
A spectral approach based on generalized Sturmian functions for two- and three-body

scattering problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys. A: Math. Theor. 45 045304

(http://iopscience.iop.org/1751-8121/45/4/045304)

Download details:

IP Address: 190.246.176.165

The article was downloaded on 05/01/2012 at 14:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/45/4
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 45 (2012) 045304 (15pp) doi:10.1088/1751-8113/45/4/045304

A spectral approach based on generalized Sturmian
functions for two- and three-body scattering problems

G Gasaneo1 and L U Ancarani2

1 Departamento de Fı́sica, Universidad Nacional del Sur and Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas, 8000 Bahı́a Blanca, Buenos Aires, Argentina
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Abstract
A methodology based on generalized Sturmian functions is put forward to
solve two- and three-body scattering problems. It uses a spectral method
which allows for the inclusion of the correct asymptotic behavior when
solving the associated driven Schrödinger equation. For the two-body case,
we demonstrate the equivalence between the exterior complex scaling (ECS)
and the Sturmian approaches and illustrate the latter by using Hulthén Sturmian
functions. Contrary to the ECS approach, no artificial cut-off of the potential is
required in the Surmian approach. For the three-body scattering problem, the
theoretical framework is presented in hyperspherical coordinates and a set of
hyperspherical generalized Sturmian functions possessing outgoing asymptotic
behavior is introduced. The Sturmian procedure is a direct generalization of
the method discussed for the two-body problem; thus, the comparison with
the ECS method is similar. For both the two- and three-body cases, Sturmian
bases are efficient as they possess the correct outgoing behavior, diagonalize
part of the potentials involved and are essentially localized in the region where
the unsolved interaction is not negligible. Moreover, with the Sturmian basis,
the operator (H − E ) is represented by a diagonal matrix whose elements are
simply the Sturmian eigenvalues.

PACS numbers: 34.10.+x, 03.65.Nk

(Some figures may appear in colour only in the online journal)

1. Introduction

Different and successful methods such as, e.g., the convergent close coupling [1, 2], the
J-matrix [3] and the exterior complex scaling (ECS) [4–6] have been developed to deal with
the description of collision processes between three particles. In general, these methods require
an enormous amount of computational resources. The application of the same methods to the
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study of the next step, the four-body problem, is presently prohibitive from the computational
point of view (see, e.g., [7]). This is proved by the fact that none of the mentioned approaches
have been applied as a pure ab initio treatment to the study of, e.g., double ionization of helium
by electron impact; only approximated versions have been used instead.

For this reason, it is important to continue to develop techniques which improve the
efficiency of existing approaches. In this paper, we present and discuss the application of
generalized Sturmian functions (GSF) to solve two- and three-body scattering problems.

Recently, a method based on Sturmian functions has been proposed to deal with scattering
and structure problems; its efficiency was illustrated in a number of applications (see [8–12]
and references therein). It was noted that the developed method contains as a particular case the
ECS. The Sturmian method allows one to set proper outgoing boundary conditions, as done by
the ECS; however, contrary to the latter, it does not require the rotation of the coordinate, thus
avoiding the difficulty associated with the divergence of the driven term. We shall show how to
implement the method for solving the two-body driven equation and discuss the equivalence
between the Sturmian and the ECS [13] approaches.

The implementation of the ECS method to scattering problems was first proposed
by Rescigno and co-workers [13]. Since then, the method has proved to be one of the
most successful to deal with a large variety of processes [4, 14–19]. The ECS procedure
(see, e.g., [5, 6]) is based on the separation of the total wavefunction as the sum of an
asymptotic (or approximated) solution of the problem and a scattering function [20, 21] with,
respectively, standing- and outgoing-wave behavior at large distances. This separation leads
straightforwardly to a driven Schrödinger equation for the scattering part. Within the ECS
approach, two methods have been proposed to solve it: (i) the use of a complex rotation of
the radial coordinate is performed on the driven equation and (ii) the use of complex basis
sets. In [13], the authors showed that the rotation of the coordinate is equivalent to considering
the rotation on the coordinate of the basis functions. In this paper, we follow that idea and
implement it in a particular form using a GSF basis. As already demonstrated in [12], these
can be built possessing adequate incoming or outgoing behavior, so that all basis functions
possess the same behavior at large distances. We will show that the use of Sturmian functions
within the context of ECS presents at least two advantages. First, GSF allow us to naturally
impose the correct scattering behavior on the solutions of the driven equation, thus avoiding
some problems appearing upon rotation of the coordinate in the driven equation [22]. Second,
the efficiency of the method can be increased because the basis makes diagonal the operator
(H − E ) and is localized in the region where the interaction takes place.

Although more elaborate, a strategy similar to that presented for the two-body case is also
implemented for the three-body problem. It is done in hyperspherical coordinates because the
three-body wavefunction asymptotically behaves as a spherical wave in only one coordinate,
the hyper-radial coordinate [23]. For electron impact ionization problems, for example, if
one uses the spherical coordinates (r1, r2) for two electrons, the solution is usually expanded
in partial waves and outgoing behavior is imposed on each radial coordinate (r1, r2) for the
two-continuum wavefunction. Within the ECS approach [6], for example, an external rotation
of each spherical coordinate is performed; even though a numerical approximation to the
exact solution of the problem is found, difficulties in representing its asymptotic behavior are
encountered (the same happens when using the standard Sturmian approach [8]). Indeed, a
larger than necessary numerical domain is required to extract the scattering information, since
a good representation of the hyperspherical wave has to be found on a squared contour, rather
than on a natural hyperspherical one. Moreover, slow convergency rates are to be expected;
for the Coulomb problem, the inter-electronic correlation is not included in the basis and
generally implies a slow partial wave expansion of the wavefunction. Thus, to treat three-body
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ionization or fragmentation problems, it is natural and convenient to use hyperspherical, rather
than spherical, coordinates. In this paper, GSF in hyperspherical coordinates (HGSF) are
introduced. We do that following the ideas of Macek and Ovchinnikov [24] but we generalize
their proposal by using also Sturmian functions in the hyper-radius possessing outgoing (or
incoming) behavior. Within this approach, an exterior complex rotation of the hyper-radial
coordinate can be performed on the Sturmian equation. This leads to a basis-based ECS
for the three-body problem. This approach is a variant of the proposal of McCurdy and co-
workers [6], with the important advantage that the asymptotic condition is imposed on a
natural hyperspherical contour. Within the present approach, the divergences associated with
the driven term of the scattering equation disappear, avoiding the necessity of introducing an
artificial cut-off on the interaction potential. Because of the similarities with the two-body
problem approach, the properties and conclusions can be extended straightforwardly.

The rest of the paper is arranged as follows. In section 2, we present the two-body
scattering formulation and propose using Sturmian basis to solve the standard driven equation.
The efficiency of the method is illustrated through Hulthén Sturmian functions. The three-
body scattering problem (for two electrons in interaction with a heavy nucleus) is presented in
section 3.1. In section 3.2, a set of completely correlated basis hyperspherical GSF is defined
in terms of intermediate Sturmian functions. The solution of the driven Schödinger equation
is discussed in section 3.3. Finally, a summary is presented in section 4.

Atomic units (� = e = 1) are used throughout.

2. Two-body scattering problem

2.1. Formulation of the problem

The two-body scattering problem is described by the Schrödinger equation [H − E]�(r) = 0
with a positive energy E = k2/(2μ) (μ is the reduced mass). For two particles interacting via a
spherically symmetric potential V (r), the radial equation, with the convenient transformation
�(r) = �(r)/r, reads

(hl − E )�(r) = 0, (1)

with the Hamiltonian hl = Tl + V (r), where Tl = − 1
2μ

(
d2

dr2 − l(l+1)

r2

)
represents the reduced

kinetic energy operator and l is the angular momentum eigenvalue. The free-particle solution
�0(r) of the simplified problem (without potential)

(Tl − E )�0(r) = 0 (2)

is known

�0(r) = kr jl(kr), (3)

where jl(z) represents the spherical Bessel function of order l [25]; �0(r) behaves at large
distances as sin

(
kr − π

2 l
)

and corresponds to a unitary flux.
It is quite common in scattering theory (e.g, [20, 21]) to separate the solution of the

scattering problem into two terms,

�(r) = �0(r) + �sc(r), (4)

where �0(r) is taken as initial—asymptotic—state (corresponding to no scattering) and �sc(r)
is the scattering term describing the dynamics of the collision process. In principle, �sc(r)
should have pure outgoing behavior, denoted �+

sc(r); the corresponding wavefunction (4) is
denoted �+(r). Replacing decomposition (4) into equation (1), we obtain the following driven
Schrödinger equation for �sc(r):

(hl − E ) �sc(r) = −V (r)�0(r). (5)
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Solutions of this equation possessing pure outgoing behavior can be obtained only if the
driven term falls off to zero sufficiently fast. This is a requirement of the standard theory of
scattering. Long-range potentials are acceptable as long as one modifies the way of extracting
the scattering information [22]; this happens, for example, when dealing with potentials
possessing a Coulomb tail. If the potential V (r) is of short range, a possible representation
for the asymptotic form of �+

sc(r) is given by the Riccati–Hankel functions [25], denoted
H±

l (0, r), which are irregular at the origin and behave asymptotically as e±i(kr− π
2 l). For

long-range potentials, however, the treatment should be developed within the framework of
a distorted wave approach. For Coulomb plus short-range potentials, the proper recipe is
given in section 4.2 of [6]. Recently [22], a reformulation has been proposed which allows
us to formulate the scattering problem for both short- and long-range potentials, including
the pure Coulomb case. For Coulombic asymptotic behavior z1z2/r (let α = z1z2μ/k define
the Sommerfeld parameter), the scattering wavefunction �sc(r) has incoming (H−

l (α, r)) or
outgoing (H+

l (α, r)) behavior which, at large distances, behave as

H±
l (α, r) −→ e±i(kr−α ln(2kr)− π

2 l); (6)

the functions H±
l (α, r), which are linear combinations of the regular and irregular Coulomb

functions, are irregular close to the origin. The asymptotic behavior of �sc(r) provides the
transition matrix Al = eiδl sin(δl ) (or the scattering matrix Sl = e2iδl ) in terms of the scattering
phase-shift δl .

2.2. Use of generalized Sturmian basis to solve the driven equation

Sturmian functions may be used as an appropriate basis to deal with scattering problems (see
[8, 9, 12] and references therein). These functions satisfy the equation

[Tl + U (r) − E] Sn,l (r) = −βnV(r)Sn,l(r), (7)

where U (r) and V(r) are, respectively, the auxiliary and generating potentials and βn are the
eigenvalues; the energy E is taken as an externally fixed value (E � 0 for scattering problems).
Assuming that r = x is a point located in a region where the generating potential is negligible,
equation (7) comes with the two-point boundary conditions

S±
n,l (r = 0) = 0, (8a)

S±
n,l (r = x) → H±

l (α, x); (8b)

α = 0 when U (r) is short range. As in all two-point boundary value problems, the Sturmian
functions S±

n,l (r) (assumed normalized) form a complete∑
n

S±
n,l

(
r′)V(r)S±

n,l (r) = δ(r − r′) (9)

and orthogonal set〈
S±

n′,l

∣∣V(r)
∣∣S±

n,l

〉 =
∫ ∞

0
dr S±

n′,l(r)V(r)S±
n,l (r) = δn′,n. (10)

Note that the functions are orthogonal with respect to the generating potential V(r) and that
no conjugation symbol appears in equation (10).

The generating potential V(r) is arbitrary but defined to be of short range (say R0) and
shorter than that of U (r). In that way, for values of r such that V(r) is negligible, all the
Sturmian functions S±

n,l (r) satisfy

[Tl + U (r) − E] S±
n,l (r) = 0, (11)
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and thus possess the same energy and the same (e.g., outgoing) asymptotic behavior ruled
by U (r). These properties allow us to define an appropriate basis set to deal with scattering
problems, and we can use it to solve the driven equation (5). Indeed, expanding �sc(r) and
V (r)�0(r) in Sturmian functions

�±
sc(r) =

∑
n

anS±
n,l (r), (12)

− V (r)�0(r) =
∑

n

bnV(r)S±
n,l (r), (13)

and replacing into (5), we obtain∑
n

an [V (r) − U (r) + βnV(r)] S±
n,l (r) =

∑
n

bnV(r)S±
n,l (r). (14)

Choosing the auxiliary potential U (r) to be the interaction V (r), only the generating potential
remains on the lhs. Projecting on the left by S±

n′,l(r), integrating on the coordinate and using
the orthogonality property (10), we end up with∑

n

βnδn′,nan = bn′ . (15)

Thus, a matrix equation s̄ a = b is obtained and can be solved by standard matrix methods.
Taking the asymptotic limit of (12) yields

�±
sc(r) →

∑
n

an e±i[kr−α ln(2kr)− π
2 l] = Al e±i[kr−α ln(2kr)− π

2 l], (16)

which leaves us with the simple definition Al = ∑
n an for the transition amplitude.

The Sturmian basis functions transformed the operator (hl − E ) into a diagonal matrix s̄
whose elements are simply the Sturmian eigenvalues. This can be seen in an alternative form.
Equation (5) can be rewritten as

�±
sc(r) = G±V (r)�0(r) (17)

in terms of Green’s function G± which is responsible for providing the correct asymptotic
behavior to �±

sc(r). Now, Green’s function satisfies the equation

(hl − E )G±(E, r, r′) = δ(r − r′), (18)

and can be expanded in terms of Sturmians functions as follows:

G±(E, r, r′) =
∑

n

gnS±
n,l (r

′)S±
n,l (r). (19)

Replacing this expansion into (18), using equation (7) and taking U (r) = V (r), we find

−
∑

n

gnβnS±
n,l(r

′)S±
n,l (r)V(r) = δ(r − r′). (20)

By comparison with the closure relation (9), we deduce that gn = −1/βn. This means
that Green’s function is diagonal in the generalized Sturmian representation. Besides, the
representation is optimized since the asymptotic region is associated with the range of the
generating potentialV(r); the asymptotic form of G± is directly given by the correct asymptotic
behavior of the Sturmian functions. This is clear since equation (7) can be written as

1

βn
S±

n,l (r) = −G±V(r)S±
n,l (r), (21)

5
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and thus the Sturmian functions are eigenfunctions of the operator G±V(r) with the eigenvalue
−1/βn [26–28].

At this point, a comparison with the ECS can be performed. Similar to what we have just
described, the ECS approach also uses spectral methods to represent the operator (hl − E );
the main difference with our proposal, however, is that we are using basis functions that
diagonalize the interaction and the kinetic energy, and the Green’s function itself. Besides, the
generating potential V(r) can be defined as having the range of the driven term, implying that
all the basis functions are concentrated in the region where the driven term V (r)�0(r) is not
negligible.

Our description of the Sturmian method implemented to deal with scattering problems
shows that it is equivalent to the ECS in the sense that a matrix representation of (hl − E )

and (hl − E )−1 is used to solve the problem, and a similar type of linear system of equations
appears. In the Sturmian case, the basis is optimized to have not only the energy of the problem
but also the appropriate asymptotic behavior (8b). The difference from the ECS approach is,
up to this point, that we are not performing a rotation of the coordinate. However, this can be
performed. Within the Sturmian method, it is more convenient to define Sturmian functions
with the rotated coordinate rather than using the rotation of the driven equation (5). Consider
a smooth exterior complex rotation of the coordinate, denoted τ (r, η), which at the origin and
until a point close to R0 behaves as r and for large r > R0 behaves as r eiη. For rotation r > R0,
will transform all the basis functions with, e.g., outgoing behavior into

S+
n,l (τ (r, η)) → H+

l (α, r eiη); (22)

thus, for large values of r, H+
l (α, r eiη) → ei[kr eiη−α ln(2kr eiη )− π

2 l] → 0 as desired. All the basis
functions possess the same outgoing behavior; thus, all of them will decrease asymptotically
in the same form.

Within the ECS method [6], a divergence of the driven term of equation (5) appears
when performing an exterior complex rotation; as a consequence, the method requires an
artificial cut-off of the potential on the right-hand side of the driven equation. It is clear
that this artifice is completely avoided when using Sturmian functions, as no incoming wave
behavior is allowed. Besides, the use of this basis for solving the driven Schrödinger equation
can considerably increase the efficiency of the standard ECS as proposed in, e.g., [13]. For
illustration, we consider here Sturmian functions corresponding to the Hulthén potential
V(r) = −e−r/R0/(1− e−r/R0 ). In figure 1, we plot the real and imaginary parts of the Sturmian
functions versus r; here R0 = 10 and U (r) = 0 [12]. One can easily observe that all the basis
functions possess the same asymptotic behavior for values of r > R0; all of them have the same
energy, here E = 0.6. If we assume that the range of the driven term is that of the generating
potential, let us say R0, then we clearly see how the efficiency of the basis is increased because
all the nodes are located in that region. In this way, the convergence rate of expansion (12) of
the scattering wavefunction is accelerated, the convergence itself being guaranteed by the fact
that V (r)�0(r) is short range.

In figure 2, we plot (with dots) as a function of the real part of the radial coordinate the
real (top panel) and imaginary (bottom panel) parts of two of the Sturmian functions plotted
in figure 1; for the same values of E and R0, the eigenvalues are β = −0.08 + i0.438 178
and β = −2.88 + i2.629 07. For comparison, the real and imaginary parts of the Sturmian
functions, n = 1 (long dashed line) and n = 6 (dashed line), with the real coordinate are
included. We use here a smooth complex rotation of the coordinate such as the one proposed
by Karlsson [29], i.e. τ (r, η) = r + i tan ηg(r) with g(r) = 0 if r < R̄0 and g(r) = (r − R̄0)

2 if
r > R̄0. All the basis functions have the same behavior as the one observed in figure 1 for the
real values of r. For values of r larger than R̄0 (here R̄0 = 15), those with the rotation in the

6
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Figure 1. Real and imaginary parts of four Hulthén Sturmian functions Sn,0(r) (n = 1–4) for the
angular momentum l = 0, range R0 = 10 and energy E = 0.6. The Hulthén potential (solid line)
is also shown.

coordinate decrease exponentially to zero. We can fix R̄0 as being equal to, greater or smaller
than R0 depending on the convenience in the calculations to be performed and depending on
the size (extension) of the driven term.

A complete connection between the ECS and the Sturmian approach discussed above can
be established if the set of Sturmian functions is derived from the equation

[Tl(τ (r, η)) + U (τ (r, η)) − E] S̄n,l(τ (r, η)) = −βnV(τ (r, η))S̄n,l (τ (r, η)), (23)

with the two-point boundary conditions

S̄n,l (r = 0) = 0, (24a)

S̄n,l [τ (r, η) = τ (x, η)] → H±
l (α, x). (24b)

The boundary condition at large values of the coordinate is imposed for a real value
x of the radial coordinate and the parameter η enters parametrically through the relation
τ (r, η) = τ (x, η). Here, we are giving not only the optimal basis functions to be used
on scattering problems but also the way of obtaining them. All the methods discussed in
[8, 9, 12] (and references therein) can be applied to solve the complex rotated Sturmian
equation. The limit η → 0 can be easily taken and will lead to Sturmian functions obtained
over the real axis of the coordinate. The use of a smooth exterior complex rotation of the
coordinate avoids the occurrence of a discontinuity of the derivative of the basis functions
contrary to the ECS proposal [6].
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Figure 2. Real and imaginary parts (plotted with dots) of two of the Hulthén Sturmian functions
Sn,0(r) (n = 1 and n = 6) obtained after a smooth complex rotation (see the text) as a function of
the real part of the radial coordinate (l = 0, R0 = 10 and E = 0.6). For comparison, the real and
imaginary parts of the Sturmian functions, n = 1 (long dashed line) and n = 6 (dashed line), with
the real coordinate are included.

3. Three-body scattering problems: a hyperspherical approach

When applied to two-body scattering problems, the ECS method and the Sturmian proposal
presented in section 2 are based on the same principle: solving a driven equation to find a
function which possesses pure, e.g., outgoing behavior at large distances. As explained in
the introduction, to treat three-body ionization or fragmentation problems it is more natural
and convenient to use hyperspherical, rather than spherical, coordinates. In order to maintain
a Sturmian approach like in section 2, we need to use Sturmian functions in hyperspherical
coordinates and impose proper outgoing behavior. One possible way of introducing such
functions has been presented in [30]. Here, we will introduce a different set similar to the one
used by Macek and Ovchinnikov [24].

3.1. Formulation in hyperspherical coordinates

The Hamiltonian for a system of three particles of masses m1, m2 and m3 can be written in
terms of any of three pairs of Jacobi coordinates ri j, Rk,i j or mass-scaled Jacobi coordinates
xk and Xk [30],

xk =
(

μi j

μ

)1/2

ri j, Xk =
(

μ

μi j

)1/2

Rk,i j,

for k = 1, 2, 3 and i �= j �= k. The two-body reduced mass for the i j pair of particles is
μi j = mimj/(mi + mj), while the three-body one is μ = √

mimjmk/(mi + mj + mk). The

8
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hyper-radius ρ, defined as ρ2 = x2
k + X2

k , is independent of the particular choice of k. The
remaining five hyperangular coordinates (denoted collectively by ω5) include the hyperangle

tan αk = Xk

xk

and the polar angles θxk , φxk and θXk , φXk defining the orientations x̂k and X̂k of the Jacobi
vectors in the center-of-mass reference frame. We will drop the subindex k in the following,
so the previous definitions allow one to write x = ρ cos α and X = ρ sin α.

The kinetic energy operator takes the form

T = − 1

2μ

[
1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
− �2

ρ2

]
,

where �2 is the grand orbital angular momentum operator

�2 = − 1

sin2 α cos2 α

d

dα

(
sin2 α cos2 α

d

dα

)
+ j2

cos2 α
+ l2

sin2 α
, (25)

where j and l denote the rotational and centrifugal angular momentum operators, respectively.
The Schrödinger equation to be considered is

[T + V (ρ, ω5) − E] �(ρ, ω5) = 0, (26)

where V (ρ, ω5) describes the interaction potentials between the particles. When dealing with
two-electron systems (and a nucleus of charge Z), the interaction potential reads [24]

V (ρ, ω5) = − Z

r1
− Z

r2
+ 1

r12

= − Z

ρ cos α
− Z

ρ sin α
+ 1

ρ
√

1 − sin(2α) cos θ12
= C(ω5)

ρ
, (27)

where cos θ12 = r̂1 · r̂2 defines the inter-electron angle. We can use the well-known partial
wave expansion [31]

1

r12
= 1

ρ

∞∑
l=0

Pl (cos θ12)

{
sec α tanl α 0 � α � 1

4π

csc α cotl α 1
4π � α � 1

2π,
(28)

to separate the angle α from the other variables. Besides, expanding the Legendre polynomials
in the spherical angles {θ1, φ1, θ1, φ1}

Pl (cos θ12) = 4π

2l + 1

l∑
m=−l

(−1)mY −m
l

(
r̂2

)
Y m

l (r̂1), (29)

we have complete angular separation, and C(ω5) reads explicitly

C(ω5) = − Z

cos α
− Z

sin α
+

∞∑
l=0

4π

2l + 1

l∑
m=−l

(−1)mY l
−m

(
r̂2

)
Y l

m(r̂1)

{
sec α tanl α

csc α cotl α

}
, (30)

where the restrictions given in (28) must be taken into account.
For collision problems, we need to solve the Schrödinger equation (26). As in section 2.1,

the wavefunction �(ρ, ω5) is separated into two terms, �(ρ, ω5) = �0(ρ, ω5) + �sc(ρ, ω5),
leading to the following driven equation:

[T + V (ρ, ω5) − E] �sc(ρ, ω5) = −W (ρ, ω5)�0(ρ, ω5), (31)

where W (ρ, ω5) is the interaction not solved by a given initial state �0(ρ, ω5). Two important
issues while solving this collision problem are (i) the range of the interaction W (ρ, ω5) and
(ii) the use of an appropriate matrix definition for the operator (H −E ) or for Green’s function
(H − E )−1; here H = T + V (ρ, ω5).

The basis set to be used has to take into account both issues: it has to be complete in the
region where the interaction W (ρ, ω5) is not negligible and outside that region has to possess
the correct asymptotic behavior corresponding to all three Coulomb interactions.

9
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3.2. Hyperspherical Sturmian functions

Sturmian functions in hyperspherical coordinates were introduced and applied by Macek
and Ovchinnikov [24]. In this very interesting paper, these authors extended the Sturmian
concept to various dimensions and defined the solution of the three-body Coulomb problem
in a very particular way. Briefly, the solution was expressed as a contour integral with an
integrand given by the product of Bessel functions depending on the hyper-radius, angular
Sturmian functions depending on all the angular coordinates and a coefficient depending on
the integration variable. The integration is performed over the index of the Bessel function
defining what is known as a Kontorovich–Lebedev transform [32–35], which is a kind of
generalized Fourier transform. The Bessel functions form a complete set but do not possess
the appropriate boundary conditions; for this reason, the integral has to build the correct
Coulomb logarithmic-type solution.

Here we will follow these ideas, but instead of using a Kontorovich–Lebedev
representation, we will use Sturmian functions also for the hyper-radial coordinate. These
functions possess the appropriate boundary conditions and depend on a discrete index rather
than a continuous one as in the Kontorovich–Lebedev transform. This allows the use of matrix
techniques to solve scattering problems.

To achieve this, we first define intermediate Sturmian functions both for the angular and
the radial coordinate, and then use them to define full non-separable Sturmian functions.

3.2.1. Intermediate Sturmian functions. For the hyper-radial coordinate, we can introduce a
set of radial functions S̄m(ρ) satisfying[

− 1

2μ

1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ λ(λ + 4)

2μρ2
+ Uint(ρ) − E

]
S̄m,λ(ρ) = −βmVint(ρ)S̄m,λ(ρ), (32)

which we consider as an intermediate Sturmian equation. The potential Uint(ρ) can be of short
or long range; Vint(ρ) is a generating potential. Introducing the reduced function

S̄m,λ(ρ) = Sm,λ(ρ)

ρ
5
2

(33)

into (32) leads to[
− 1

2μ

∂2

∂ρ2
+ λ(λ + 4) + 15

4

2μρ2
+ Uint(ρ) − E

]
Sm,λ(ρ) = −βmVint(ρ)Sm,λ(ρ), (34)

which has the same form as equation (7) presented in section 2 (the difference appearing only
in the definition of the 1/ρ2 term) and similar boundary conditions can then be used. The
hyper-radial eigenfunctions Sm,λ(ρ) form an orthogonal and complete set such that∫

dρ Sm,λ(ρ)Vint(ρ)Sn,λ(ρ) = δmn, (35a)

∑
m

Sm,λ(ρ
′)Vint(ρ)Sm,λ(ρ) = δ(ρ − ρ ′). (35b)

Following Macek and Ovchinnikov [24], we define a set of Sturmian functions depending
on the angular coordinates ω5 as the eigenfunctions �ν(ω5) of the following angular Sturmian
eigenvalue equation:

[�2 + 2μρνC(ω5)]�ν(ω5) = λ(λ + 4)�ν(ω5), (36)

where ρν are the eigenvalues, while λ is an externally fixed parameter. These functions
are connected to the adiabatic functions in the same way as the radial Sturmian functions are

10
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connected to the eigenenergy functions corresponding to the same equation. For a given hyper-
radius R, the hyperspherical adiabatic basis functions ϕs(R, ω5) are defined as eigenfunctions
of the equation

[�2 + 2μRC(ω5)]ϕs(R, ω5) = 2μεs(R)R2ϕs(R, ω5), (37)

with eigenvalues εs(R); they define, for each value of s, a set of curves as a function of R. By
comparison of equations (36) and (37), the resolution of the equation 2με(ρ)ρ2 = λ(λ + 4)

provides the roots ρν(λ). The Sturmian angular functions �ν(ω5) correspond to all those
functions having energies associated with the externally fixed value λ and different angular
Coulomb potentials C(ω5).

As discussed in [24], the eigenfunctions �ν(ω5) satisfy the following orthogonality and
closure relations:∫

dω5C(ω5)�a′ (ω5)�a(ω5) = δaa′ (38a)

∑
a

�a
(
ω′

5

)
�a(ω5)C(ω5) = δ

(
ω5 − ω′

5

)
, (38b)

where dω5 represents the five-dimensional volume element and δ
(
ω5 − ω′

5

)
is the symbolic

product of the delta functions corresponding to all five angular coordinates. Note that no
complex conjugation appears in either (38a) or in (35a).

3.2.2. Hyperspherical GSF. With the intermediate Sturmians introduced above, we may
now define a new set of hyperspherical generalized Sturmian functions (HGSF), denoted
�η(ρ, ω5), with outgoing (or incoming) asymptotic conditions. We ask these HGSF to satisfy
the following equation:[

− 1

2μ

1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ �2

2μρ2
+ C(ω5)

ρ
− E

]
�η(ρ, ω5) = −γηVg(ρ)C(ω5)�η(ρ, ω5).

(39)

The generating potential Vg(ρ) has to be of short range, the range being associated with that
of the perturbation W (ρ, ω5). Asymptotically, all the basis functions will satisfy the equation[

− 1

2μ

1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ �2

2μρ2
+ C(ω5)

ρ
− E

]
�η(ρ, ω5) = 0, (40)

which includes the Coulomb interactions and the subsequent coupling produced even in the
asymptotic region.

To build the HGSF, we propose the expansion

�η(ρ, ω5) =
∑
mν

amν

Sm,λ(ρ)

ρ
5
2

�ν(ω5). (41)

Replacing into equation (39), and using equation (36), we obtain∑
mν

amν

[
(Uint(ρ) + βmVint(ρ)) + ρν (λ)

C(ω5)

ρ2
− C(ω5)

ρ
− γηVg(ρ)C(ω5)

]
× Sm,λ(ρ)�ν (ω5) = 0. (42)

The non-separability of the term C(ω5)/ρ enforces the generating potential Vint(ρ) to be of
long range. For that reason, we make the following choice:

Uint(ρ) = 0, (43a)

11



J. Phys. A: Math. Theor. 45 (2012) 045304 G Gasaneo and L U Ancarani

Vint(ρ) = 1

ρ
. (43b)

With these potentials, the Sturmian equation (34) defines a set of hyper-radial Coulomb
Sturmian functions (HCSF) with an externally fixed centrifugal barrier fixed by λ,

Sm,λ(ρ) = Nm,λ eiKρ (2iKρ)λ+5/2
1F1 (−m, 2λ + 5,−2iKρ) , (44)

where E = K2/2μ and Nm,λ defines a normalization constant. These functions are equivalent
to those given in appendix D of [36] but in hyperspherical coordinates. In this case, the
eigencharges of equation (34) are given by βm = (m + 5

2 + λ)iK/μ.
Projecting equation (42) over the basis functions, and using the orthogonality properties

(38a) and (35a), we find∑
mν

[
βmδmm′Oν ′ν +

(
ρν(λ)

[
1

ρ2

]
mm′

− δmm′ − γη[Vg]mm′

)
δνν ′

]
amν = 0, (45)

where the overlap of the angular functions is given by the matrix

Oν ′ν =
∫

dω5 �ν ′ (ω5)�ν(ω5), (46)

and the matrix elements [A]mm′ are defined by one-dimensional integrals,

[A]mm′ =
∫

dρ Sm,λ(ρ)A(ρ)Sm′,λ(ρ). (47)

Solving equation (45) provides the expansion coefficients amν and the eigenvalues γν .
The boundary conditions for the Sturmian functions are such that they vanish at ρ = 0.

The centrifugal barrier defined in terms of λ is introduced through the angular equation; it
provides the Sturmian functions Sm,λ(ρ) a behavior ρλ close to the origin, making the integrals
[1/ρ2]m′m well defined. Note that the parameter λ is externally fixed and is not the eigenvalue
of equation (36). It is included in the angular equation with the purpose of giving a well-
defined definition for the hyper-radial integrals (47). It is also worth mentioning that the HCSF
closed form leads to analytical expressions for the matrix elements (47) allowing for their high
precision evaluation.

The HGSF built in this way have the following important properties:∫
dv �η′ (ρ, ω5)�η(ρ, ω5)Vg(ρ)C(ω5) = δηη′ (48a)

∑
η

�η(ρ
′, ω′

5)�η(ρ, ω5)Vg(ρ)C(ω5) = δ(ρ − ρ ′)δ(ω5 − ω′
5), (48b)

where dv = ρ5 dρ sin2 α cos2 α dα dX̂ dx̂. Note again that no complex conjugation is used in
(48a).

The HGSF �η(ρ, ω5) are the generalization of the Sturmian functions introduced by
Macek and Ovchinnikov to the whole set of hyperspherical coordinates. The study of the
properties of these functions themselves is of interest due to the fact that they contain most of
the physics of the collision problem; different types of asymptotic behavior can be imposed
on them, as indicated in section 2. The exponential term eiKρ of (44) provides the outgoing
behavior to function �η(ρ, ω5) of (41), while the polynomial of (44) combined with the
angular functions allows for the construction of the Peterkop-type asymptotic behavior in the
region where all the particles are far from each other.
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3.3. Solving the driven equation

When dealing with two electrons and a heavy nucleus, the driven Schödinger equation (31)
results [

T + C(ω5)

ρ
− E

]
�sc(ρ, ω5) = −W (ρ, ω5)�0(ρ, ω5), (49)

where W (ρ, ω5) depends on the election of the initial channel �0(ρ, ω5). One of the
requirements of the standard scattering theory is that the interaction on the right-hand-side of
(49) must be of short range. Two main reasons are associated with this condition. One is a
mathematical issue: if the interaction W (ρ, ω5) is of long range, the kernel of the associated
integral equation is not compact. The second reason is that if W (ρ, ω5) is of long range, this
function enforces given asymptotic behavior on the solution of (49). Conversely, if W (ρ, ω5) is
of short range, after a given ρ value, the driven term of (49) will be zero and then an asymptotic
solution possessing pure outgoing (or incoming) behavior of the homogeneous equation will
be allowed for �sc(ρ, ω5).

To solve equation (49), we can expand �sc(ρ, ω5) and W (ρ, ω5)�0(ρ, ω5) on the HGSF
basis,

�sc(ρ, ω5) =
∑

η

ψη�η(ρ, ω5) (50)

W (ρ, ω5)�0(ρ, ω5) =
∑

η

cηVg(ρ)C(ω5)�η(ρ, ω5). (51)

Replacing in (49), projecting on the left with the basis functions and using (48a), we obtain∑
η

γηδηη′ψη = cη′ , (52)

that is, the same matrix form as found for the two-body problem (see equation (15) of
section 2). Similarly, the range of the generating potential Vg(ρ) is clearly associated with the
range of W (ρ, ω5) through expansion (51).

The reason behind the obtained diagonal representation of (H − E ) is connected with
the definition of Green’s function, similar to the two-body case (section 2.2). The three-body
Coulomb Green’s function satisfies the following hyperspherical equation:[

− 1

2μ

1

ρ5

∂

∂ρ

(
ρ5 ∂

∂ρ

)
+ �2

2μρ2
+ C(ω5)

ρ
− E

]
G(ρ ′, ω′

5, ρ, ω5) = δ(ρ − ρ ′)δ(ω5 − ω′
5),

(53)

and we propose the following expansion in terms of HGSF:

G(ρ ′, ω′
5, ρ, ω5) =

∑
η

gη�η(ρ
′, ω′

5)�η(ρ, ω5). (54)

Replacing into (53), we obtain∑
η

gη[−γηVg(ρ)C(ω5)]�η(ρ
′, ω′

5)�η (ρ, ω5) = δ(ρ − ρ ′)δ(ω5 − ω′
5), (55)

and by comparison with the closure relation (48b), we deduce

gη = − 1

γη

. (56)

Green’s function built in this way will possess the correct asymptotic behavior in the region
where the generating potential is negligible.
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The HGSF �η(ρ, ω5) can be constructed so as to provide �sc(ρ, ω5) with outgoing
(or incoming) asymptotic behavior. Expansion (50) is then restricted to the region where the
interaction W (ρ, ω5) is not negligible, exactly as happened in the two-body problem. The main
task of the whole problem is then to solve the Sturmian equation (39). If we employ expansion
(41) together with the HCSF defined by (44), all HGSF will possess outgoing behavior. Thus,
a complex rotation of the coordinate, as described in section 2.2 for the two-body case, can be
easily implemented. Similarly, the exterior complex rotation can be performed on the Sturmian
equation (39) rather than on the driven equation (49).

4. Summary

In this paper, we have presented the theory, based on GSF, necessary to deal with scattering
problems for two and three particles.

For the simple case of two particles, we showed how to build the scattering part of
the solution in terms of Sturmian functions which are defined in terms of an auxiliary and a
generating potential. We showed that the operator (H −E ) can be reduced to a diagonal matrix
whose elements are given by the Sturmian eigenvalues, i.e. the magnitudes of the generating
potential. The range of the latter is adjusted to match that of the driven term of the scattering
non-homogeneous equation; this makes the basis particularly efficient as exemplified with
Hulthén Sturmian functions. The auxiliary potential provides all basis functions pure outgoing
behavior, as the sought scattering function itself. Consequently, an exterior complex rotation
of the coordinate can be performed. The use of Sturmian basis functions avoids all the problem
appearing in the standard ECS theory discussed in [22]. We showed also that the ECS theory
is a particular case of the Sturmian approach.

For three-body problems, we defined a strategy similar to the one discussed for two-
body problems, although the mathematical approach is more elaborate. We constructed six-
dimensional Sturmian functions in hyperspherical coordinates. As for the two-body case, the
Sturmian equation includes a generating and an auxiliary potential, the latter defining the
asymptotic behavior of all the basis functions. The generating potential, being of short range,
is again adjusted to the range of the driven term of the scattering Schrödinger equation. The
hyperspherical Sturmian functions are constructed in terms of some intermediate Sturmian
functions. For the angular part, we use the functions presented and discussed by Macek
and Ovchinnikov [24], while for the hyper-radial coordinate, we use closed form Coulomb
Sturmian functions. Similar to the two-body case, the constructed basis functions lead to a
diagonal matrix representation of the three-body operator (H −E ). The fact that all the hyper-
radial basis functions possess pure outgoing behavior allows again for an exterior complex
rotation of the hyper-radius ρ. Thus, it is possible to show that the present Sturmian approach
includes the exterior complex rotation approach as a particular case, the procedure to show
the equivalence of the methods being similar to the one presented for the two-body case.

The calculations of cross sections and application to different three-body scattering
processes will soon be presented elsewhere.
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