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Summary 

Honey bee colonies are threatened by multiple factors including complex interactions 

between environmental and diseases such as parasitic mites and viruses. We compared 

the presence of honeybee-pathogenic viruses and Varroa infestation rate in four apiaries: 

commercial colonies that received treatment against Varroa and non-treated colonies that 

did not received any treatment for the last four years located in temperate and subtropical 

climate. In addition, we evaluated the effect of climate and Varroa treatment on DWV 

amounts. In both climates, DWV was the most prevalent virus, being the only present virus 

in subtropical colonies. Moreover, colonies from subtropical climate also showed reduced 

DWV amounts and lower Varroa infestation rates than colonies from temperate climate. 

Nevertheless, non-treated colonies in both climate conditions are able to survive several 

years. Environment appears as a key factor interacting with local bee populations and 

influencing colony survival beyond Varroa and Virus presence. 
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Introduction 

Apis mellifera plays an important role in global economy as honey producer and as the 

main pollinator of food crops (Decourtye et al., 2010). Honey bee colonies are threatened 

by a wide variety of diseases and parasites, including bee pathogenic viruses (Brutscher et 

al., 2015). Growing attention is being paid to viruses infection since the increased number 

of colony losses seems to be explained by a combination of variables including co-

infections with Varroa destructor (Genersch and Aubert, 2010; Francis et al., 2013). 

Viruses differ in their geographical distribution (de Miranda et al., 2010; Genersch and 

Aubert, 2010). Primarily, Deformed Wing Virus (DWV) is globally distributed (de Miranda 

and Genersch, 2010) and its presence was linked to colonies losses (Francis et al., 2013). 

Acute Bee Paralysis Virus (ABPV) was linked to colony loses in Europe while the Israeli 

Acute Paralysis Virus (IAPV), and Kashmere Bee Virus (KBV) were proposed as the 

causes of colony losses in USA (Genersch and Aubert, 2010). Together with these 

viruses, Chronic Bee Paralysis Virus (CBPV), Black Queen Cell Virus (BQCV) and 

Sacbrood Virus (SBV) were also detected in Argentina (Reynaldi et al., 2010; 2011; 

Castilla et al., 2015). On the contrary, the Kashmir Bee Virus (KBV) has been detected 

mostly in North America and New Zealand (de Miranda et al., 2010) but so far no detection 

has been reported in Argentina or other countries from South America (Antúnez et al., 

2006; Teixeira et al., 2008; Reynaldi et al., 2010; 2011).  

Varroa destructor plays an important role in the transmission and virulence of DWV. The 

mite causes a suppression of the immunocompetence of the host, giving to this virus the 

opportunity to infect bees (Yang and Cox-Foster, 2005). Besides, chemical treatment not 

only directly affects the immunity of the honey bees (Locke et al., 2012; Boncristiani et al., 

2012) but also has an important influence on parasite-host relationship. Active Varroa 

control by beekeepers would disrupt any association between Varroa infestation rates and 

the virus epidemics (Mondet et al., 2014).  
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Abrupt losses may occur triggered by the combination of these diseases with 

environmental factors such as climate conditions. Colony life histories including Varroa 

management, related to brood-free periods during periods without flowering, have a 

significant influence on Varroa infestation rates and consequently can affect associated 

virus presence or distribution (Meixner et al., 2015). 

The objective of this study was to evaluate the effect of climate and Varroa mites treatment 

on the prevalence of the main viruses present in honey bee colonies from Argentina.  

Materials and Methods 

The presence of seven virus species (DWV, ABPV; CBPV; BQCV, KBV, IAPV, and SBV) 

was evaluated in 25 colonies distributed in two different climatic conditions from Argentina:  

13 in the subtropical climate and 12 in the temperate climate. In each climate, there were 

also compared Varroa infestation and viruses prevalence between commercial colonies 

(six per climate) that received annual treatment against Varroa mites (“Treated colonies” 

from now on) and “Non-treated” colonies (six in temperate and seven in subtropical) that 

did not received any treatment against Varroa mites. These Non-treated colonies were set 

up in 2011 from brood nuclei and selected queens from a Network of evaluation of 

honeybee stocks for Varroa tolerance (Merke et al., 2014a). This network is funded by the 

Beekeeping Program from the National Institute for Agricultural Technology (PROAPI-

INTA) and it was originated from the genetic improvement program for honey bee brood 

diseases (Palacio et al., 2000; 2003; 2012). Since 2007, this program had been also 

selecting colonies with Varroa tolerant traits following the same breeding protocol. Queen 

selection and stock reproduction was based on the capacity of the colonies to reduce 

Varroa population growth, either by defensive behavior or mite reproduction interruption 

under different climate conditions (Merke et al., 2014b). All samples were taken from 

asymptomatic colonies just before beekeepers applied the Varroa treatments to the treated 

colonies group at the beginning of autumn 2015 (late March).  
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The subtropical climate colonies were located in a region with annual mean temperature of 

19.9 ºC (max: 25.9 ºC and min: 14.5 ºC) and mean annual precipitations of 1408 mm 

(29°14′00″S 59°56′00″W). The most relevant production is intensive livestock (dairy farms 

and wintering animals on alfalfa based pastures) combined with sunflower, sugar cane, 

and cotton crops and natural forest. Temperate climate colonies were located in a region 

with annual mean temperature of 18 ºC (max: 25ºC and min: 12.1 ºC), with average annual 

precipitations under 800 mm (31°16′00″S 61°29′00″W). The most relevant production is 

also intensive livestock but it is combined with agriculture production based on extensive 

soya, wheat, and corn crops (Giorgi et al., 2008). 

Sampling and virus analysis 

About 40 worker bees were collected alive from the central frames of the brood chamber in 

each colony. Samples were immediately freezer frozen (within two hours) and sent to the 

laboratory where they were macerated in mortar and homogenized with 7 ml of pH 7 

phosphate buffer (PBS). The mixture was centrifuged at 4500 rpm at 8ºC for 45 minutes 

and the supernatant was collected and stored at -20º C. 

Pools of 30 bees were homogenized in 15 ml phosphate buffer solution and total RNA was 

extracted using TRIzol® Reagent (Invitrogen) following the manufacturer recommendation. 

RNA samples were dissolved in 10-50 µl ultra-pure water (Distilled Water DNAse, RNAse 

Free; Invitrogen). 

Real Time PCR (RT-qPCR) was carried out to determine the presence of DWV, BQCV, 

ABPV, CBPV, IAPV, and KBV. Copy DNA was synthesized by reverse transcription 

reaction (RT) from the extracted RNA. The reaction mixture contained 1 µl of RNA, 1 µl of 

reaction buffer 5x (Promega), 0.5 µl dNTP 10 mM (Promega), 0.125 µl of ARNsin 40U/µl 

(Promega), 0.25 µl of random primers 2 µg/µl, 0.175 µl of reverse transcriptase 200 U/µl 

(Promega), and completed with volume of 1.95 µl of ultra pure water (Distilled Water 

DNAse, RNAse Free; Invitrogen) to obtain a total volume of 5 µl of mixture. The reaction 
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was developed in a Biometra Trio-Thermoblock. The thermal cycling profiles were: 42ºC 

for 45 min, 94 ºC for 10 min and 4ºC for 4 min.  

For the RT-PCR amplification, the reaction mixture contained 0.4 µl 1.5uM of each pair of 

primers selected and described by Locke et al. (2012), 2.5 µl Master mix SYBER green 

PCR kit QuantiTect (cat 204143),  1.45 µl ultra-pure water (Distilled Water DNAse, RNAse 

Free; Invitrogen) and 0,5 µl of cDNA. Samples were amplified using the LightCycler 2.0 

Roche Thermocycler with the following thermal cycling profiles: 95ºC for 10 min, 45 cycles 

at 95º for 15 sec and 56ºC for 1 min. The fluorescence emission of the samples was 

performed at 530 nm. Samples having a geometric increase in fluorescence emission in 

the two previous successive cycles of cycling number 45 were considered positive. It was 

considered the first of these emission lifting cycles as first cycle of positivity (CP). Negative 

(H2O) and positive control (recombinant plasmid DNA with virus insert into pGEM-T Easy 

vector) were included in each run of the RT-PCR reaction. Quantification of DWV was 

performed by RT-qPCR with the reference gene DWVgp1 according to Chen et al. (2005). 

The estimation of the viral loads of positive samples was performed using standard curves 

prepared with CT data obtained for known concentrations of cDNA fragments copies of the 

virus studied.  

 Sampling and Varroa analysis 

Adult bees were examined to diagnose the presence of varroa mites in all tested colonies. 

Approximately 250 bees per colony were collected from both sides of three unsealed 

brood combs in a jar containing 50% ethanol. The mites were separated from the bees by 

pouring the jar content into a sieve with a 2 mm mesh size (Dietemann et al., 2013). The 

intensity of mite infestation on adult bees was calculated dividing the number of mites 

counted by the number of bees in the sample to determine the proportion of infested 

individuals and multiplying by 100 to obtain the infestation rate per colony (Dietemann et 

al., 2013). In addition, the number of adult bees and number of cells with pollen and honey 
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reserves of all colonies were estimated according to the Liebefeld method (Imdorf and 

Gerig, 2001). 

Statistical analysis 

Only DWV amounts were statistically assessed as it was the most prevalent virus and was 

found in all groups. The mite infestation rate and DWV amounts between subtropical and 

temperate climate and between treated and non treated colonies were compared using a T 

student-test. DWV amounts was analyzed with full factorial ANCOVA using climate 

(subtropical/temperate) and Varroa treatment (yes/no) as fixed factors and mite infestation 

rate as covariate. Since is not possible to log transform zero values, the response variable 

was Log10 of (DWV copies +1) in order to include all values (negative and positive 

samples).   

Results and discussion  

In both climate DWV was the most prevalent virus being present in 3 of 13 and 12 of 12 

colonies in subtropical and temperate climate, respectively (P< 0.0001). Colonies from 

subtropical climate showed only infections with DWV. On the contrary, in temperate 

climate 3 of 12 of the colonies had co-infection with BQCV and 3 of 12 with ABPV. 

Similarly, 1 of 12 colonies had been co-infected with CBPV and 1 of 12 with SBV also in 

colonies from temperate climate. No colonies tested positive for KBV or IAPV. Both treated 

and untreated colonies from temperate climate had co-infections. Colonies from temperate 

climate presented higher infestation rate with Varroa mites (9.32% ± 8.55%) than 

subtropical colonies (2.49% ± 2.54%) (t= 2.75; P=0.01). Varroa infestation rate was higher 

in treated than in non-treated colonies from subtropical climate (t=-2.97; P=0.01) while it 

was similar in both groups from temperate climate (t=-0.67; P= 0.52). Mean mite 

infestation rate in colonies without virus was 2.04% ±1.99%, while colonies with single 

DWV infection had 7.39% ± 4.29% and colonies with co-infected DWV had 9.02% ± 

10.59% (F=2.85; P= 0.07). No differences were found in mite infestation rate between 
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colonies with and without the other detected viruses. Also, adult bee population and honey 

reserves were similar in all groups (F: 1.059; P= 0.39 and F: 0.36; P=0.783, respectively). 

On the other hand, pollen cells in treated and non-treated colonies from temperate climate 

were significantly lower than pollen cells from the subtropical climate colonies (F: 6.9; P= 

0.002).  

The presence of BQCV, DWV CBPV, SBV and ABPV has been previously reported in 

Uruguay (Antúnez et al., 2005; 2006); Brazil (Teixeira et al., 2008) and Argentina (Reynaldi 

et al., 2010). With the exception of DWV, viruses prevalence reported here were similar to 

preceding reports in Argentina (Castilla et al., 2015) and lower than Viruses prevalence in 

France (Tentcheva et al., 2004), Denmark (Francis et al., 2013), and Uruguay (Antúnez et 

al., 2006). Previous studies also reported the presence of IAPV in Argentina (Reynaldi et 

al., 2011; Castilla et al., 2015) although samples from both climates in this study were not 

infected with this virus or with KBV. 

High prevalence and more species diversity were found in both groups of colonies from 

temperate climate suggesting an influence on infection prevalence (Meixner et al., 2014). 

As temperate colonies showed also higher infestation rate with Varroa mites than 

subtropical colonies, it seems possible that it favors the occurrence of more than one virus 

species simultaneously. Mondet et al. (2014) suggested that the presence of Varroa 

increases the number of viruses that can be detected in a colony. Co-infection of DWV 

with other species occurred when varroa infestation was over 9%. Varroa mites are 

associated to ABPV and DWV occurrence (Ball and Allen, 1988; Bowen-Walker et al., 

1999; Chen and Siede, 2007) but transmission of BQCV and CBPV by varroa mites 

appears to be less probable (Tentcheva et al., 2004; Chen and Siede, 2007). 

Nevertheless, viruses whose active transmission by Varroa is less certain still may benefit 

from Varroa weakened colonies (Mondet et al., 2014; Amiri et al., 2015).  

This article is protected by copyright. All rights reserved.



9 

 

Colonies from temperate climate showed higher DWV amounts compared with subtropical 

climate (t= 6.86; P< 0.0001); (Figure 1). Similar DWV amounts was found between treated 

and non-treated colonies from temperate climate (t= 1.41; P= 0.19) and from subtropical 

climate (t=0.96; P= 0.36). DWV amounts in the autumn of 2015 were significantly 

influenced by climate and secondarily by the treatment against Varroa mites (Table 1).  

Deformed Wing Virus appears to be the most prevalent virus in honey bee colonies from 

Argentina independently of the climate. As in previous studies, DWV was more common 

than other viruses such as ABPV (Tentcheva et al., 2004; Meixner et al., 2014). However, 

there were noticeable differences in DWV prevalence and amounts as well as in Varroa 

infestation rates in temperate and subtropical colonies (Lodesani et al., 2014; Meixner et 

al., 2014). One possible explanation may be related to a better nutritional source provided 

by subtropical climate as the pollen reserves in these colonies were significantly higher 

than in temperate colonies. As previously reported, nutritional status has an outstanding 

impact on colony health (Alaux et al., 2010; Giacobino et al., 2014; DeGrandi-Hoffman et 

al., 2016). When climate is included in the analysis, we found a less significant contribution 

of the autumn infestation level of Varroa mites to DWV amounts (Meixner et al., 2014). 

Environmental factors, particularly climate and landscape may play a key role in mediating the 

host-parasite interaction, and perhaps honey bee health in general (Muli et al., 2014). 

DWV is known to be associated with V. destructor and has been detected in the mites 

(Genersch and Aubert, 2010). Heavy infestation during winter of either Varroa mites or 

DWV spread by the mite has been shown to be highly predictive of colony failure (Dainat 

et al., 2012). The lower infestation registered in subtropical climate may explain partially 

the differences in DWV amounts between geographical zones. At the same time, these 

differences in Varroa infestation may be supported by a higher impact of the Africanized bees 

in subtropical colonies (Sheppard et al., 1991; Rosenkranz, 1999) as honey bee race play a 

crucial role in resistance to varroa (Camazine, 1986). Recently, Straus et al. (2015) showed 
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that colonies of A. m. scutellata that did not present any signs of disease or collapse and were 

developing normally in the presence of Varroa mites. Similarly, new parasites and pathogens 

invading honey bee populations in East Africa seem no to directly impacted on Kenyan bee 

populations (Muli et al., 2014). More accurately, the lower Varroa levels in colonies from 

subtropical zone could be explained by the fact that Africanized bees in South America have 

higher levels of hygienic behavior, higher levels of grooming mites off of adult bees and lower 

levels of mite reproduction on pupae than European bees (Camazine, 1986; Guzman-Novoa et 

al., 1999). However, although they were not part of this study, previous results obtained in 

these apiaries showed that the proportion of Africanized bees in both places was similar 

(Merke pers. com.).  

Climate type had a highly significant influence on the mite infestations and apparently may 

be more important than race (Moretto et al., 1991). Climate effect on the number of Varroa 

mites might be explained by longer brood presence, however regardless of the temperate 

climate in most regions from Argentina there is no broodless period (Marcangeli et al., 

1992; Giacobino et al., 2015). Yet, assuming that bees from subtropical climate had, in 

fact, a relative longer season with brood and consequently higher mite populations than 

colonies in temperate climate (Vetharaniam, 2012), this does not explain why treated and 

non-treated colonies from subtropical climate presented similar DWV relative virus levels.  

The non-treated colonies, for which yearly treatment is not required, were selected for their 

capacity to limited Varroa population growth and therefore it was expected to have lower 

varroa infestation rate than treated colonies (Francis et al., 2013; Merke et al., 2014b). 

Moreover, treated and non-treated colonies from subtropical climate differed significantly in 

their Varroa infestation rate but DWV relative virus levels were similar in both groups. On 

the contrary, Varroa infestation rate and DWV amounts were similar between both groups 

in temperate climate. It seems that environmental condition might influence colony-specific 
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epidemic factors, so they can exhibit low levels of DWV even with significant Varroa 

infestation rates, and vice versa (Mondet et al., 2014).  

Non-treated colonies from temperate climate showed the highest Varroa infestation rate 

and DWV relative virus levels but however had survived for the last four years. Climatic 

and other environmental conditions have been demonstrated to influence on the mite 

infestation level a colony is able to tolerate (Meixner et al., 2014) and therefore to affect 

the probability of colony survival under multiples stress factor such as co-occurrence with 

virus species. For instance, it was mentioned before the relationship between climate 

conditions, bee race and Varroa mite levels (Camazine 1986; Moretto et al., 1991).  

Colonies from subtropical climate showed reduced virus prevalence and DWV amounts 

together with lower Varroa infestation rates compared to colonies from temperate climate, 

independently of Varroa control management. However, non-treated colonies are able to 

survive several years under different stress level in both climate conditions, probably 

because local populations of bees show better survival in the presence of pathogens than 

introduced bees (Meixner et al., 2015). Environment appears as a key factor interacting 

with local bee populations and influencing colony survival beyond Varroa and Virus 

presence. 
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Table and Figure legends 

Table 1. Full factorial ANCOVA for Deformed Wing Virus (DWV) amounts in temperate 

and subtropical climate for honey bee colonies with and without annual treatment against 

Varroa destructor. 

Figure 1.  Deformed Wing Virus (DWV) relative virus level and mite infestation rate in 

honey bee colonies treated and non-treated against Varroa destructor from temperate and 

subtropical climate.  
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Table 1. Full factorial ANCOVA for Deformed Wing Virus (DWV) amounts in temperate 

and subtropical climate for honey bee colonies with and without annual treatment against 

Varroa destructor 

 F df P-Value 

Model Intercept 25.62 1 < 0.001 

Climate 32.74 1 < 0.001 

Varroa treatment 4.57 1 0.045 

Climate* Varroa Treatment 0.76 1 0.39 

Varroa infestation rate (covariate) 2.27 1 0.15 

Levene`s test F: 2.71; P= 0.07 
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