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Abstract
In this work we review recent computational advances in the understanding of the relaxation
dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems
experience a striking dynamical slowing down which can be rationalized in terms of the picture
of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one
region of the sample to another and where the sizes and timescales of such slowly relaxing
regions are expected to increase considerably as the temperature is decreased. We shall focus on
the relaxation events at a microscopic level and describe the finding of the collective motions of
particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that
the dynamics in different regions of the system is not only heterogeneous in space but also in
time. In particular, we shall be interested in the events relevant to the long-time structural
relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively
relaxing units involving the collective motion of relatively compact clusters of particles, called
‘democratic clusters’ or d-clusters. These events have been shown to trigger transitions between
metabasins of the potential energy landscape (collections of similar configurations or structures)
and to consist of the main steps in the α relaxation. Such events emerge in systems quite
different in nature such as simple model glass formers and supercooled amorphous water.
Additionally, another relevant issue in this context consists in the determination of a link
between structure and dynamics. In this context, we describe the relationship between the
d-cluster events and the constraints that the local structure poses on the relaxation dynamics,
thus revealing their role in reformulating structural constraints.
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1. Introduction

Many liquids, when cooled below their melting temperature
fast enough to prevent crystallization, enter a metastable
(supercooled) regime [1–8]. If one continues cooling, such
systems will eventually form a glass (an amorphous solid
that lacks the periodical long-range order of a crystal) at a
temperature called the glass-transition temperature Tg [1–8].
When one measures the behaviour of the dynamical properties
of such a glass-forming system in the supercooled regime (like
the viscosity, the diffusion constant or the relaxation time) it
is found that they display a strong temperature dependence
(at variance from the structural or thermodynamic observables
that only show mild changes when the temperature is altered)1

[1–8]. In fact, in this regime the liquid suffers a dramatic
slowing down of its dynamics within a narrow temperature
range [1–8]. The reasons for the emergence of this dynamical
slowing down are still poorly understood and represent a major
challenge in condensed matter. It is expected that such a
strong temperature dependence of the relaxation of the system
should arise from a non-trivial microscopic dynamics. This
is indeed the case since supercooled liquids have been shown
(both experimentally [9–11] and computationally [12–14]) to
be dynamically heterogeneous with different regions of the
system presenting dynamics that vary from each other even by
orders of magnitude. Thus, it becomes central to determine
how the individual movements of the particles (including
possible cooperative motions or other mechanisms) determine
the emergence of the slow relaxation in the system. Computer
simulations have proven particularly apt to this end [15], since
the dynamics of a relatively large number of particles can be
followed for times relatively long, thus providing fully detailed
access to microscopic structural and dynamical information,
and exhaustive studies both for model and realistic glass
formers have been performed. The present review is devoted
to present some of the recent computational progress in this
field that has helped to shed some light on this issue. For
space reasons we shall not include a description of the different
very interesting theoretical and computational approaches to
the subject, some of which can be found in the following
reference list [16–25]. Rather, we have chosen to emphasize
here some advances that lie within the dynamical heterogeneity
scenario, and particularly, that in which we have been mainly
involved. For more complete and comprehensive treatments
of the subject, please refer, for example, to some recent, good
reviews [26, 15, 8, 27, 28, 11] and references therein.

2. Model system

Even when we shall also refer to other systems (such as SPC/E
(simple point charge extended model) water, for instance),
most of the results we shall show come from molecular
dynamic (MD) NVE (microcanonical ensemble: constant
number of particles, volume and energy) simulations for
an archetypical model glass former: the binary Lennard-
Jones system of Kob and Andersen [15, 29–31]. Thus,
we here briefly describe such a system: it consists of

1 Silica (SiO2) also shows this behaviour in the liquid (not supercooled) state.

a three-dimensional (3D) mixture of 80% A and 20% B
particles, the size of the A particles being larger than the B
ones [15, 12, 13, 32]2. The interaction between two particles of
type α and β is given by Vαβ(r) = 4εαβ{(σαβ/r)12−(σαβ/r)6},
where r is the distance between the centres of particle α and
particle β; α, β ∈ {A, B}. The parameters used are εAA = 1.0,
σAA = 1.0, εAB = 1.5, σAB = 0.8, εBB = 0.5, and σBB =
0.88. These interactions have been truncated and shifted at
rcutoff = 2.5σαβ . In the following we will use σAA and εAA as
units of length and energy, respectively, and measure time in
units of (mσ 2

AA/48εAA)1/2 (m = 1). The equations of motion
were solved for the NVE ensemble at a particle density of 1.2,
using the velocity form of the Verlet algorithm with a time step
of 0.02. All the presented results correspond to the situation in
equilibrium. The mode-coupling temperature for this system
has been estimated in Tc = 0.435. This Tc is located in
the bend of a semilogarithmic plot of the viscosity against
reciprocal temperature [5, 34]. We mention that this simple
non-realistic system shows a dynamical behaviour consistent
with that expected for a glass former and many of the results
we shall review here have also been found in more realistic
models (as SPC/E supercooled water).

3. Dynamical heterogeneities in glass formers

One of the simplest time-dependent correlation functions to
focus on when studying the dynamics of a glass former is the
mean squared displacement function:

〈r 2(t)〉 = 1

N

N∑

i=1

|ri(t) − ri (0)|2,

where ri(t) is the position of particle i at time t , N is the
number of particles and 〈· · ·〉 is the average over different
starting times. Figure 1 shows the typical outcome of the
computation of this function for the above-mentioned binary
Lennard-Jones system at T = 0.50. As typical for low
temperatures close to Tc (see figure 1), the function shows at
first a ballistic regime (slope 2) and then a plateau, followed
by the typical diffusive regime (slope 1). The ballistic or
inertial regime at very short times corresponds to the short-
time movements of the particles before being ‘aware’ of the
confinement to which they are subject by their first neighbours
(before colliding to a wall of such cage). The plateau, in
turn, emerges from the impossibility at short times to abandon
such a cage, while the diffusive regime sets in only when
the particles have been able to escape. At high temperatures
there is no presence of the plateau displayed in figure 1, but
as T decreases (albeit in a narrow T range, say between
T ≈ 0.6 and Tc), the timescale for the caging regime increases
considerably, thus signalling the dynamical slowing down.
The diffusive regime contains the α (or structural) relaxation
timescale τα (see figure 1), which marks the decay of the self-
intermediate scattering function and which can be well fitted
by the ubiquitous non-Debye stretched exponential Kohlrausch
relaxation law [15].

2 We use reduced units as in [32].
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Figure 1. For the binary Lennard-Jones system of N = 8000 at
T = 0.50: the mean squared displacement function, the timescale of
maximum inhomogeneous dynamical behaviour t∗ and the structural
relaxation time τα .

If the trajectories of the particles were Gaussian,
the so-called ‘non-Gaussian parameter’ [33], α2(t) =
[3〈r 4(t)〉]/[(5〈r 2(t)〉2)]−1, would vanish (rn(t) is the average
of the n-moment displacement of the particles at time t).
This is indeed the case at high temperatures. However, at
low temperatures the non-Gaussian parameter displays non-
trivial features. At short and long times, such a parameter
presents negligible values since the behaviour is ballistic
(thus Gaussian) and diffusive (also Gaussian) respectively, but
at intermediate times it presents a maximum, whose height
increases and moves to larger times as T decreases. This
timescale of maximum inhomogeneous behaviour, the time
for the maximum in the curve which is called t∗, is located
at the end of the plateau-beginning of the diffusive regime in
the 〈r 2(t)〉 curve (see figure 1). To link this behaviour to the
motion of the individual particles, the self part of the van Hove
function (for an isotropic system, where the data do not depend
on displacement direction but on displacement modulus r )
4πr 2Gs(r, t∗) has been analysed at such a timescale t∗. This
function gives the probability for a particle to be located after
time t∗ at distance r from the position it occupied originally at
time t = 0 and is given by [34]:

4πr 2Gs(r, t∗) = 1

N

1

dr

N∑

i=1

〈∫ r+ dr
2

r− dr
2

δ(r − |ri (t
∗)

− ri (0)|) dr

〉
,

where δ is the Dirac delta ‘function’. At low temperatures,
if the function 4πr 2Gs(r, t∗) is evaluated for the A particles
and compared to the curve of 4πr 2G0(r, t∗) (the self part
of the van Hove function of the corresponding Gaussian
process) it can be learnt that 4πr 2Gs(r, t∗) presents a long
tail that exceeds 4πr 2G0(r, t∗). Thus, this means that some
particles are moving faster than would be expected for a
Gaussian movement. The value of such intersection r∗
between 4πr 2Gs(r, t∗) and 4πr 2G0(r, t∗) was defined as a
criterion to indicate ‘mobile’ particles [12]. For T = 0.50
this value is around 0.6 (a value that does not change much for

Figure 2. Cluster of mobile particles for the binary Lennard-Jones
system with N = 8000 at T = 0.50. The fraction of mobile particles
is 6.4%. In white we denote the positions occupied by the mobile
particles at t = 0 while their positions at time t∗ are given by the
grey spheres.

temperatures not too different) and it was found that around
5%–10% of the particles moved more than r∗ (a very similar
percentage was also found for other close temperatures above
Tc). The important point is that when looking for the spatial
distribution of such mobile particles, it was found that they
were not homogeneously distributed in the sample, but that
they were arranged in clusters (as can be seen in figure 2
for an example taken from the same run of our system of
N = 8000 of figure 1). These clusters were in turn made
up by string-like clusters in the sense that the mobile particles
tended to replace their neighbours within a certain distance
after t∗ [13, 14] (for T = 0.50 the string criterion was that
a step of the string involving two particles i and j implied
that the distance between the position of particle j at time
t∗ and the position of particle i at time t = 0 was less than
0.6; however, this value did not change much for other close
temperatures). These cooperative string-like motions received
experimental confirmation by the work of Weeks et al and
Kegel et al who used confocal microscopy to track the motion
of individual particles in a glass former consisting of a dense
colloidal suspension [35, 36]. However, a detailed analysis of
the molecular dynamics computer simulations demonstrated
that a cluster like that of figure 2 is not the outcome of a
single event but instead is the result of many different (string)
motions of particles that occur asynchronically [37, 38]. That
is, fast string motions in different regions of the system occur
at different times within the t∗ time span, thus building up the
global cluster of mobility. In turn, large string-like clusters also
decompose in sub-string motions that occur at different times,
and whose displacement has been shown to be of ballistic
nature [38].

It is interesting to remember that more than 40 years ago
Adam and Gibbs proposed a theory for the relaxation dynamics
of glass-forming liquids in which the relaxation was triggered
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by ‘cooperatively rearranging regions’ (CRR) which undergo
a spontaneous relaxation [18]. As T diminishes the size of the
CRRs should increase as well as their relaxation time, as an
increasing number of particles would be demanded, with the
concurrent loss in configurational entropy.

4. Finding ‘democratic’ clusters

The above-expounded results demonstrated the existence
of dynamical heterogeneities in glass-forming systems.
However, they provided no response to the question of
which events should be held responsible for the long-
time structural relaxation of the system (the α relaxation).
They were also unable to determine whether the dynamics
(clearly heterogeneous in space) was also heterogeneous or
homogeneous in time. Since at any given instant a large
system presents some strings (given the fact that string motions
occur at different times in different parts of the system),
the dynamics averaged over a macroscopically large system
would look homogeneous in time (the 〈r 2(t)〉 function is
invariant regarding the choice of the time origin). However,
at short enough length scales compatible to the size of the
supposed differently (cooperatively) relaxing regions, there
is no reason to expect the dynamics to be homogeneous in
time, as evidenced by the above-expounded studies of the time
development of string motions [37, 38]. Thus, a main question
is whether the α relaxation is a gradual process or whether
there exist dynamical events particularly responsible for such
structural relaxation. And since the size of the relaxing regions
and their timescales are expected to grow as T decreases (in
fact, the mean size of the strings increases on lowering T
towards Tc [13]), this question is of particular interest regarding
the nature of the glass transition. Thus, it was obvious to
focus on small systems and so, in [32], systems of N = 150
particles at T = 0.50 were used3. Here we shall present
the results for an isolated small system of N = 150 [32]
but later on we shall also take another approach by dividing
a large N = 8000 system into 64 equal-size cubic boxes of
around 125 particles each (we shall label the particles of each
box and follow the dynamic of the corresponding particles for
a timescale of length τα). A useful quantity to investigate
the dynamics of the small systems is the ‘distance matrix’
	2(t ′, t ′′) [39, 32], a quantity that contains information as
to what extent a configuration at time t ′′ is correlated to a
configuration at time t ′:

	2(t ′, t ′′) = 1

Nbox

Nbox∑

i=1

|ri (t
′) − ri(t

′′)|2,

where Nbox is the number of particles within the box (for the
isolated system of N = 150 particles Nbox = 150, but for the
subsystems within the system of N = 8000, Nbox would be
around 125). Note that although on average such a correlation
will depend only on the time difference |t ′′ − t ′| for large

3 We wish to note that it has been found that the dynamics of small systems of
around a hundred particles and that of larger systems of around N = 8000 do
not differ much, thus these small system sizes do not present important finite
size effects [47, 49, 32].

Figure 3. Typical contour plot of the distance matrix 	2(t ′, t ′′) for
T = 0.50 for an isolated small N = 150 system. The grey levels
correspond to the values that are given to the right. Adapted
from [32].

systems (see figure 11), in general 	2 will indeed depend on
both time arguments, if the system size is small (see figure 3).

For high temperatures a contour plot of 	2 as a function of
t ′ and t ′′ shows a narrow dark region along the main diagonal
which quickly fades out as one moves away from such a
diagonal (for t ′ very different from t ′′). This means that the
trajectory of the system behaves homogeneously in time and
visits configurations that are structurally very different at each
time. However, at low temperatures the pattern is completely
different, as can be seen in figure 3 where we show the t ′ and
t ′′ dependence of 	2 for a system at T = 0.50 and where
clear sharply delimited square islands can be seen. This means
that the trajectory of the system is most of the time confined
to groups of structurally similar closely related configurations
(it is confined to certain regions of configuration space, the
square islands in the distance matrix) and sporadically suffers
rapid crossings between such regions. While the configurations
within a given group (within an square island) are mutually
similar, they are structurally different from the ones of other
regions (the other square islands).

Here we have used the instantaneous configurations (the
so-called real dynamics). However, the physical meaning of
figure 3 acquires additional content within the vastly used
‘energy landscape’ approach (in fact, the potential energy
landscape, see, e.g. [3, 40, 41] for a more extensive discussion),
which we shall hereby sketch. Rooted on the early ideas
of Goldstein [42], this approach is based on the fact that
the potential energy of the system as a function of the
coordinates of all the comprising particles is a complex
hypersurface with many minima separated from others by
energy barriers. Stillinger and coworkers [43–46] associated
to each configuration of particles the so-called ‘inherent
structure’ (IS), the local minimum in the potential energy that
is found when the configuration of interest is subject to a
steepest descent procedure. This mapping method decomposes
the potential energy landscape into a set of IS (basins of
attraction, for all the real structures that have the same IS [47]).
Thus, at low enough temperatures the dynamics of the system
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can be considered as a collection of jumps from one IS to a
neighbouring one, followed by an equilibration within the local
IS. Additionally, the hierarchical organization of the landscape
of glass formers in metabasins (MB) has been postulated and
detected, while the transition between MBs has been proposed
to be related to the α relaxation [45, 3, 47] (thus an MB would
be a group of ISs separated from each other by low barriers,
while large barriers would separate neighbouring MBs). In
turn, the average sojourn time of the binary Lennard-Jones
system of interest in an IS is quite small, much smaller than
the timescale t∗ [47]. Thus, in this language, the dark islands
of figure 3 represent a clear indication of the MB arrangement
of the energy landscape. Typical sojourn times of the system
in an MB at T = 0.50 are (in time units) 300–800, which
corresponds to about 10%–20% of the α-relaxation time τα ,
which is 4000 time units [32]. This implies that within such
a region the system makes many jumps between local minima
but, since the distance matrix 	2 is not increasing, these jumps
do not really help to propagate the system in configuration
space, a task which is instead performed by the crossings
between the MBs.

It is worth noting that for lower temperatures the
behaviour of the system is similar to that already described, but
that the sojourn time of the system within one MB increases
rapidly (in the same trend as that of the increment of τα).
On the contrary, as already indicated, a temperature increase
basically washes out the MB structure since the barriers
between consecutive MBs can be easily overcome. We also
indicate that qualitatively similar results have been obtained
by a direct investigation of the ISs by an interval bisection
method, an approach which is, however, much more costly
in terms of computer resources [47–49]. Also, besides its
simplicity as compared to other methods, the advantage of
the distance matrix technique is that it makes it possible to
study portions of any size from a large system since it relies
only on particle coordinates and not on potential energy. This
has also the benefit that for systems of arbitrarily small size
there is no need to modify the original potential of the Kob–
Andersen model, as demanded by other methods. Here we
have used the instantaneous real configurations to build the
distance matrix. If we had instead used the corresponding ISs,
the resulting plot would have been almost identical (however,
we shall not pursue here the discussion of the description of
the MB structure of the landscape beyond these qualitative
terms, since a deep quantitative description has been provided
by [47–49] and there is already an excellent review on the
subject [26]).

In figure 4 we show for the same run (and same time
interval) δ2(t, θ), the (particle) average squared displacement
of the particles within a time interval θ (solid line, right scale).
This function is defined as [32]:

δ2(t, θ) = 	2(t − θ/2, t + θ/2)

= 1

Nbox

Nbox∑

i=1

|ri (t − θ/2) − ri (t + θ/2)|2.

Thus δ2(t, θ) is 	2(t ′, t ′′) measured along the diagonal t ′′ =
t ′ + θ and hence the average of this quantity over different
starting times t gives the usual mean squared displacement for

Figure 4. Solid line (right scale): average squared displacement
δ2(t, θ), for the trajectory given in figure 3. The value of θ is 160.
Vertical bars (left scale): the function m(t, φ) which gives the
fraction of democratic particles, i.e. particles that moved more than
the threshold value rth = 0.3 in the time interval [t − φ/2, t + φ/2],
using φ = 40. Adapted from [32].

time lag θ , that is 〈r 2(θ)〉. For this plot we have chosen θ =
160, a value that is significantly smaller than the α-relaxation
time τα(=4000) but still sufficiently larger than the time of the
microscopic vibrations (=O(1)). We can easily note that the δ2

curve shows important peaks exactly when the system leaves
an MB (escaping from a dark square-like island of the contour
plot of the distance matrix). Thus, each transition between
two neighbouring MBs, or simply an MB–MB transition, is
indeed associated with a rapid (average) motion of the system
as measured by δ2.

To further evidence the role of particle movements
in the MB–MB transition events, we have calculated
4πr 2G ′

s(r, t, φ) [32], the (normalized) distribution of the
displacements r of the particles for a given time interval of
length φ = 40 (note that the average of 4πr 2G ′

s(r, t, φ) over t
gives 4πr 2Gs(r, φ)). This distribution is shown in figure 5(a)
for values of t that correspond to times at which δ2 shows
a plateau, i.e. when the system is exploring an MB. Also
included in the graph is the self part of the van Hove function
4πr 2Gs(r, φ). We can see that both distributions are virtually
indistinguishable, thus indicating that while the trajectory is
confined within an MB the system moves basically as on
average. In figure 5(b) we show the same distributions but now
calculated at times when the system is about to leave an MB (as
can be learnt by comparing with the boundaries of the square
islands of the distance matrix). Notably, the distributions are
displaced to the right with respect to 4πr 2Gs(r, φ), showing
a clear enhancement in the movements of the particles. Since
there is no preference in the displacements for large motions
(all kinds of displacements are possible) we conclude that
the rapid increase of δ2 is not due to the presence of a few
very-mobile particles, but instead to what we called [32] a
‘democratic’ movement of many particles (many of them not
performing very large displacements). This finding is contrary
to the results of the cooperative string-like motion on the
timescale of t∗ which implied the very large movements (close
to the interparticle distance) of a few particles (5%–10% of the
sample) [12, 13, 36, 35].
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a b

Figure 5. Normalized displacement distribution functions for the binary Lennard-Jones system with parameters N = 150 and T = 0.50.
Curves with symbols: r (displacement) dependence of the function 4πr 2G ′

s(r, t, φ). The value of φ is 40. The bold curve is 4πr 2Gs(r, φ), the
self part of the van Hove function. (a) Values of t in which the system is inside an MB. (b) Values of t for which the system is about to leave
an MB. Adapted from [32].

To demonstrate that these motions involve a substantial
number of particles and that they are strongly correlated with
peaks in δ2, we have defined as ‘democratic’ all those particles
that in the time interval φ = 40 have moved more than rth =
0.3, and denote the fraction of such particles by m(t, φ) [32].
That this is precisely the case can be seen in figure 4 (vertical
bars, left scale). The fraction of democratic particles is of the
order of 30%–40% of the system and thus significantly larger
than one would expect from 4πr 2Gs(r, φ) if one integrates
this distribution from rth to infinity (which gives around 0.15,
or 15% since the area under the whole curve is 1). Thus,
in contrast to the string situation, the events relevant to the
α relaxation of the region considered involve a substantial
number of particles and not just a few.

The results of figures 4 and 5(b) demonstrate that MB–
MB transitions entail a significant increase in the mobility of
the system. An obvious question is whether such democratic
particles are located at random in the simulation box or if
they are clustered, as was the case for the previous motions
identified in the context of dynamical heterogeneities. Figure 6
shows a typical spatial distribution in the simulation box of
democratic particles before such an MB–MB transition event.
Each particle has an arrow attached indicating its position
after the event, i.e. a time φ = 40 later. From this graph it
becomes evident that the MB–MB transitions correspond to
a movement in which the particles form a relatively compact
cluster. This relatively compact nature is at variance with
the situation in the string-like motions [13, 37, 38] which
is non-compact. Such relatively compact regions (termed as
‘democratic clusters’ or ‘d-clusters’) have been considered as
potential candidates for the cooperatively rearranging regions
of Adam and Gibbs [18]. A note of caution must be posed
here, however. The cooperatively rearranging regions represent
theoretically idealized, fixed size regions in the theory of Adam

Figure 6. Configuration snapshot of democratic particles (those
particles with displacement larger than 0.3 in a 40 time units interval)
occurring in the MB–MB transition that starts at t = 680 and ends at
t = 720. The spheres (light and dark for the A and B particles,
respectively) give the location of the particles just before the
rearrangement and the arrows point to their position right after the
transition event. Adapted from [32].

and Gibbs [18]. Calorimetric studies have suggested a size for
them to be of around eight molecules close to Tg [50]. This
number is clearly very small as compared to the d-cluster sizes.

From the plots shown above, we can easily note that
the d-cluster events are fast as compared to t∗, the timescale
associated with the string objects. Also evident is the fact
that the α relaxation for the system is performed after a few
such events (as can be learnt for example from figure 3 where
the total timescale corresponds to τα). The interesting result
is thus that the dynamics is not homogeneous in time, since
the trajectory is confined for long times to a certain region of
configuration space (thus remaining inactive in terms of the

6
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Figure 7. Contour plot of the distance matrix 	2(t ′, t ′′) for the
binary Lennard-Jones system at T = 0.50 within one of the 64 boxes
into which the large N = 8000 system was divided. The grey levels
correspond to the values that are given to the right.

α relaxation) to then suffer rapid bursts of mobility (the d-
clusters) that make a significant contribution to the structural
relaxation (we also indicate that within an MB one can find
some particles with large displacements and also some small
strings which are born and die out in isolation without making
any significant contribution to the α relaxation).

In turn, the relatively compact nature of the d-clusters
would be compatible with the geometrical structure of the
dynamic correlations at large timescales of the order of
τα, as indicated in an inhomogeneous mode-coupling theory
(contrary to the less dense structures, compatible with string-
like motions, expected at the shorter timescales of the β-
relaxation time, a timescale much shorter than that required
to exit the plateau in the mean squared displacement and thus,
much shorter than τα) [17]. The d-clusters are also supposed
to be related to the soft modes present in the system at the
corresponding time [17, 51, 52]. Additionally, they have
also been related to a very appealing description of glassy
relaxation known as the dynamic facilitation theory [20, 21].
In this theory, glassiness results from the existence of effective
constraints on the dynamics of the system. This approach
was first conceived from simple microscopic facilitated spin
models such as the Fredrickson–Andersen (FA) [53] and the
East model [54]. In one dimension these models are described
by a chain of Ising spins ni = {0; 1}, with a trivial Hamiltonian
H = ∑

i ni , where ni = 1 represents a mobile site or
excitation and ni = 0 represents an immobile, or jammed
site. Glassiness is the result of local dynamical rules that
specify the ability of a site to change state. In the FA model
a site can only flip if either of its nearest neighbours is in the
excited state, while for the East model a spin may only flip
if its nearest neighbour to the left is excited, thus propagating
excitations in an eastward direction. Relaxation is Arrhenius
in the FA and super-Arrhenius in the East model [20, 21, 55].
At low temperatures the dynamical trajectories are spatially
heterogeneous, excitations form continuous lines in space–
time, and there are large inactive space–time ‘bubbles’. Hedges
and Garrahan [55] calculated a distance matrix similar to the

Figure 8. For the trajectory in a small box with Nbox = 128 at
T = 0.50 (that of figure 7): the function w(t, t + t∗) (vertical bars,
left scale), which gives the fraction of mobile particles (those
particles with displacements larger than 0.6 in a t∗ time interval), and
the corresponding δ2(t, θ) (solid line, right scale). The values of t∗
and θ are 400 and 160, respectively.

ones we studied before but for the spin facilitated models
where the distance between structures was measured in terms
of the number of kinks or number of times each site i has
changed state between two configurations. An island structure
of the distance matrix and sporadic rapid bursts in mobility
were found in agreement with our results for binary Lennard-
Jones systems. These authors thus indicated that in these
systems, the d-clusters were a result of facilitation, with the
global relaxation event resulting from a sequence of close
locally facilitated steps, and whose size was determined by the
extent to which the excitation line penetrated the sub-region
(the size of the bubbles). Similar results were also yielded by
the two-vacancy assisted triangular lattice gas or (2)-TLG [55].

So far we have only focused on a small system of N = 150
particles. To demonstrate that this behaviour is also typical
of the different regions of a large system, we now divide a
system of N = 8000 into 64 adjacent equal-size cubic boxes,
so each box has Nbox ≈ 125 particles. In order to study
the relaxation behaviour of any of such boxes, we tag the
particles of the corresponding box at t = 0 and apply the
above-expounded methods (we do this since in a timescale of
length τα the particles do not move much, not more than the
interparticle distance on average). Since we expect the large
system to suffer different d-clusters at different regions of the
sample, this method of rigid arbitrarily placed boxes would not
be optimal (the d-cluster events need not be entirely contained
within a box but should be cut by our arbitrary box boundaries).
Thus, we expect that the results will be less neat than for the
isolated N = 150 particles system (however, we do not expect
them to change qualitatively). The behaviour we find for a
given box is indeed quite similar to that previously expounded
for the isolated system of N = 150, as can be learnt from
figures 7–10.

Figure 7 displays the distance matrix for the trajectory
evaluated within one such small box, while figure 8 exhibits
the corresponding δ2(t, θ) for θ = 160 (solid line, right
scale). Both plots speak of a metabasin structure and signal
the presence of d-clusters. If we now look at any other box
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Figure 9. Contour plot of the distance matrix 	2(t ′, t ′′) for the
binary Lennard-Jones system at T = 0.50 within one of the 64 boxes
(non-adjacent to the one of figure 7) into which the large N = 8000
system was divided. The grey levels correspond to the values that are
given to the right.

Figure 10. For the trajectory in a small box with Nbox = 122 at
T = 0.50 (that of figure 9). The function w(t, t + t∗) (vertical bars,
left scale), which gives the fraction of mobile particles (those
particles with displacements larger than 0.6 in a t∗ time interval) and
the corresponding δ2(t, θ) (solid line, right scale). The values of t∗
and θ are 400 and 160, respectively.

for the same trajectory (the same times and within the same
large system), we get a similar distance matrix structure and
the presence of d-clusters. This can be seen in figures 9 and 10
for another box (not adjacent to the previous one).

However, the times at which the d-clusters and MB–MB
transitions occur differ from the ones of the previous box
and also from the ones of other boxes. This implies that
(spatially) averaging over the different regions washes out
the heterogeneity and thus the dynamics for a large system
should look homogeneous in time (in figure 11 we show the
distance matrix for the full system of N = 8000 which gives
a dark main diagonal fading out as we move away from it,
thus lacking the square-like island structure present for small
boxes). This means that in a large system different regions
would be ‘active’ (present d-clusters) at different times, as was
the case when we studied the time evolution of the occurrence
of the different strings in a system of N = 500 [38].

Figure 11. Typical contour plot of the distance matrix 	2(t ′, t ′′) for
the binary Lennard-Jones system at T = 0.50 and N = 8000. The
grey levels correspond to the values that are given to the right.

Figure 12. For the trajectory given in figure 4 for the binary
Lennard-Jones system of N = 150 at T = 0.50: the fraction of
mobile particles w(t, t∗) within the time interval [t − t∗/2, t + t∗/2]
(vertical bars, left scale) and the corresponding δ2(t, θ) (solid line,
right scale). The values of t∗ and θ are 400 and 160, respectively.

This moves one to think that, even when the nature of
both kinds of objects (d-clusters and mobile/string clusters) is
quite different, there should be a relationship between them.
Focusing on a small box of a large system (or if we work
with an isolated small system) and considering a t∗ length
timescale, we expect that if the system presents a d-cluster
at any time within such a time interval then the two-snapshot
(t = 0 and t∗) analysis of [12–14] would find many mobile
particles and even string-like clusters. Thus, to demonstrate
the relationship between both approaches we have calculated
(for the same trajectories previously analysed of the system of
N = 150 and for the two small boxes within the large system
of N = 8000) the fraction of mobile particles with the same
mobility criterion as [12–14]. However, instead of focusing on
a fixed time interval, we calculate such a quantity as a function
of time. That is, a mobile particle at time t is that for which
|ri(t+t∗/2)−ri (t−t∗/2)| > 0.6. We name the fraction of such
particles within the considered small system/box at time t as
w(t, t∗). In figure 12 we show a plot of such a function for the
same trajectory previously studied for the system of N = 150

8
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Figure 13. Contour plot of the distance matrix 	2(t ′, t ′′) for a system
of N = 216 water molecules interacting via the SPC/E potential at
T = 210 K. The grey level corresponds to values of 	2(t ′, t ′′) that
are given to the right of the figure (units are Å

2
). Adapted from [61].

together with δ2 (as given in figure 4), a function that we
have already seen that signals the presence of d-clusters. The
average of w(t, t∗) in time should yield an equivalent value as
its average over a large system (here this value is around 14%).
We can see that w(t, t∗) presents important peaks that coincide
nicely with that of the δ2. This implies a strong relationship
between the mobile clusters of [12–14] and the d-clusters. This
is also the case for the two small boxes within the large system,
as can be learnt from the vertical bars (left scale) from figures 8
and 10.

5. d-clusters beyond Lennard-Jones

5.1. d-clusters in supercooled amorphous water

At this point it seems worth wondering whether the d-
clusters are particular features of the dynamics of the
simple binary Lennard-Jones system or if they also emerge
in the relaxation dynamics of more complex, realistic
systems. Thus, we shall now focus on another glass former,
namely supercooled amorphous water. From a dynamical
viewpoint, it has been shown computationally that supercooled
amorphous water confirms the general picture of dynamical
heterogeneities [56–59], with mobile molecules arranged in
clusters usually linked by hydrogen bonds. The properties of
its potential energy landscape have also been studied, including
the characterization of transitions between ISs [57]. Here we
shall show the results obtained for a system of N = 216 water
molecules interacting via the simple point charge extended
(SPC/E) model [60] in the NVE ensemble [61] (the integration
step was 1 fs and long-range interactions were taken into
account using the reaction field method). At temperatures
within the supercooled regime both the real dynamics (the
instantaneous MD structures) and the inherent dynamics (the
ISs of the corresponding instantaneous structures, calculated
by performing a minimization of the energy of these
instantaneous structures using a standard conjugate gradient
minimization algorithm [62]) were investigated. In order to

Figure 14. Solid line (right scale): average squared displacement
δ2(t, θ) for the trajectory given in figure 13. The value of θ is 40 ps.
Vertical bars (left scale): the function m(t, φ) which gives the
fraction of oxygen atoms that moved more than the threshold value
rth = 0.06 nm in the time interval [t, t + φ], using φ = 10 ps.
Adapted from [61].

study the possible MB structure of this system a number of
250 configurations were recorded at fixed time intervals of
10 ps—at density 1 g cm−3 and T = 210 K. We note that
the total run time was larger than the α-relaxation time and
that the behaviour obtained at other close temperatures was
similar. Also, similar results were found by directly using the
instantaneous structures instead of the ISs.

Figure 13 shows typical results [61] for a run at T =
210 K when the distance matrix approach is used as in the
case of the binary Lennard-Jones (focusing on the positions
of the oxygen atoms of the water molecules in the ISs). The
grey level of the squares in the 	2(t ′, t ′′) depicts the (average
squared) distance between the corresponding configurations at
times t ′ and t ′′, the darker the shading indicating the lower the
distance between them. From the island structure of this matrix
we can learn that a clear MB structure of the landscape is also
evident here, as was the case for the Lennard-Jones systems. In
turn, figure 14 shows the time evolution of the average squared
displacement δ2(t, θ) in the time interval θ = 40 ps (solid line,
right scale) [61].

The vertical bars (left scale) of figure 14 display the
function m(t, φ) [61], which represents the fraction of
molecules that have moved more than a threshold value of
0.06 nm in time intervals [t, t + φ] with φ = 10 ps (we note
that an integration of the self part of the van Hove function,
4πr 2Gs(r, φ), from 0.06 to infinity gives less than 0.15 and
that similar results arise for other threshold values). Thus,
in agreement with the previous findings for binary Lennard-
Jones systems, MB–MB transitions imply the rearrangement
of a substantial number of the molecules of the system. That
is, these results clearly demonstrate that also for supercooled
amorphous water the α-relaxation time corresponds to a small
number of crossings from one MB to a neighbouring one, each
crossing being very rapid and involving the collective motion
of a great number of molecules. From direct inspection of
the function m(t, φ) in figure 14 we can see that in the MB–
MB transitions 35%–45% of the molecules move more than
0.06 nm in 10 ps, a time span slightly larger than 1% τα .
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Figure 15. Configuration snapshot of democratic molecules
occurring in the MB–MB transition t = 1320–1330 ps. The spheres
(light and dark for the hydrogen and oxygen atoms, respectively)
give the location of the atoms of the water molecule before the
rearrangement and the arrows point to the position of the oxygen
atom after the transition (to help visualize the particle movements,
the arrows are twice the length of the corresponding displacement
vector). Adapted from [61].

Additionally, it can be noted that the events that constitute the
local exploration of the MB do not contribute to the structural
relaxation of the system. Thus, these results demonstrate
the prevailing role of MB–MB transitions for the long-time
dynamics.

Figure 15 shows a three-dimensional plot of the
democratic molecules (mobility greater than 0.06 nm in a 10 ps
time window) for one of the time intervals of figure 14, namely
that which goes from t = 1320 to 1330 ps, but similar results
were found for other MB–MB transitions [61]. We show each
democratic water molecule (the oxygens and the hydrogens)
indicating the position at t = 1320 ps and attaching a vector
that indicates their displacement to the position occupied at
time t = 1330 ps (for practical reasons, the modulus of each
vector is twice its actual value). A clear cluster arrangement
is evident from such a picture with democratic molecules
located close to the borders of the simulation box and an empty
space at the centre (the molecules in such a region are not
democratic). Thus, relatively compact clusters of molecules
conforming cooperative relaxing units (the d-clusters found
previously for the Lennard-Jones systems) also emerge here as
being responsible for the structural relaxation of the system.
Additionally, it has been shown that there is a connection
between these clusters and local structural ‘defects’ [61] such
as highly coordinated water molecules (more than four first
neighbours within a sphere of size 0.30 nm) and bifurcated
hydrogen bonds (where one hydrogen of a molecule is bonded
to two water molecules instead of a single one), effects that had
previously been regarded as mobility promoters [57, 63, 64].

In addition to the above alluded results on the role of d-
clusters in binary Lennard-Jones and water, we also would like

to note that we have unpublished evidence for the fast MB–
MB transition events and d-clusters in liquid silica interacting
via the BKS (van Beest, Kramer and van Santen) model [65].
Thus, these events do not seem to depend on specific detail but
to emerge in glass formers quite different in nature.

5.2. Experimental evidences

The question that remains is whether the d-clusters appear
merely in the computer simulations or whether experimental
evidence can be found for their existence. A complete review
of the experimental detection of dynamical heterogeneities has
been provided by Richert [11]. It is interesting to note that
nuclear magnetic resonance (NMR) studies of supercooled
propylene carbonate [66] have shown the α relaxation to be
a mixture of many frequent smooth rotational movements
(small-angle jumps) and a few large-angle jumps. Thus, in
addition to simple rotational diffusion, the α relaxation implies
the existence of sporadic translational movements. This
finding of infrequent translational jumps could be consistent
with the d-cluster description. However, we note that the
above described quantities (average squared displacement,
δ2(t, θ), distance matrix, 	2(t ′, t ′′), etc) were calculated in
our simulations in such a way that they are only sensitive
to translational diffusion and thus rotational diffusion is not
considered (an interesting computational study of rotational
diffusion on the rigid three-site model of the fragile glass
former ortho-terphenil has been performed [67], where also
the decoupling [11, 68] between translational and rotational
diffusion was considered).

However, most of the experimental techniques sample
ensemble-averaged quantities. In this sense, for a more direct
comparison with our simulation results we must resort to
microscopic techniques. In this context, as already mentioned,
3D time-resolved confocal spectroscopy has been used in
colloidal systems [35, 36]. The position of many particles
could be tracked as a function of time (at very short-time
spans) and clusters of mobile particles could be identified.
While these clusters could be compatible both with the string
and the d-cluster descriptions, the time span chosen to define
mobile particles (the timescale of maximum inhomogeneous
behaviour, t∗, and thus the use of only two snapshots of the
configurations of the particles separated at t∗ time) prevents
us from comparing the results with the fast d-cluster events
that trigger the MB–MB transitions. However, we note that the
complete set of data of such a study (the configurations of the
particles at a number of intermediate times) could be used to
calculate functions such as the average squared displacement,
δ2(t, θ), and the distance matrix, 	2(t ′, t ′′), between others
and thus directly probe the validity of the d-cluster description
(a task we consider would be worth performing in the future).

In any case, colloidal suspensions are also (experimental)
idealized models. Studies on more realistic molecular
systems would also be necessary. In this sense, a very nice
study of a polymeric system by means of single molecule
confocal spectroscopy (which constitutes a test of the MB–
MB transitions and d-clusters scenario) has been recently
performed [69, 70]. Using single molecule spectroscopy it
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was shown [69, 70] that the fluorescence lifetime trajectories
of single probe molecules embedded (at high dilution) in a
glass-forming polymer melt exhibit strong fluctuations of a
hopping character, features that are never present in a polymer
melt in thermal equilibrium nor in a polymer in the frozen
glassy state. The plausible conclusion of these experimental
studies was that this hopping behaviour should be linked to
the anomalous features of relaxation phenomena expected to
occur in deeply supercooled fluids, dynamical heterogeneity,
rugged potential energy landscape, cooperatively rearranging
regions, etc. Using MD simulations targeted to explain these
experimental observations [69, 70], these authors showed that
these lifetime fluctuations correlate strongly with the average
square displacement function δ2 of the polymer matrix. As
the dynamics of the probe follows that of the polymer, the
latter observable can represent a direct test for the metabasin
transitions in the potential energy landscape of this glass-
forming polymer matrix. The experiment was carried out
using several types of fluorescent probes (differing in their size
and/or mass within reasonable limits) embedded in a (glass-
forming) polymer matrix of low molar mass of oligo(styrene)
above its glass-transition temperature. Along with this, MD
NVE simulations of a system containing 120 bead-spring
chains of 10 effective monomers were performed. The mass
and the size of the beads in the dumbbell were, of course,
chosen in order to fit the experimental conditions. The
interaction between the two beads of the probe or monomers
was given by a Lennard-Jones potential. It was found that the
dynamics of the probe follows that of the surrounding polymer,
as measured by the self-intermediate scattering function.
Furthermore, the latter is not disturbed by the presence of the
fluorescent probe. Applying the distance matrix method to
the polymeric matrix, they showed that its dynamics is very
heterogeneous in time, staying for a relatively long time close
to one region (MB) in its configuration space prior to a jump
to another region. Furthermore, the jumps in the fluorescence
lifetime trajectory correlated with the MB–MB transitions
observed at the crossings between successive MBs. To show
this correlation quantitatively, they calculated the δ2(t, θ) (the
same function we used above) of the monomers within a time
interval chosen to be 4% of the relaxation time [69]. One then
can see that each jump of the fluorescence is accompanied by a
maximum of the δ2(t, θ) function and can thus signal an MB–
MB transition. Additionally, they obtained a distance matrix
plot that resembles very much the ones we have presented
above for the binary Lennard-Jones and water. Thus, these
mixed experimental-computational studies in a glassy polymer
show a clear accord with our computational results in binary
Lennard-Jones systems and SPC/E water. We can then expect
that the appearance of the same kind of behaviour in systems
that are microscopically very different would speak of the
generality of the d-cluster MB–MB transitions picture in the
context of glassy relaxation.

6. Relationship of d-clusters to local structure

In the former sections we have established the relevance of
the d-cluster events to the α-relaxation dynamics of glass-
forming systems. However, not much has been said about

structural facts. We intuitively expect the d-clusters or ‘active’
regions to be indeed related to structural heterogeneities
in the sample (regions more ‘unblocked’ or ‘unjammed’).
However, the determination of the existence of a causal
link between structure and dynamics remains another major
unsolved problem in the field [2, 71, 72].

A recent breakthrough in this context [72, 71] was the
introduction of the isoconfigurational ensemble (IC). In it one
performs a series of equal length MD trajectories from the
same initial configuration, that is, always the same structure
(the same particle positions) but each trajectory having
different initial particle momenta chosen at random from the
appropriate Maxwell–Boltzmann velocity distribution.

Propensity of a particle i to move in the initial
configuration (t = 0) for a time ξ from t = 0, was
defined as 〈	r2

i 〉IC [71], where 	r2
i = |ri (ξ) − ri (0)|2 is

the quadratic displacement of particle i in the time interval
[0, ξ ] for each trajectory of the IC and 〈· · ·〉IC is the average
over such an IC. Therefore, for 2D soft disks this definition
allowed to determine that at low temperatures the propensity
for motion of the particles from any given configuration for
a time ξ is not uniform throughout the sample and high
propensity particles are confined to certain (relatively compact)
regions [71] This result also holds for the binary Lennard-Jones
system here under study [74]. Thus, while particle mobility
is not reproducible from trajectory to trajectory, the spatial
variation in the propensity is completely determined by the
initial configuration, reflecting the influence of structure on
dynamics [71, 74]. A propensity much greater than its mean
value, a great tendency to be mobile, is thus a clear indication
that the particle is not ‘comfortable’ in its present position, that
is, it is structurally unjammed.

Thus, it became of great interest to explore the connections
between high propensity regions and d-clusters. In so doing,
we found that the high propensity regions of a given initial
configuration represent unblocked zones wherein d-clusters
occur in the subsequent dynamics (for any given IC realization
or trajectory initiated in such a configuration) [73]. In turn,
the reciprocal is also valid: the occurrence of a d-cluster
reformulates the propensity regions of the sample [74, 75]. An
interesting result is that the influence of the local structure on
the dynamics for the binary Lennard-Jones system does not
extend to long times but is on the order of the MB average
residence time, a timescale shorter than the α-relaxation time
τα. Thus the local structural constraints do not survive a d-
cluster or MB–MB transition [74]. This was carried out by
using an extension of the original definition of the propensity
in the form of a time-dependent propensity [74], as we shall see
in section 6.1. After doing that, we shall make use of another
approach to evidence the role of d-clusters in propensity de-
correlation [75].

6.1. The isoconfigurational method. Role of the local
structure: time-dependent propensity

To calculate the time-dependent propensity for motion we use a
generalization of the IC method introduced in [71] since we are
interested in studying how propensity evolves with time within

11



J. Phys.: Condens. Matter 21 (2009) 203103 Topical Review

Figure 16. Time-dependent propensity P(t∗
IC, t) for the A particles

of the N = 150 Lennard-Jones system at T = 0.50. From top to
bottom: t = 0; t = 0.5t∗

IC; t = t∗
IC; t = 3t∗

IC and t = 9t∗
IC. Solid

horizontal lines correspond to average time-dependent propensities
〈P(t∗

IC, t)〉. Dashed horizontal lines indicate 〈P(t∗
IC, t)〉 ± σ(t∗

IC, t),
where σ(t∗

IC, t) is the standard deviation.

an IC. Propensity of a particle i for motion in the configuration
at time t (its tendency to be mobile at the instantaneous time t
on the given trajectory) for a fixed time interval of length t∗ is
defined as Pi (t∗

IC, t) = 〈|ri (t + t∗
IC) − ri (t)|2〉IC, where 〈· · ·〉IC

indicates an average over the IC generated at time t = 0 and
t∗
IC is the t∗ averaged over the different trajectories over the

IC. This procedure allows us to study the persistence of the
‘memory’ in the propensity calculated from the initial structure
(t = 0). We note that the average time-dependent propensity
〈P(t∗

IC, t)〉 = N−1
∑N

i Pi (t∗
IC, t) is approximately constant as

a function of t . However, the dispersion in the propensity
values falls quickly, within a timescale close to t∗

IC. This can be
seen in figure 16. In the case of P(t∗

IC, 0) (the curve at the top),
there are A particles with very high and also very low time-
dependent propensity values (high and low vertical bars), that
is, great fluctuations from the mean value. However, at larger
times, the time-dependent propensities of the different particles
become uniform, that is, they do not differ much from the mean
value. These results speak of a rapid loss of the influence of the
initial structural constraints.

At first all the trajectories (within an IC) are confined to
the same local MB (in which is located the initial structure that
generates the IC), wherein each of them resides for different
amounts of time before escaping by means of a different d-
cluster [74]. Thus, there exists a distribution of residence times
in the local MB (some of the trajectories being able to abandon
the MB at very short times while others have to spend large
times). Thus, a single trajectory is not able to determine the

confining nature of a given MB. In this regard, it has been
found that at any given T different ICs present local MBs with
different confining properties, and the mean residence time for
the local MB in an IC is very close to the t∗

IC (evaluated in the
corresponding IC) [74]. In turn, the different trajectories (over
an IC) that at first were confined to the same local MB leave
to different second MBs, since there is a large multiplicity of
neighbouring MBs. Thus, the propensity de-correlates after
the first MB–MB transition [74]. This result also supports
the validity of a random-walk scenario (spatially uncorrelated
hopping processes between MBs) for the long-time diffusion
of glassy systems [74, 47, 26].

6.2. Role of d-clusters in propensity de-correlation

To elucidate the role of the d-clusters in reformulating the
local structural constraints it is useful to start many ICs over
a given single dynamical trajectory [75]. Here we show such
an approach for the same MD run of figures 3–5 (that is, for
the isolated small N = 150 system at T = 0.50). We
recorded a configuration every 40 time units (a total of 101
configurations, for a total length of τα = 4000) and generated
for each of them an IC. Thus, we determined the propensities
for each of the 101 equally spaced initial configurations over
the given MD trajectory. The way the spatial distribution
of propensity (the value of the propensity for each particle)
changes from one (initial) configuration to another (from one
IC to another), gives an idea of the time evolution of the local
structural constraints.

To quantify how similar or different is the propensity of
the different particles in configurations at times t ′ and t ′′ (over
the trajectory of figures 3–5), we calculate the following cross-
correlation function R(t ′, t ′′) = ∑Nbox

i=1 Ri , where:

Ri = [Xi − 〈X〉]
{∑Nbox

l=1 [Xl − 〈X〉]2}1/2

[Yi − 〈Y 〉]
{∑Nbox

l=1 [Yl − 〈Y 〉]2}1/2
.

In it, Xi and Yi are respectively P†
i (ξ, t ′) and P†

i (ξ, t ′′).
P†

i (ξ, t) is the propensity of particle i calculated over the IC
generated from the configuration (in the trajectory in figures 3–
5) at time t . Each of these ICs entangle 500 trajectories of
total run length ξ = 40 time units4. Besides 〈X〉 and 〈Y 〉 are
respectively 〈P†(ξ, t ′)〉 and 〈P†(ξ, t ′′)〉, where 〈P†(ξ, t)〉 =
N−1

∑N
i=1 P†

i (ξ, t). Basically, R(t ′, t ′′) = 1 indicates that
P†

i (ξ, t ′) = P†
i (ξ, t ′′), while values of R(t ′, t ′′) close to

zero indicate that the propensity of particle i has changed
significantly between t ′ and t ′′. Figure 17 depicts R(t ′, t ′′). We
recall that such a function is built upon ‘structural information’
while 	2(t ′, t ′′) of figure 3 relies on dynamical data. R(t ′, t ′′)
is based on the propensity for motion of the particles calculated
at very short time intervals ξ = 40 (at times t ′ and t ′′) and
thus reflects the cross-correlations between the local structural
constraints of the configurations at these corresponding times.

4 While the mean value of the propensity [ 〈P†(ξ, t)〉 = N−1 ∑N
i=1 P†

i (ξ, t)]
depends on the time length ξ in which it is calculated, the spatial variation of
propensity does not depend on it for times not too small (down to 10% t∗ or
even less) [76, 72]. In other words, if one calculates the propensity at ξ = t∗
or somewhat higher or if one does it for a timescale of 10% t∗, the particles
with higher and lower propensity are the same in any case.
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Figure 17. Cross-correlation function R(t ′, t ′′) between propensities
calculated over ICs generated from configurations at times t ′ and t ′′
that belong to the trajectory for the system of N = 150 given in
figure 3. The propensities, in the corresponding IC at time t , are
calculated among 500 trajectories for a ξ = 40 time interval. The
grey levels correspond to the values that are given to the right.

We also note that if we calculate propensities at larger times
(say, for example at ξ = t∗ instead of ξ = 40), the results
are consistent, and even more conspicuous. Direct inspection
of the propensity–propensity cross-correlation matrix R of
figure 17 evidences a structure which matches very well that
of the MBs of figure 3. We can see that large values of R
(dark regions) occur at times when figure 3 shows a metabasin
structure. This means that the propensity of the particles within
an MB are positively correlated, that is to say, the propensity
of each particle is similar in all the corresponding ICs. Since
R is generally small for ICs not belonging to the same MB
(grey regions), the propensity of the particles at such times does
not present a neat correlation. Moreover, the borders of the
square islands of figure 17 show certain small negative values,
thus indicating a slight anti-correlation in propensity once
the system abandons the local MB (high propensity particles
change to low propensity, or intermediate propensity, and vice
versa). This fact means that the propensity de-correlates after
an MB–MB transition and thus, that the d-clusters reformulate
the propensity pattern by rearranging the regions of high,
medium and low propensity (a fact also consistent with a
rapid loss of the memory of the local structure, that is, of
the structural constraints of the present MB, once a trajectory
of the system escapes from this MB). To summarize, the
above results make evident the interplay between structure
and dynamics: d-clusters relax the high propensity regions to
generate new distinct ‘unblocked’ domains and vice versa.

7. Conclusions

In this work we have reviewed the molecular events involved
in the relaxation dynamics of glass-forming systems in the
supercooled regime. We have put special emphasis on
the events characteristic of the dynamical heterogeneities.
First, we described the cooperative events responsible for
the departure of the dynamics from a Gaussian behaviour:

structurally open-like clusters of mobile particles including
string-like motions. However, when focusing on the
structural or α relaxation, we have described the dominant
role of democratic clusters (d-clusters), events that trigger
the transition between metabasins of the potential energy
landscape of the system. We have shown that the d-clusters
are in fact related to the mobile particles that form the more
open-like clusters (strings) previously described, but that are
the first ones unambiguously related to the long-time structural
relaxation and that they provide a more complete picture of
this process. Such a picture reveals the fact that the dynamics
of each of the different regions of the system is not only
heterogeneous in space but also in time, since the trajectory
is confined for long times to a certain portion of configuration
space (metabasin) to then cross to another different one.
These crossings entail the emergence of cooperatively relaxing
units in the form of relatively compact clusters built up by a
significant portion of the particles within the corresponding
region (d-cluster), an event that occurs in the form of a burst
of mobility. Such sporadic rapid motions are the main factors
responsible for the α relaxation, which is completed after a few
such events, since the events related to the exploration of the
local MB do not contribute appreciably. We have also provided
arguments for the generality of such a scenario, since we have
shown that the d-clusters arise in systems very different in
nature such as a binary Lennard-Jones system (simple model
glass former) and supercooled amorphous water and that they
have received experimental support from a single molecule
technique in a glassy polymer. Additionally, we have also
related such events to the dynamic propensity (the tendency of
the particles to be mobile in a given structure) of the different
regions of the sample, a description that signals the existence
of a link between the local structure and the corresponding
dynamics. In this context, we have shown the role of the
d-clusters in the loss of the memory the system experiences
from its initial structure by reformulating the mobility tendency
of the different regions of the sample, thus elucidating the
existence of a mutual transfer of constraints between local
structure and dynamics.
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