded as shown in
Figure 5. It should be noted too, that while Euler’s discretization
is very simple, it is useful enough for excellent controller
performance.
The main objective of the closed-loop control developed in

this work is following the optimal profiles of ×1, ×2, and ×4
obtained in Balsa-Canto et al.,28 which allow maximization of the
profitability of the process.
The evaluation of the performance index J (26) is shown in

Table 4.

Table 1. Initial Conditions for the State Variables (g/L)

x1,0 x2,0 x3,0 x4,0 x5,0 x6,0 x7,0

1.0 0.1 40.0 0.01 0.01 1.0 0.01

Table 2. Feeding Concentrations and Parameters27

N (g/L) I (g/L) Y k11 (h
−1)

40 100 0.51 0.09

Table 3. Optimal Controller Parameters

k1 k2 k3 k4 k5

0.2805 0.6761 0.6520 0.1694 0.1266
ET = 0.0006 − iteration no. 386
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∫= −J x T x T Q u t t( ) ( ) ( ) d
T

T

4 f 1 f 2
0

f

(26)

where Q = 2.5, and it is the ratio of the cost of the inducer to the
value of the protein product.
It is important to remark that in the referenced work in said

table, no closed-loop control law to track the optimal profiles
achieved was proposed. The only precedent for closed-loop
control of this bioprocess is that proposed by Lee and Ramirez;29

they developed an online optimization of the fed-batch
bioreactor. Unlike this work, its object was to keep the glucose

and inducer concentrations at their optimal values using a
combined PI−anticipatory regulatory control strategy.
The controller performance is also compared with a PI

controller, which is widely used thanks to its versatility and
facility of implementation. The best combination between the
control actions and desired variables for the PI controller design
is x2 controlled with u1 and x4 controlled with u2. The optimal
parameters of the PI controller are chosen by MCRA. Two tests

Figure 3.Tracking optimal profiles of desired variables (x1, x2, and x4) in normal operation conditions. (a−c) without state estimation; (d−f) with state
estimation integrated in closed-loop control.

Figure 4. Control actions compared with those presented by Balsa-
Canto et al.28 (a) without state estimation, (b) with state estimation.

Figure 5. Tracking error (En) in normal operation conditions.

Table 4. Comparison of Results with that in the Literature

parameter/variable this work Balsa Canto et al.28

x1(Tf) (L) 1.9250 1.9039
x2(Tf) (g/L) 14.0670 13.9272
x4(Tf) (g/L) 3.2255 3.1396
J 5.4439 5.7569
E 0.05 N.D.a

aN.D. means not developed by the authors.
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were carried out: a simulation in normal operating conditions
and another with a constant perturbation in the control actions.
Figures 6 and 7 show the comparison between the control

actions of the two controllers. Under normal operating
conditions, Figure 6(a−c), the performance of the controller
proposed herein is better than that of the PI controller, the total
tracking error (ET) of the current technique is much lower than
that of the PI. Now, considering the perturbations in the control
actions, the performance of the controller proposed is still much
better than that of the PI controller (see Figures 6(d−f) and 7b).
Perturbation in the Control Actions. The controller

performance is tested now adding a perturbation in the control
actions. To achieve it, a random function using MATLAB is
employed. The control actions u1 and u2 are perturbed in a 20%
of its normal values.
The function used was “random(unif,0,0.2)” and the control

actions are calculated as follow:

= + +

= + +

u u random

u u random

(1 (unif, 0, 0.2) 1)

(1 (unif, 0, 0.2) 1)

1,perturbed 1,unperturbed

2,perturbed 2,unperturbed

Figure 8 shows the perturbed control actions and the
controller adaptation to keep the minimal tracking error. Figure

9 shows the tracking profiles in the perturbed system. Again, the
controller performance is very good even considering
disturbances in control actions.

Parametric Uncertainty. In this subsection, the system is
analyzed in the case of appearing errors of modeling using the

Figure 6. Comparison between the proposed control law and a PI controller. (a−c) tracking trajectory in normal operation conditions and (e−f) with
the addition of constant perturbation in the control actions.

Figure 7. Comparison between the proposed control law and a PI controller. Tracking error (En) in (a) normal operation conditions and (b) with the
addition of constant perturbation in the control actions.

Figure 8. Perturbed control actions.
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MCRA method. Then, a determined error is introduced in the
model parameters (10%), and 500 simulations (N = 500) are
performed. For each simulation, the parameters are chosen in a
random way by the MCRA experiment.39

Considering the worst case, practically all the model
parameters were varied: umax, KCN, Ks, KCI, fmax

0 , f I
0, KI, KIIX and

k11. The initial conditions and the sampling time are the same
used in the previous subsection.
The number of simulations taken to carry out this test

consideris the confidence δ = 0.01 and accuracy ϵ = 0.01.
Therefore, replacing in eq 25, N ≥ 500.

Figure 10 shows the behavior of the system with the controller
proposed in this work, which presents a good response against
parametric uncertainty, both for the simulation without
estimators (a−c) and for that with the integrated neural network
(d−f). It is noteworthy that the controller design is focused in the
tracking optimal profile of the output desired variables. This is
one of the advantages, since it allows feedback control of the
system even under disturbances.
The above figures show that the controller proposed in this

work presents a certain level of robustness to parametric

Figure 9. Tracking optimal profile with perturbed control actions (20%). (a−c) without state estimation, (d−f) with estimation.

Figure 10.Tracking optimal profiles (desired variables x1, x2, x4) under parametric uncertainty (±10%, 500 simulations). (a−c) without estimation, (d−
f) with state estimation.
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uncertainty. The simulation tests carried out show the good
performance of the control law.

6. CONCLUSION
An effective closed-loop controller integrated with a neural
network state estimation has been designed for tracking three
optimal profiles of an important nonlinear biological process by
manipulation of two control actions. The advantages of the
methodology employed is its simplicity and accuracy since it
reduces the controller design to a resolution of a linear equations
system for the calculation of the control actions. Furthermore, in
contrast to conventional open-loop techniques mentioned
herein,11,26−28 this methodology proposes a closed-loop control
strategy that achieves the tracking of optimal trajectories of
desired variables with a minimal tracking error, even under

process disturbances and parametric uncertainties. Besides that,
it can be implemented with only a basic knowledge of linear
algebra. The proposed controller was compared with a PI
controller, showing a better control response. The optimal
controller parameters were successfully found through a Monte
Carlo experiment. Moreover, through several closed-loop
simulation tests, this proposed control structure was shown to
be not only simple and efficient with the neural state estimation,
but also sufficiently robust to compensate the mismatches in the
model parameters as well as internal and external perturbations
of the system.

■ APPENDIX A
The Gauss elimination process proposed in section 3 is shown
below:

■ APPENDIX B
Theorem 1 proposes that if the system behavior is ruled by eq 10
and the controller is designed by eq 13, then, ei,n → 0, n → ∞,
when profile tracking problems are considered.
The demonstration of this theorem is shown for each variable

xi, for i = 1, 2, 3, 4, 5 as follow.
Demonstration 1: The tracking error in the x1 variable tends

to zero:
Consider eq 1,

+ = ̇u u x1 2 1 (B.1)

then take the first and second row respectively of the reduced
matrix results of the Gaussian elimination (see eq A.1),

= −u
b
a

a
a

u1
3

31

32

31
2

(B.2)

=
−
−

u
a b a b

a a a a2
31 5 51 3

31 52 32 51 (B.3)

Note that the control actions in the above equations depend on
x3,ez and x5,ez, the sacrificed variables found in b3 and b5,
respectively. Adding eq B.3 into eq B.2 gives

= −
−
−

⎛
⎝⎜

⎞
⎠⎟u

b
a

a
a

a b a b
a a a a1

3

31

32

31

31 5 51 3

31 52 32 51 (B.4)

Now, consider that the third row of the reduced matrix results in
Gaussian elimination (see eq A.1):

−
−

=
−
−

a b a b
a a a a

a b a b
a a a a

31 5 51 3

31 52 32 51

31 1 11 3

31 12 32 11 (B.5)

Combining eq B.5 and B.4 gives

= −
−
−

⎛
⎝⎜

⎞
⎠⎟u

b
a

a
a

a b a b
a a a a1

3

31

32

31

31 1 11 3

31 12 32 11 (B.6)

Summing the control actions u1 and u2 gives

+ = −
−
−

+
−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

u u
b
a

a
a

a b a b
a a a a

a b a b
a a a a

1 2
3

31

32

31

31 1 11 3

31 12 32 11

31 1 11 3

31 12 32 11 (B.7)

Perfoming a mathematical operation gives
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+ =
−
−

=u u b
a a

a a a a
b

( )
( )1 2 1

31 32

31 12 32 11
1

(B.8)

Then eq B.8 and eq B.1 can be equated:

+ = ̇ =u u x b1 2 1 1 (B.9)

Consider eq 6 and eq 10:

−
=

− − −+ +

̇

+     x x

T

x k x x x

T

( ( ))n n

x

n n n n

b

1, 1 1, 1

0

1,ref, 1 1 1,ref, 1, 1,

0

1
1

(B.10)

Then,

− = −+ +

+

     x x k x x( )n n

e

n n

e

1,ref, 1 1, 1 1 1,ref, 1,

n
n

1, 1
1,

(B.11)

Note that if the equations system 10 did not have a solution, that
is, the eq 12 is not fulfilled, then u1 + u2 = b1 would not be fulfilled,
therefore neither would eq 7, and the error would not tend to 0.
Equation B.9 proves that the equations system (10) has an

exact solution and the control actions are calculated from x3,ez
and x5,ez. Therefore, 0 < k1 < 1 ⇒ e1,n → 0 when n → ∞.
Demonstration 2: The tracking error in the x5 variable tends

to zero.
Following from eq 1,

− + − = ̇u I x u x x( )1 5 2 5 1 (B.12)

and considering eq B.2 and eq B.3:

− + − = − +
−
−

+

+ −
−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

u I x u
b
a

a
a

a b a b
a a a a

I x
a b a b

a a a a

( ) ...

( )

1 5 2
3

31

32

31

31 5 51 3

31 52 32 51

5
31 5 51 3

31 52 32 51

(B.13)

Mathematical manipulation and considering the value of a52 = (I
− x5) and a51 = (−1) (see eq 10) gives

− + − =
−

+
−

−
u I x u

b a
a a a a

b a I x
a a a a

( )
( )

( )
( )1 5 2

5 32

31 52 32 51

5 31 5

31 52 32 51

(B.14)

− + − =
+ −

−
=

+ −
+ −

=

u I x u b
a a I x

a a a a
b

a a I x
a a I x

b

( )
( )

( )
( )

( ( ))

1 5 2 5
32 31 5

31 52 32 51
5

32 31 5

32 31 5
5

(B.15)

Then, eq B.12 and eq B.15 can be equated:

̇ =x x b5 1 5 (B.16)

Considering eq 6 and eq 10:

−
=

− − −+ +

̇

+     x x

T
x

x k x x x

T
x

( ( ))n n

x

ez n ez n n n

b

5, 1 5, 1

0
1

5, , 1 5 5, , 5, 5,

0
1

5 5

(B.17)

Then,

− = −+ +

+

     x x k x x( )ez n n

e

ez n n

e

5, , 1 5, 1 5 5, , 5,

ez n
ez n

5, , 1
5, ,

(B.18)

Therefore, if 0 < k5 < 1 ⇒ e5,n → 0 when n → ∞.
Demonstration 3: The tracking error in the x3 variable tends

to zero. Considering eq 1,

μ− − = ̇ +N x u x u x x
x x

Y
x x( ) ( , )3 1 3 2 3 1

2 1
3 5 (B.19)

and bearing in mind eqs B.2, B.3, and B.4:

− − = − +

+
−
−

−
−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

N x u x u N x
b
a

a
a

a b a b
a a a a

x
a b a b

a a a a

( ) ( ) ...3 1 3 2 3
3

31

32

31

31 1 11 3

31 12 32 11
3

31 1 11 3

31 12 32 11 (B.20)

Mathematical manipulation gives

− − =
−
−

=
⎛
⎝⎜

⎞
⎠⎟N x u x u b

a a a a
a a a a

b( )3 1 3 2 3
31 12 11 32

31 12 32 11
3

(B.21)

Then, eqs B.19 and B.21 can be equated, and taking into account
eq 6 and 10:

μ

μ

−
+

=
− − −

+

+

+

x x

T
x

x x
Y

x x

x k x x x

T
x

x x
Y

x x

( )
( , )

( ( ))

( , )

n n
n n

ez n ez n n n

n n

3, 1 3,

0
1

2 1
3, 5,

3, , 1 3 3, , 3, 3,

0
1

2 1
3, 5, (B.22)

then performing mathematical operations gives

− − −
= −

−+ +x k x x x

T
x

x x

T
x

( ( ))ez n ez n n n n n3, , 1 3 3, , 3, 3,

0
1

3, 1 3,

0
1

(B.23)

− = −+ +

+

     x x k x x( )ez n n

e

ez n n

e

3, , 1 3, 1 3 3, , 3,

ez n ez n3, , 1 3, ,

(B.24)

=+e k eez n ez n3, , 1 3 3, , (B.25)

Therefore, if 0 < k3 < 1 ⇒ e3,n → 0 when n → ∞.
Demonstration 4: The tracking error in the x2 variable tends

to zero. Following eq 1,

μ+ = − ̇ +u u x
x
x

x x x( , )1 2 2
1

2
3 5 1

(B.26)

Now, consider the fourth row of the reduced matrix results of the
Gaussian elimination (see eq A.1):

−
−

=
−
−

a b a b
a a a a

a b a b
a a a a

31 5 51 3

31 52 32 51

31 2 21 3

31 22 32 21 (B.27)

Combining eq B.27 into eq B.2 and eq B.3, and then summing
the control actions:

+ = −
−
−

+
−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

u u
b
a

a
a

a b a b
a a a a

a b a b
a a a a

1 2
3

31

32

31

31 2 21 3

31 22 32 21

31 2 21 3

31 22 32 21 (B.28)

Performing mathematical operations and considering the value
of a22 = a21 = (−1) (see eq 10) gives
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+ =
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−
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= −u u b
a a

a a a a
b

a a
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b
( )

( )
( )
( )1 2 2

31 32

31 22 32 21
2

31 32

31 32
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(B.29)

Equating eqs B.26 and B.29, then replacing according to eq 6 and
10 gives

μ

μ
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The Taylor approximation of μ(x3,n, x5,n) in the desired value x3,ez
and x5,ez is

μ μ

μ

μ

= +

+ − ∂
∂

+

+ − ∂
∂
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−

= + −

−

= + −
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n n ez n ez n
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ez n

n n n ez n

ez n

n n n ez n
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5, 5, 5, 5, , (B.31)

Then,

μ μ μ μ= − −λ θx x x x e e( , ) ( , )n n ez n ez n ez n ez n3, 5, 3, , 5, , 3, , 5, ,

(B.32)

where 0 < λ < 1 and 0 < θ < 1. Combining eq B.32 into B.30:

μ μ= − −λ θ+e k e T x e T x en n ez n ez n2, 1 2 2, 0 2 3, , 0 2 5, , (B.33)

Therefore, if 0 < k2 < 1 ⇒ e2,n → 0 when n → ∞.
Demonstration 5: The tracking error in the x4 variable tends

to zero. Considering eq 1,

+ = − ̇ +u u x
x
x

x
x

R x x( , )1 2 4
1

4

1

4
3 5

(B.34)

Now, consider the fifth row of the reduced matrix results of the
Gaussian elimination (see eq A.1):

−
−

=
−
−

a b a b
a a a a

a b a b
a a a a

31 5 51 3

31 52 32 51

31 4 41 3

31 42 32 41 (B.35)

Combining eq B.35 into eqs B.2 and B.3, and then summing the
control actions:
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Mathematically operating and considering the value of a42 = a41 =
(−1) (see eq 10): considering the value of a42 = a41 = (−1) (see
eq 10):
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− +
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Equating eqs B.34 and B.37, then replacing according to eq 6 and

10:
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The Taylor approximation of R(x3,n, x5,n) in the desired value x3,ez

and x5,ez is
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where 0 < λ < 1 and 0 < θ < 1. Then,
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Combining eq B.40 into B.38:
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Mathematically operating:

− = − +

− −λ θ

+ +x x k x x

T x e R T x e R

( ) ( ) ...n n n n

ez n ez n

4,ref, 1 4, 1 4 4,ref, 4,

0 2 3, , 0 2 5, , (B.42)

= − −λ θ+e k e T x e R T x e Rn n ez n ez n4, 1 4 4, 0 2 3, , 0 2 5, , (B.43)

Therefore, if 0 < k4 < 1 ⇒ e4,n → 0 when n → ∞. Finally,

combining eqs B.11, B.18, rB.25, B.33, B.43:
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(B.44)

Equation B.44 represents a linear system and a bounded
nonlinearity that tends to zero when 0 < ki < 1, i = 1, 2, 3, 4, 5,
and n → ∞, thus proving that the tracking errors tend to zero.
The demonstration of the tracking error tending to zero for
robotic systems can be seen in ref 40.

■ APPENDIX C
The stability analysis of the neural network estimator proposed
in this work is presented below.
Assumption: The optimal approximation error ε is bounded

by a constant ||ε|| ≤ ε.̅
Proof: Defining a candidate function of Laypunov, where Vm is

a positive definite function given by

θ θγ= ̃ ̃ + ̃ ̃−
− −L k trx Px( ) ( )m n n n n

T 1
1

T
1 (C.1)

where tr(.) is a trace operator. Now, taking the difference in
discrete time ΔLm as follows,

θ θ θ θγΔ = ̃ ̃ − ̃ ̃ + ̃ ̃ − ̃ ̃
+ +

−
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Defining Δθi as

θ θ θ θ θγΔ = ̃ ̃ − ̃ ̃−
− −tr( )n n n n1

1 T
( 1)
T

( 1) (C.3)

Organizing eq C.2 and considering Δxñ = xñ+1n − xñ:
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Next, replacing eq 22 into C.4, ΔLm is written as

θ
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From eq C.3, and rewriting Δθ, it yields
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Then, eq C.6, is combined into eq C.5, where upon reorganizing
the terms gives
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Replacing the adjustment laws eq 24, Δθ̃, in eq C.7, ΔLm is
represented by,

ε

ξ υ ξ υγ γ γ
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In eq C.8, the increment of the model error of Δx ̃ is unknown,
and it can be approximated by the following equation:

θ
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Where the subindex i denotes the ith row of Δθ̃. The partial
derivative of the model error depends only on the weights of the
neural network and can be rewritten as

θ
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Change the values of the weights according to eq C.6, and
consider that θ* is constant, noting that ideal weight vectors are
required only for analytical purposes. Now reorganize Δθ̃ni, so it
can be rewritten as

θ θ θ θ θ θ θ

θ θ θ
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Equation C.10 can be written as
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Consider the value of the partial derivatives of the neural
network, eq 24 and combine in eq C.10, yielding

ξ υ ξ υγΔ ̃ = − ̃x x px x( , ) ( , )ni n n n n ii
T

(C.13)

The increase in the model error is defined as

γΔ ̃ ≤ | ̃ |x xni ni (C.14)

where

ξ υ

ξ υ

γ γ=

≤

x

x

( , )

max ( ( , )) 1

n n

n n

2

(C.15)

where ||ξ(xn,υn)|| a bounded function. The value γ is a learning
factor of the neural network (0 < γ < 1) and it can be arbitrarily
defined. Equation C.14 is expressed in vectorial form:

γ∥Δ ̃ ∥ ≤ ∥ ̃ ∥x xn n (C.16)

Substituting the increment value of the model error in eq C.16
gives the Lyapunov discrete difference, defined as
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Now replacing the learning rule in eqC.17 and applying norm
yields

ε

ξ υ ξ υ

ξ υ

γ

γ γ γ

γ λ ε

γ

ε

Δ = − ̃ ̃ + ̃ ̃ + ̃ +

− ̃ ̃

Δ ≤ − ̃ + ̃ + ̃ ̅ +

− ̃

Δ ≤ ̃ + ̃ ̅

−

L

tr

L

L

x Px x Px x P

x x P x x P

P x P x P x

P x x

P x P x

2 ...

(( ( , ) ) ( ( , ) ))

2 ( ) ..

( , )

2

m n n n n n n

n n n n n n

m n n n

n n n

m n n

T 2 T T

1 T T T

2 2 2
max

2 2 2

2

(C.18)

where ||ξ(xn,υn)|| ≤ 1, then eq C.18 can be expressed as
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From (C.19) it follows that when ε = 0, then xn tends to zero
when n tends to infinity. If the error norm ||xñ|| < 2ε ̅ can occur, L>
0 and the neural weights could tend to infinity. To prevent the
above situation, the next update rule is used.

θ
ξ υ θγ Λ

Δ =
̃ ̃ ≥ ̃ ≤

⎪

⎪⎧⎨
⎩

Mx x x x( , ) , if and

0, somewhere else
n n n

T
n 0

(C.20)

where x0̃ and M are design parameters.
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