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Abstract – In the wake of efforts made Nobre and Rego-Monteiro in EPL, 97 (2012) 41001 and
J. Math. Phys., 54 (2913) 103302, we extend them here by developing the conventional Lagrangian
treatment of a classical field theory (FT) to the q-Klein-Gordon equation advanced in Phys. Rev.

Lett., 106 (2011) 140601 and J. Math. Phys., 54 (2913) 103302 by the same authors, and the
quantum theory corresponding to q = 3

2
. This makes it possible to generate a putative conjecture

regarding black matter. Our theory reduces to the usual FT for q → 1.

Copyright c© EPLA, 2016

Introduction. – Motivated by the need for under-
standing a number of physical phenomena related to com-
plex systems, interesting proposals for localized solutions
have been proposed in the last five years, based on modifi-
cations of the linear Klein-Gordon and Schrödinger equa-
tions. This is done by turning them into non-linear
equations (NLKG and NLSE, respectively) [1,2]. In the
wake of efforts made in [1,3], we extend them here by
developing a conventional classical field theory (FT) cor-
responding to the q-Klein-Gordon equation of [2] (the FT
of [3] is not the customary one, but the higher-order FT
of [4,5] is, see below). We also advance the concomitant
quantum theory for q = 3

2 .
The NLSE may be employed for describing components

of dark matter. The structure of the action variational
principle leading to the NLSE implies that it might de-
scribe particles that do not interact with the electro-
magnetic field [1]. Note also that the NLSE exhibits a
remarkable similarity with the Schrödinger equation asso-
ciated to a particle with a time-position–dependent effec-
tive mass [6–9], involving quantum particles in non-local
potentials (e.g., the energy density functional treatment
of the quantum many-body problem [10]).

We first develop the conventional classical field theory
(CFT) associated to the q-Klein-Gordon equation pro-
posed in [2] and deduced in [11] from the hypergeometric
differential equation (HDE). We define the corresponding
physical fields via an analogy with treatments in string
theory [12] for defining physical states of the bosonic

string. Our ensuing theory reduces to the conventional
Klein-Gordon (KG) field theory for q → 1. As a second
step we develop the quantum theory for q = 3

2 .
Recently, Rego-Monteiro and Nobre [3] advanced an

interesting classical field theory for the generalized
q-Klein-Gordon equation of [2] through the use of La-
grangian procedures for higher-order equations. This valu-
able effort deserves an extension, that will be tackled here.
More to the point:

– Rego-Monteiro and Nobre [3] use the higher-order La-
grangian procedures of Bollini and Giambiagi [4,5],
while ours is the usual Lagrangian treatment.

– They are unable, in their procedure, to throw away
total divergences in the Lagrangian, since, if they do
that, they do not obtain the correct expression for the
four-momentum of the field, while we do it here.

– They do not obtain the physical fields, that is, the
admissible fields for which probability is conserved.

Most importantly: we add the quantum field theory for
q = 3

2 , while the approach of [3] is purely classical.

A non-linear q-Klein-Gordon equation. –

Classical approach. Consider then the q-Klein-Gordon
equation, advanced in [2] and HDE-deduced in [11]:

�φ(xμ) + qm2 [φ(xμ)]
(2q−1)

= 0. (1)
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A possible solution to this equation is

φ(xμ) = [1 + i(1 − q)(�k · �x − ωt)]
1

1−q . (2)

We wish to formulate the CFT associated to (1). We start
with the classical action

S=
1

(6q − 2)V

∫

M

{

∂μφ(xμ)∂μψ(xμ) + ∂μφ+(xμ)∂μψ+(xμ)

−qm2

[

φ(2q−1)(xμ)ψ(xμ)+φ+(2q−1)(xμ)ψ+(xμ)

]}

dnx. (3)

In S we detect the appearance of the Klein-Gordon field
φ the auxiliary field ψ. The second arises because on the
non-linearity of the q-Klein-Gordon. We recast the ac-
tion (3) as

S =

∫

M

L(φ, ψ, φ+, ψ+, ∂μφ, ∂μψ, ∂μφ+, ∂μψ+)dnx, (4)

where M stands for Minkowski’s space and L is the perti-
nent Lagrangian. From the minimum action principle one
gets the motion equations for the two fields

∂L
∂φ

− ∂μ

∂L
∂(∂μφ)

= 0;
∂L
∂ψ

− ∂μ

∂L
∂(∂μψ)

= 0. (5)

The first equation coincides with (1). The auxiliary field
equations is

�ψ(xμ) + q(2q − 1)m2 [φ(xμ)]
(2q−2)

ψ(xμ) = 0. (6)

The solution associated to (2) is

ψ(xμ) = [1 + i(1 − q)(�k · �x − ωt)]
2q−1
q−1 . (7)

For q → 1, ψ becomes the conjugated of φ.
We wish to ascertain that the relations between energy

and momentum in (2) remain intact in our formulation.
For this we need to evaluate these two field-quantities.
The field’s energy-momentum is

T ν
μ =

∂L
∂(∂νφ)

∂μφ +
∂L

∂(∂νψ)
∂μψ +

∂L
∂(∂νφ+)

∂μφ+

+
∂L

∂(∂νψ+)
∂μψ+ − δν

μL. (8)

Its expression in terms of the two fields becomes

T ν
μ =

1

(6q − 2)V
[∂νψ∂μφ + ∂νφ∂μψ + ∂νψ+∂μφ+

+ ∂νφ+∂μψ+] − δν
μL. (9)

The four-momentum is

Pμ =

∫

V

T 0
μ dn−1x, (10)

where V is the Euclidian volume. The time component
of the four-momentum is the field energy (up to spatial
divergences)

P0 =
1

(6q − 2)V

∫

V

(∂0ψ∂0φ + ∂0ψ
+∂0φ

+

−ψ∂2
0φ − ψ+∂2

0φ+)dn−1x. (11)

Using the solutions (2) and (7) we find for the energy

P0 =
1

(6q − 2)V

∫

V

(6q − 2)ω2dn−1x, (12)

or
P0 = P0 = ω2. (13)

Up to spatial divergences, the field-momentum is

Pj =
1

(6q − 2)V

∫

V

(∂0ψ∂jφ + ∂0ψ
+∂jφ

+

−ψ∂0∂jφ − ψ+∂0∂jφ
+)dn−1x. (14)

Specializing this for the solutions (2) and (7) one has

Pj = − 1

(6q − 2)V

∫

V

(6q − 2)ωkjd
n−1x (15)

or
Pj = −Pj = ωkj . (16)

We see that eqs. (13)–(16) are proportional to the energy
and momentum of the q-exponential wave (1), while the
proportionality constant is the wave energy ω. This hap-
pens because we did not use a q-exponential divided by√

2ω as is the case with the usual Klein-Gordon field when
one appeals to waves ei(�k·�x−ωt) instead of the more com-

mon waves ei(�k·�x−ωt)
√

2ω
.

The remedy is to choose the constant appearing in the
field action as 1

(6q−2)V ω
instead of 1

(6q−2)V . In such a case

the four-momentum becomes

Pμ → Pμ

ω
, (17)

and one finds, as expected,

Pμ = (ω,�k), (18)

in complete agreement with the conventional field formu-
lation. Note that, from (3), our theory is not gauge in-
variant, save for q → 1. This entails that our fields cannot
interact with light. In other words, for q �= 1, we can
have free massive particles of a non-linear character, that
seem to be incapable to couple with light. This might
suggest a mechanism able to describe the presence of dark
matter [1].

As for probability conservation, we define the four-
current as

Jμ =
i

4mV
[ψ∂μφ − φ∂μψ + φ+∂μψ+ − ψ+∂μφ+]. (19)
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Thus, the four-divergence of the four-current does not
vanish. It is now

∂μJ μ = K, (20)

where K is

K =
i

4mV
q(2q − 2)

[

ψφ(2q−1) − ψ+φ+(2q−1)
]

. (21)

Note that K vanishes for q → 1.
We appeal then to bosonic string’s theory [12] and define

(in a similar way to that for the definition of physical
states) the physical fields as those that make K vanish.
The waves (2) and (7) make K vanish. Also,

J μ = (ρ,�j), (22)

where ρ is

ρ =
i

4mV
[ψ∂tφ − φ∂tψ + φ+∂tψ

+ − ψ+∂tφ
+]. (23)

Note that unlike the usual instance, ρ is not positive-
definite and that �j is

�j = − i

4mV

[

ψ∇φ − φ∇ψ + φ+∇ψ+ − ψ+∇φ+
]

. (24)

All quantities defined in this section become identical to
those of the usual CFT for q → 1.

Quantum approach for q = 3
2 . – For q = 3

2 and small
m, field quantization can be performed perturbatively. We
write the corresponding action as

S =

∫

M

{

∂μφ(xμ)∂μψ(xμ) + ∂μφ+(xμ)∂μψ+(xμ)

− 3

2
m2

[

φ2(xμ)ψ(xμ) + φ+2(xμ)ψ+(xμ)
]

}

d4x. (25)

Now we define i) the free action S0 and ii) that corre-
sponding to the interaction SI as

S0 =

∫

M

[

∂μφ(xμ)∂μψ(xμ)+∂μφ+(xμ)∂μψ+(xμ)
]

d4x, (26)

SI = −3

2
m2

∫

M

[

φ2(xμ)ψ(xμ) + φ+2(xμ)ψ+(xμ)
]

d4x. (27)

The fields in the interaction representation satisfy the
equations of motion for free fields, corresponding to the ac-
tion S0. This is to satisfy the usual massless Klein-Gordon
equation. As a consequence, we can cast the fields φ and
ψ in the form

φ(xμ) =
1

(2π)
3
2

∞
∫

−∞

[

a(�k)√
2ω

eikμxμ +
b+(�k)√

2ω
e−ikμxμ

]

d3k, (28)

ψ(xμ) =
1

(2π)
3
2

∞
∫

−∞

[

c(�k)√
2ω

eikμxμ +
d+(�k)√

2ω
e−ikμxμ

]

d3k, (29)

where k0 = ω = |�k| The quantification of these two fields
is immediate and the usual one, given by

[a(�k), a+(�k′)] = [b(�k), b+(�k′)] = [c(�k), c+(�k′)] =

[d(�k), d+(�k′)] = δ(�k − �k
′). (30)

The naked propagator corresponding to both fields is the
customary one, and it is just the Feynman propagator for
massless fields:

∆0(kμ) =
i

k2 + i0
, (31)

where k2 = k2
0 −�k2. The dressed propagator, which takes

into account the interaction, is given by

∆(kμ) =
i

k2 + i0 − iΣ(kμ)
, (32)

where Σ(kμ) is the self-energy.
Let us calculate the self-energy for the field φ at sec-

ond order in perturbation theory. To this order, the self-
energy is composed of two Feynman diagrams, of which
one is null (this is easily demonstrated using the regu-
larization of Guelfand for integrals containing powers of
x [13]). Therefore, we have for self-energy the expression

Σ(kμ) =
9m4

4

i

k2 + i0
∗ i

k2 + i0
. (33)

The convolution of the two Feynman’s propagators of zero
mass is calculated directly using the theory of convolution
of ultradistributions [14–17]. Its result is simply

i

k2 + i0
∗ i

k2 + i0
= iπ2 ln(k2 + i0). (34)

The self-energy is then

Σ(kμ) =
9π2m4i

4
ln(k2 + i0). (35)

As a consequence, the dressed propagator, up to second
order, is given by

∆(kμ) =
4i

4k2 + 9π2m4 ln(k2 + i0) + i0
. (36)

For both fields φ and ψ the self-energy and the dressed
propagator coincide up to second order.

Note that the current of probability is given by

Jμ =
i

4m

[

ψ∂μφ − φ∂μψ + φ+∂μψ+ − ψ+∂μφ+
]

(37)

and it is verified that

∂μJ μ = 0. (38)

This implies that the fields defined in the representation
of interaction are physical fields.
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Conclusions. – We have here developed further
weapons for the formidable arsenal being erected in the
wake of the pioneer work of ref. [2], in order to be better
able to face the complex physics associated to non-linear
quantum equations.

First, we developed the classical field theory correspond-
ing to the non-linear q-Klein-Gordon equation, improving
upon the work of Rego-Monteiro and Nobre [3].

1) Rego-Monteiro and Nobre [3] use the higher-order La-
grangian procedures of Bollini and Giambiagi [4,5], while
we have used the conventional Lagrangian treatment.

2) They were unable, in their procedure, to throw away
total divergences in the Lagrangian, since if they were to
do that, they would not obtain the correct expression for
the four-momentum of the field. In our procedure we have
removed the total divergences.

3) We have obtained the physical fields, this is, the ad-
missible fields for which probability is conserved.

4) Most importantly: we have added the quantum field
theory for q = 3

2 .

We hope that our next stage will be extending things
to a quantum field theory for q a real number such that
1 ≤ q < 2 is a difficult task indeed.
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