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Abstract
Finite extensibility oscillators are widely used to simulate those systems that cannot be
extended to infinity. For example, they are used when modelling the bonds between molecules
in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this
paper, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented
and studied. To this end, the harmonic balance method is applied to determine the
amplitude–frequency and amplitude–phase equations. The distinguishable feature in this case
is the bending of the amplitude–frequency curve to the frequency axis, making it
asymptotically approach the limit of maximum elongation of the oscillator, which physically
represents the impossibility of the system reaching this limit. Also, the stability condition that
defines stable and unstable steady-state solutions is derived. The study of the effect of the
system parameters on the response reveals that a decreasing value of the damping coefficient
or an increasing value of the excitation amplitude leads to the appearance of a multi-valued
response and to the existence of a jump phenomenon. In this sense, the critical amplitude of
the excitation, which means here a certain value of external excitation that results in the
occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects
of system parameters on the frequency–amplitude response are performed and compared with
analytical calculations. At a low value of the damping coefficient or at a high value of
excitation amplitude, the agreement is poor for low frequencies but good for high frequencies.
It is demonstrated that the disagreement is caused by the neglect of higher-order harmonics in
the analytical formulation. These higher-order harmonics, which appear as distinguishable
peaks at certain values in the frequency response curves, are possible to calculate considering
not the linearized frequency of the oscillator but its actual frequency, which is strongly
amplitude dependent. On the other hand, for a high value of the damping coefficient or a low
value of excitation amplitude, the agreement between numerical and analytical calculations is
excellent. For these cases, the system is prevented from exploring large amplitudes of
vibration and therefore the nonlinearity is not much evidenced.

PACS number: 05.45.−a

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Nonlinear oscillators have become over the last few years
an active field of research in many areas of physics and
engineering. This interest seems to come from the inherent
nonlinear behavior of real-world models and from the fact
that the dynamic behavior of this type of system is much

richer than that of linear systems. For example, among some
interesting phenomena unique to nonlinear systems are the
well-known jump phenomenon and the fact that the solutions
of nonlinear system are affected by initial conditions. The
most popular examples of nonlinear oscillators appear when
considering a cubic nonlinear stiffness term (Duffing’s
oscillator [1]) or a quadratic nonlinear damping term
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(Van der Pol’s oscillator [2]). Naturally, a large variety of other
types of nonlinearities have been considered throughout the
years. Worthy of mention are the works of Gendelman [3],
Lee et al [4], van Horssen et al [5], Kalmár-Nagy and
Shekhawat [6] and Ma and Kahraman [7]. Unlike linear
systems, where the principle of superposition applies,
nonlinear systems are especially hard to solve and no
simple closed form solution can be found. However, various
approaches have been developed to study them. Among the
most salient methods, it is possible to find perturbation
methods [8–10], variational approaches [11, 12], parameter
expansion [13, 14], decomposition [15, 16], the multiple
scale method [2, 17, 18] or harmonic balance-based methods
[19, 20]. Among all these methods, the harmonic balance
method (HBM) has been turned into the most efficient tool
for solving nonlinear problems in which one or two harmonics
can be assumed to predominate in the response [19]. Despite
the simplicity of the method (to substitute a Fourier series
as the proposed solution into the equations of motion and
to equate coefficients of the same harmonic components),
its range of applicability covers a large variety of model
complexities [8].

Recently, finite extensibility nonlinear oscillators
(FENOs) have attracted a great deal of attention in the theory
of macromolecules, particularly in the theory of polymer
dynamics [21] and DNA dynamics [22], and in the simulation
of non-Newtonian fluids [23]. For chain models in polymer
dynamics, the FENO models represent the physical situation
when the macromolecule (considered a large chain of coupled
oscillators) is subjected to strong tensile forces (large stretch-
ing). For relatively small amplitudes of vibration, these
oscillators can be well described by a linear spring
connectivity between monomers; however, the description
becomes unrealistic when the molecules are highly stretched
and the forces are essentially nonlinear. From the large
number of ways that may be possible to select to model a
finite extensibility oscillator, a finite extensibility nonlinear
elastic potential (FENE) [24] is chosen for the title problem.
The reason for selecting this type of potential is that it is
widely used in computer simulations of polymers to prevent
the overstretching of the chains, thus avoiding unphysical
conformations. Despite its fundamental importance, we
do not know of previous works on the problem, even
in one dimension. However, the case of nonpolynomial
(quantum) oscillators (NPO) with a saturable nonlinearity
(see e.g. [25–27]) is closely related to it but is not the
same. The main difference to FENO lies in the fact that
the saturable nonlinearity represents a type of softening
(nonpolynomial) nonlinearity in NPO, whereas the FENO
possesses a hardening one.

The aim of this work is to study a harmonically
driven FENO to extract the fundamental characteristics of
its nonlinear dynamical behavior. This paper is organized as
follows. The first section is devoted to the introduction of the
mathematical formulation of the problem. Within this section,
the frequency–amplitude and phase–amplitude relations for
the steady-state response of the nonlinear system, as well
as a stability analysis of the solution, are also presented.
Section 2 presents the effect of system parameters on the
characteristics of frequency response curves (FRCs) and
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Figure 1. The FENE potential (solid line) and the FENE force
(dotted line) as a function of the normalized elongation of the
oscillator z =

x
x0

. For comparison, a harmonic potential is also
plotted (dashed line).

the calculation of the critical amplitude of the excitation.
The numerical results and comparisons between the
analytically obtained FRCs and the numerical calculations are
presented in section 4. In particular, the effect of higher-order
harmonics on the steady-state response of the system for low
and high frequencies of excitation is discussed and analyzed.
Finally, the concluding remarks are presented and discussed
in section 5.

2. Mathematical model of the system

One way to model a FENO is, as stated in the introduction,
using the FENE potential. Mathematically, it is represented
by the following expression:

VFENE(x) = −
1

2
kNLx2

0 ln

(
1 −

(
x

x0

)2
)

. (1)

Consequently, the force is given by

fFENE(x) = −
dV (x)

dx
= kNL

x

1 −

(
x
x0

)2 , (2)

where x represents the amplitude of the oscillator and x0

its maximum possible amplitude. Also, kNL accounts for the
linear stiffness constant, which is given, from the microscopic
theory of polymers, by kNL =

3kbT
b2 , where kb is the Boltzmann

constant, T the temperature and b the distance between the
monomers of the chain. A graphical representation of the
FENE potential and the force is shown in figure 1.

To obtain the harmonic response of the system, an
external force of constant amplitude and variable frequency,
Fcos(ωt), is attached to the oscillator. Using the expression
for the FENE force fFENE(x), the equation of motion takes
the following form:

mẍ + cẋ + kNL
x

1 − (x/x0)
2 = F cos(ωt), (3)
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where the dot indicates differentiation with respect to t , and
m and c are the mass and damper constants.

Introducing new variables, z =
x
x0

, ω2
NL =

kNL
m , ξ =

c
2mωNL

and f0 =
F

mx0
, equation (3) takes the final form

z̈ + 2ξωNL ż + ω2
NL

z

1 − z2
= f0 cos(ωt). (4)

It is clear from the above substitutions that ωNL represents the
linearized frequency or the frequency at small amplitudes of
vibration.

2.1. Amplitude–frequency and phase–frequency relations

To study the steady-state response of the FENO at the
frequency of excitation, the harmonic balance procedure is
used [19]. First, a phase shift t0 =

φ

ω
is introduced that replaces

cos(ωt) with cos(ωt + φ). Next, an approximate stationary
solution of the form z = Z cos(ωt) is replaced in equation (4),
which gives the following equation for the amplitude and
phase:

−Zω2 cos(ωt) + 2ξωNLωZ sin(ωt) + ω2
NL

Z cos(ωt)

1 − Z2 cos(ωt)2

= f0(cos(ωt) sin(φ) − sin(ωt) sin(φ)). (5)

The term of the nonlinear force (FENE force) can be treated
in a manageable form if a Taylor’s series expansion is used:

x

1 − x2
= x

∞∑
n=0

(x2)n. (6)

With the help of Euler’s formula, de Moivre’s formula and
Newton’s binomial theorem [28], it is not difficult to write
cos2n+1(θ) as

cos2n+1(θ) =

n∑
k=0

an,k cos(2n − 2k − 1)(θ), (7)

where an,k is given by

an,k =
1

22n

(
2n + 1

k

)
. (8)

Substituting equation (7) into (5) and comparing the coef-
ficients of cos(ωt) and sin(ωt), the following algebraic
equations for determining the amplitude Z and the phase φ

for steady-state harmonic oscillation are obtained:

−Zω2 + 2ω2
NL

Z
√

1 − Z2 + (1 − Z2)
= f0 cos(φ), (9)

2ξωNLωZ = f0 sin(φ), (10)

where in equation (9) the identity

∞∑
n=0

(
2n + 1

n

)(
Z2

4

)n

=
2

√
1 − Z2 + (1 − Z2)

(11)

[28] is used.

From equations (9) and (10), it is possible to obtain
the so-called amplitude–frequency relation independent of the
phase φ. The final equation is found to be

Z2

(
2ω2

NL
√

1 − Z2 + 1 − Z2
− ω2

)2

+ 4ξ 2ω2
NLω2 Z2

− f 2
0 = 0.

(12)

Equation (12), together with equations (9) and (10), represents
the basis of our further analysis.

2.2. Stability of the steady-state solution

The stability of the solution (in the sense of Lyapunov) can
be examined by means of a procedure developed in [19]. This
involves substituting z = Z cos(ωt) + u for z into equation (4)
and keeping the linear terms in the resulting equation. The
so-called variational equation leads to, in this case,

ü + 2ξωNLu̇ + ω2
NL

(
1 +

∞∑
n=1

2n + 1

22n
Z2n

((
2n
n

)
+ 2

(
2n

n − 1

)

× cos(2ωt)

))
u = 0. (13)

Approximating u = A1 cos(ωt) + A2 sin(ωt) and substituting
into equation (13) leads to a system of equations that has a
nontrivial solution if the determinant of the matrix coefficients
is zero and, in turn, to the equation for obtaining ω(Z):

(ω2)1,2 =

(
ω2

NL

(1 − Z2)3/2
−

4ξ 2ω2
NL

2

)
±√√√√√√√√

(
4ξ 2ω2

NL

2
−

ω2
NL

(1−Z2)3/2

)2

+ 4ω4
NL

×
Z4(

√
1−Z2 − 3) + Z2(5−4

√
1 − Z2) + 2(

√
1−Z2−1)

Z4(1−Z2)5/2
.

(14)

Equation (14) was obtained using the identities [28]

∞∑
n=0

(2n + 1)

(
2n
n

)(
Z2

4

)n

=
1

(1 − Z2)(3/2)
(15)

and

∞∑
n=0

(2n + 1)

(
2n

n − 1

)(
Z2

4

)n

=
3

(1 − Z2)(3/2)

−
2

(1 − Z2)(3/2)

1

Z2
+

2

Z2
. (16)

Summing up, equation (14) defines a curve that forms the
boundary between the stable and the unstable solutions.

2.3. Backbone curve and limit envelope

The following discussion reveals several important charac-
teristics of the steady-state response of the FENO when it
executes a harmonic motion of frequency ω and amplitude Z .
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The study of these characteristics is analyzed using the
backbone curve and limit envelope [19].

The backbone curve is defined by equation (9) setting
cos(φ) = 0; this yields

ω2
= ω2

NL
2

√
1 − Z2 + (1 − Z2)

, (17)

which physically represents the locus of the peak amplitude.
It is interesting to note that the position of the backbone curve
(intersection with the ω-axis) is only affected by ωNL, i.e. it
comes from the linear term of the restoring force (Z � 1).
The curvature, instead, is modified by the nonlinear restoring
force characteristic of the FENO as Z → 1. Additionally, the
backbone curve is not altered by damping c or the excitation
amplitude F .

The limit envelope is obtained by equation (10) for the
extreme value of φ = π/2, i.e. sin(φ) = 1. In this case, it is
defined by the following equation:

Z =
f0

2ξωNLω
=

F

cx0ω
. (18)

The limit envelope thus divides the plane (Z , ω) into two
regions: one for which cωZ 6 F/x0 and the other in which
the previous inequality is not satisfied. This restricts the
value of Z(ω) (equation (12)), which can lie only in the first
region. Thus, the limit envelope constitutes the envelope of
all possible response curves that are able to exist up to this
limit. It is important to note that at the points of intersection
with the backbone curve, the limit envelope and the response
curve Z(ω) have a common tangent (see figures 2(a) and (b)).
Additionally, the limit envelope is affected only by damping c
and the excitation amplitude F . However, it is invariant under
changes of the mass m and the nonlinear parameter ωNL or
linearized frequency.

Figures 2(a) and (b) illustrate the basic characteristics
of the curves mentioned above as well as provide several
examples of FRCs of the amplitude of displacement Z for
the FENO. The curves were constructed for fixed values of
F = 1 N, x0 = 1 m and kNL = 1 N m−2. Figure 2(a) shows the
backbone curve for three different values of damping c = 1/2,
1 and 2 Ns m−1 (setting m = 1 kg). The fact that the FENO
has a maximum elongation (Z = 1) bends the backbone curve
to the ω-axis and makes it asymptotically approach Z =

1. Besides that, different amounts of damping modify the
maximum value of the FRCs, as in the linear oscillator, but
leave the backbone curve unaltered. Nevertheless, there exists
a fundamental difference between the FENO and a linear
oscillator, which is evidenced possibly when passing from
c = 1 to c = 0.5. For these parameter values, the oscillator
passes from a uni-valued response to a multi-valued response
due to its nonlinearity. In this sense, there must be some
combinations of the parameters of the FENO that presents this
typical behavior. This important situation will be treated in the
next section.

On the other hand, figure 2(b) demonstrates how different
masses leave the limit envelope unaltered. To this end, three
different masses for the FENO are considered: m = 1/2, 1
and 2, and the damping is set to c = 1. It can be observed
that the FRCs change their position over the ω-axis (since
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Figure 2. (a) FRCs (solid lines) for the FENO at three different
values of damping. (b) The same as (a) but for three different values
of the mass.

ωNL changes as well) without altering the limit envelope.
Again, a multi-valued response is manifest for m = 2. The
effect of a maximum elongation is also evidenced for the three
cases considered, which causes a bending of the backbone
curve towards the ω-axis, making it asymptotically approach
Z = 1.

3. Effects of system parameters

This section is devoted to the analysis of the effect of the
linearized frequency ωNL, the damping coefficient ξ and the
excitation amplitude f0 on the FRCs of Z . As was previously
mentioned and observed from figures 2(a) and (b), there exist
some combinations of the parameters of the FENO that lead
to a multi-valued response for Z .

To investigate this dependence, it is necessary to analyze
the roots of the amplitude–frequency relation equation (12).
Different multiple real roots lead to a real multi-valued
response, whereas complex solutions must be neglected as
possible values of Z . A proper treatment of equation (12) that
leads to a polynomial of degree ten in Z (or degree five in

4
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Figure 3. The coordinates of the extreme point A in the (ω, ωNL) plane as a function of damping. The insets show the characteristic regions
in the (ω, ωNL) plane for different values of ξ ; f0 = 1.

Figure 4. The coordinates of the extreme point A in the (ω, ωNL) plane as a function of excitation amplitude. The insets show the
characteristic regions in the (ω, ωNL) plane for different values of f0; ξ = 0.2.

Y = Z2) can be found in appendix A. Generally speaking, no
algebraic solution exists for such a quintic equation, and for
that reason, one must proceed numerically.

The results of exploring the (ω, ωNL) plane for fixed
values of f0 and ξ can be found in figures 3 and 4, respectively.
Additionally, a parametric study of the effect of the variation
in these parameters is also presented.

Figure 3 (and inset plots) shows the regions of the
(ω, ωNL) plane that leads to a single valued (region I) or
a multi-valued (region II) response of the amplitude of
displacement Z for different values of ξ (leaving f0 fixed).
The regions are bounded arbitrarily by 0.5 < ωNL < 2.5 and
0 < ω < 5 for a better presentation of the results. Also,
the coordinates of the extreme point A (ω(A), ωNL(A)) are

5
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plotted as a function of the damping coefficient. From the inset
plots, it is possible to appreciate a well-defined separation
of the two regions. Region II starts for a value of ω that
seems to be independent of the damping and then it grows
linearly to A. On the other hand, for ω > ω(A) the limit
boundary between regions I and II decreases almost like a
hyperbola, to meet the ω-axis at a value that depends on
damping. More detailed information about the boundary of
both regions can be obtained from the plot of the coordinates
of the extreme point A. It can be seen that the values of both
ω(A) and ωNL(A) decrease, seemingly following an inverse
law, as the damping increases. From a physical viewpoint, this
implies that having a large value of the damping coefficient,
for instance larger than ξ > 0.3 (at constant f0), prevents the
system from having a multi-valued response for ωNL > 1.25
in the whole range of excitation frequencies.

Figure 4 presents the results for the case of varying f0

at fixed ξ . Qualitatively speaking, this figure presents the
same characteristics as those of figure 3. The insets show that
a growing value of f0 makes the extreme point A displace
almost over a straight line, increasing the boundaries of region
II. Following the same tendency as in figure 3, the limit
boundary between regions I and II above ω(A) decreases
almost like a hyperbola and appears to intersect the ω-axis
at a value that depends on f0. Plotting ω(A) and ωNL(A) as a
function of f0 reveals an increment that seems to be nonlinear
for increasing values of f0.

3.1. Critical amplitude of the excitation

The critical amplitude of the excitation means here a certain
value of external excitation f0 that results in the occurrence
of jump phenomena in the FRC. Below this critical value,
the FRC does not exhibit this typically nonlinear behavior
and the system behaves similarly to a linear system. On
the other hand, above this limit, a multi-valued response is
to be expected for some interval ω− < ω < ω+ in the FRC.
From a physical viewpoint, it is important to obtain this
critical amplitude since it represents the limit above which two
steady-state solutions are possible with the initial conditions
determining which of these represent the actual response of
the system.

In order to obtain the critical amplitude, one must
first look at the locations of vertical tangency of the
FRC. These locations can be obtained by differentiating the
amplitude–frequency relation equation (12) implicitly with
respect to Z2 and then setting dω/dZ2

= 0. The resulting
expression is(

2ω2
NL

√
1 − Z2 + 1 − Z2

− ω2

)2

+ 2Z2ω2
NL

×

(
2ω2

NL
√

1 − Z2 + 1 − Z2
− ω2

)
(2 + (1 − Z2)−1/2)

(
√

1 − Z2 + 1 − Z2)2

+ 4ξ 2ω2
NLω2

= 0 (19)

with the solutions being

ω±(Z) = ωNL

√
b(Z2, ξ 2) ±

√
b2(Z2, ξ 2) − 4c(Z2), (20)
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Figure 5. Different FRCs to show the critical amplitude of the
excitation as calculated using (ωu, Zu), which differs from the
correct value (ωc, Zc). Data are plotted using ξ = 0.2, ωNL = 0.75.

where

b(Z2, ξ 2) =
2

√
1 − Z2 + 1−Z2

+
Z2(2 + (1−Z2)−1/2)

(
√

1 − Z2 + 1 − Z2)2
− 2ξ 2

;

c(Z2) =
((1 − Z2)−1/2 + 1 + Z2)

(
√

1 − Z2 + 1 − Z2)3
.

Equation (20) gives, in general, two solutions ω− and ω+ that
provide the locations of vertical tangency in the FRC for two
values of Z : Z−, Z+ (see figure 5). The standard procedure to
obtain f0crit (see e.g. [31]) consists in equating b2(Z2, ξ 2) −

4c(Z2) = 0, since in this case the two solutions ω± shrink to
one. We name this unique solution as ωu = ωNL

√
b(Z2, ξ 2).

Then, Zu is obtained after solving b2(Z2, ξ 2) − 4c(Z2) = 0.
Unfortunately, it is not possible to give a closed analytical
form of Zu, since the resulting polynomial is of ninth degree
in Z2. Finally, substituting ωu and Zu into equation (12), one
should be finding the desired result f0crit. However, this is not
the correct result for f0crit as can be observed in figure 5 with
the f0crit calculated from the pair (ωu, Zu), f0crit, and the one
calculated from the pair (ωc, Zc), f0crit, using the procedure
given below (we set ξ = 0.2, ωNL = 0.75 arbitrarily). To
qualitatively understand the reason for this discrepancy, one
must first plot the amplitude–frequency relation (12) as a
function of both ω and Z , replacing for ω each of the two
expressions ω+(Z) and ω−(Z) (equations (20)). After doing
this, we will obtain h+(Z) and h−(Z) which correspond to
the locations of vertical tangency (see equation 12). These
functions have the following form:

h±(Z) = Z2

(
2ω2

NL
√

1 − Z2 + 1 − Z2
− ω±(Z)2

)2

+ 4ξ 2ω2
NLω±(Z)2 Z2

which are plotted in figure 6. It can be seen from this figure
that the value of f (u)

0crit calculated above, gives two values
of vertical tangency, namely Zu and Zu− (and ωu, ωu−) in
the FRC which certainly do not correspond to the correct
value observed in figure (5). Instead, the correct value of
the critical amplitude f0crit lies in the minimum of the curve
h−(Z) which certainly provides the correct pair of values of
(ω, Z) = (ωc, Zc). After substituting them into equation (12),

6
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Figure 6. The functions h+(Z) and h−(Z) which represent the loci
of vertical tangency of the FRC for ξ = 0.2, ωNL = 0.75. It is shown
that for f (u)

0crit there are still two points of Z , Zu and Zu−, that give
vertical tangency of the FRC. On the other hand, for f0crit, only one
value of Z , Zc, satisfies this condition.

Figure 7. Characteristic regions L1 : ωNL = 0.75 and
L2 : ωNL = 1.75 where the FRCs of the amplitude of displacement
Z exhibit different shapes, for ξ = 0.2 and f0 = 1.

one obtains

f0crit =

√√√√Z2
c

(
2ω2

NL√
1 − Z2

c + 1 − Z2
c

− ω2
c

)2

+ 4ξ 2ω2
NLω2

c Z2
c

(21)
which gives the critical amplitude of the excitation in terms of
the parameters of the problem ξ , ωNL.

4. Frequency response curves and numerical
comparisons

It is the aim of this section to present the FRCs for some
selected values of ξ and f0 in order to study the regions of
single- and multi-valued responses (I and II) and compare
them with numerical calculations. Figure 7 presents the
(ω, ωNL) plane for a fixed value of ξ = 0.2 and f0 = 1. Lines
L1 (ωNL = 0.75) and L2 (ωNL = 1.75) are selected to show the
shapes of the FRCs for different regions.

Figure 8(a) presents the results for L1 of the analytically
obtained amplitude of displacement Z (solid line) and its

Figure 8. (a) Amplitude of displacement Z for the case L1 of
figure 7 as a function of excitation frequency ω. The analytical
solution (solid line), numerical solution (circles), the backbone
curve (dashed line), the limit envelope (long dashed line) and the
limits of stability (dotted line) are shown. (b) The same as (a) for
the case L2.

numerical counterpart (circles). Also in the same figure,
the backbone curve (dashed line), the limit envelope (long
dashed line) and the curves that form the boundary of
stability, equations (14) (dotted line), are depicted as well. The
distinguishable feature in this case is the perfect agreement
between both analytical and numerical solutions for the lower
branch of the curve and the poor match of both solutions for
the upper branch.

To understand qualitatively this behavior, we divide the
analysis between the regions of good (upper branch) or
poor (lower branch) agreement. Figure 9 shows a typical
time domain response and the spectrum obtained at ω = 1
in the region of poor agreement. Clearly, the differences in
the results are mainly introduced by ignoring higher-order
harmonics in the analytical formulation and appear due
to the large amplitude of the oscillation (high stretching).
It is interesting to note that only odd harmonics of the
excitation frequency ω appear in the response due to the
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Figure 9. The time domain response and spectrum obtained for L1

(ξ = 0.2, f0 = 1) at ω = 1; solid line, numerical solution.
Additionally, a pure cosine function of amplitude 1 is shown for
comparison (dotted line).

characteristics of the nonlinear force fFENE ∝
z

1−z2 ≈ z + z3 +
z5 + · · · . Another distinguishable feature that can be observed
in the same figure is that disagreement between the numerical
and analytical solutions is more noticeable at low frequencies.
It seems that the effect of neglecting higher-order harmonics
in the analytical solution is more pronounced for ω < 1.5
than for ω > 1.5. In this sense, in the region of ω < 1.5,
two marked peaks are notably distinguished at ω ≈ 0.34 and
ω ≈ 0.55, possibly indicating the existence of resonances. In
contrast, for ω > 1.5 both curves approach one another as the
amplitude of the response increases to its maximum value
(Z = 1). It is the aim of the following section to find the
reasons for this behavior.

4.1. Effect of higher-order harmonics

The aim here is to capture the essential features of the effect
of higher-order harmonics on the FRCs and, at the same time,
to provide a qualitative explanation of the appearance of peaks
for some particular frequencies. It is a well-known fact [4] that
if the excitation frequency ω and the frequency of oscillation
of a nonlinear system under the presence of an external force
� satisfy a resonance condition, i.e.

ω

�
=

m

n
, m, n integers, (22)

then the amplitude of the system is supposed to be unbounded,
limited only by the damping and the nonlinearity. For m/n =

1 the system experiences what is called a primary resonance
(or main resonance), whereas for m/n > 1 a subharmonic or
superharmonic, m/n < 1, resonance occurs. In most cases [2],
it is assumed that the nonlinearity is small and � is considered
the linearized frequency or frequency at small amplitudes
of vibration (ωNL in our case); however, here this is not
the case (as we will see later) and we cannot perform the
analysis considering ωNL for the resonance condition. Instead,
the ‘new’ frequency �, which turns out to be amplitude
dependent, has to be used. To find the ‘new’ � we will
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3

Amplitude

Ω
/ω

N
L

Figure 10. The actual frequency of a FENO as a function of the
amplitude of displacement, �(Z), normalized with respect to its
value at small amplitudes of vibration ωNL.

Figure 11. The ratio of the excitation frequency ω to the actual
frequency of the FENO, �(Z), versus excitation frequency. The
horizontal lines at 1/3 and 1/5 are depicted to indicate the presence
of a resonance condition. The inset shows the entire range of
excitation frequencies for values of the upper branch of figure 8(a)
(white circles) and for values of the lower branch of the same figure
(black squares).

follow an approximate scheme that consists in calculating the
period of the FENO for an undamped free oscillator, as a
function of its amplitude of displacement Z . Since we are
considering a lightly damped oscillator, the approximation
seems to be consistent. Consequently, for the steady-state
oscillations, the ‘new’ frequency � is then obtained, giving
Z for each different value of the excitation frequency ω.

The exact period for the FENO, as a function of the
amplitude of displacement T (Z), was previously calculated
in [30] and is given by

T (Z) = 4
∫ Z

0

dx√
ln(G(1 − x2))

, (23)

where the constant G is given by G =
1

1−Z2 . Unfortunately,
T (Z) has no (known) closed analytical form and must be
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Figure 12. (a) Time domain response and spectrum obtained for L1

(ξ = 0.2, f0 = 1) at ω = 0.341 and (b) at ω = 0.538; solid line,
numerical solution; dotted line, a pure cosine function.

numerically calculated. Finally, �(Z) =
2π

T (Z)
is obtained. A

graphical representation of the numerically obtained �(Z)

normalized with respect to ωNL is shown in figure 10. As was
stated before, for Z > 0.75, � is notably different from ωNL

being, for Z → 1, ω � � → ∞. Now, with this result, we
are in a position to address the problem of the existence of
peaks at some values of excitation frequency. In figure 11, we
show the ratio ω/�(Z) versus ω, where �(Z) is provided by
equation (23) for each amplitude Z , numerically determined
from figure 8(a) (circles). Recalling that two marked peaks
appeared from the FRC for ω ≈ 0.34 and ω ≈ 0.55, it is
expected that some resonance conditions must be satisfied for
those frequencies. This is indeed what is shown in figure 11,
where a resonance condition 1 : 3 (ω/� = 1/3) for ω = 0.538
and another one of the type 1 : 5 for ω = 0.341 seem to
occur. The cases are confirmed by figures 12(a) and (b) in a
time domain response plot and spectrum plot for ω = 0.341
and ω = 0.538, respectively. There, it is possible to see that
the third harmonic of the response (which corresponds to
ω ≈ �/3) is greater than the others for ω = 0.538, and the
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Figure 13. (a) Time domain response and spectrum obtained for L1

(ξ = 0.2, f0 = 1) at ω = 2 for the upper branch of the FRC and
(b) at ω = 2.3 for the lower branch of the FRC; solid line, numerical
solution; dotted line, a pure cosine function.

fifth-harmonic exceeds the others for ω = 0.341 (ω ≈ �/5).
However, looking carefully at figure 11, the reader may claim
that the 1 : 5 resonance condition does not match well for ω =

0.341 and matches better for other frequencies, for instance
ω = 0.225. Nevertheless, if we look at the spectrum for this
frequency, ω = 0.225, it is possible to observe that the fifth
harmonic is not predominant in the response and, instead, it
is notably smaller than the others. The same happens for ω =

0.538, where the resonance condition is not a 100% match.
However, the discrepancies are tolerable taking into account
the approximate nature of the determination of � and certainly
are not to due to the existence of resonance conditions at other
frequencies than those shown before.

The situation is rather different for frequencies ω >

1.5. It is observed from figure 8(a) that the match between
the analytical and numerical solutions improves as the
frequency increases. It is also observed that there is no peak,
indicating the absence of a resonance condition, which is
confirmed by figure 11 (inset). For these frequencies, a ratio
ω/� of approximately one clearly indicates the increasing
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Figure 14. Fourier spectrum (amplitude versus frequency) of the FRCs of case L1 for the first five harmonics.

importance of the fundamental harmonic in the response.
Figure 13(a) shows the time domain response and the Fourier
spectrum for ω = 2. There, it is possible to verify that the
amplitudes of higher harmonics are negligible compared with
the fundamental harmonic (more than ten times larger than
the third harmonic, for instance). However, it is the presence
of these harmonics that prevents the system from being a
pure harmonic motion and, instead, a seemingly triangular
function emerges as a result. Therefore, from Fourier analysis,
the response can be well approximated by

z(t) ≈

∑
n=odd

A0
1

n2
cos(n�t), (24)

which corresponds to a triangular function whose amplitude
A0 in this case is Z dependent. To validate this, figure 14
shows the amplitude of the Fourier components of the
time domain response of the forced FENO for frequencies
ω > 1.5. The general tendency for all the harmonics is to
remain constant as the frequency increases, indicating a
frequency independent mathematical description such as the
one proposed before. Moreover, the available information

gives a ratio of approximately
(

n+1
n

)2
between An and An+1,

which is the one that corresponds to a triangular function, for
frequencies higher than ω = 2.

At this point, we have analyzed the region of poor
agreement (upper branch of the FRC). It is now the turn
of the region of good agreement. If we look at figure 11
(inset, upper arm), we note that � is approximately one
third the excitation frequency at ω = 2.3; then a subharmonic
resonance is expected to occur at this frequency. This fact
is evidenced in figure 13(b) from the Fourier spectrum at
ω = 2.3. There, it is possible to see a large peak at ω = 1
and another, 10 times smaller peak at ω/3. Since the relative
amplitudes between the harmonics is large, it is reasonable
to expect, on the one hand, an almost pure harmonic motion
of frequency ω for the response of the system, and on the
other hand, very good agreement between the analytical and
numerical formulations.

Lastly, the FRC corresponding to the line L2 of figure 7
is shown in figure 8(b). Generally speaking, it can be said

that the response of the system resembles that of a linear
system. No jump phenomenon and no regions of instability
seem to occur for the selected parameters which lead to this
particular solution. However, some minor discrepancies are
observed at the maximum of the FRC ω ≈ 2.1 and at ω ≈ 0.6.
It is not difficult to see that both discrepancies obey the same
reason as before: the fact that higher harmonics are ignored
in the analytical formulation. Even in this case, the effect
considering higher harmonics produces some differences
which are emphasized in the region of the maximum of the
curve and at ω ≈ 0.6, where a 1 : 3 resonance condition occurs
(ω/� = 1/3).

5. Conclusions

In this work, an investigation of a harmonically driven FENO
has been presented. The HBM has been applied to determine
the amplitude–frequency and amplitude–phase equations. The
distinguishable feature in these cases is the bending of the
amplitude–frequency curve to the frequency axis, making it
asymptotically approach the limit of maximum elongation,
Z = 1, which physically represents the impossibility of the
system reaching this limit. Using the so-called variational
equation, the stability condition that defines stable and
unstable steady-states solutions has also been derived.
Additionally, analytical expressions for the limit envelope
curve, which restricts the existence of the steady-state solution
to a region of the (Z , ω) plane, as well as for the backbone
curve, which represents the locus of the peak amplitude, have
also been presented. From the study of the effect of the
system parameters on the response, it is possible to conclude
that a decreasing value of damping coefficient (ξ ) or an
increasing value of excitation amplitude ( f0) leads to the
appearance of a multi-valued response and the existence of
a jump phenomenon. In this sense, the critical amplitude of
the excitation, which means here a certain value of external
excitation that results in the occurrence of jump phenomena,
is also derived. Numerical experiments to observe the
effect of the system parameters on the frequency–amplitude
response have been performed and compared with analytical
calculations. For a low value of damping coefficient or a
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high value of excitation amplitude the agreement is poor for
low frequencies but good for high frequencies. It has been
demonstrated that the disagreement is caused by neglecting
higher-order harmonics in the analytical formulation. The
effect of higher-order harmonics in the FRCs is numerically
studied. They manifest themselves as additional peaks for
certain frequencies in the FRCs which satisfy a resonance
condition. Then, the values of the peaks can be approximately
calculated considering not the linearized frequency of the
FENO but its actual frequency, which is strongly amplitude
dependent. On the other hand, for a high value of damping
coefficient or a low value of excitation amplitude, the
agreement between numerical and analytical calculations
is excellent. In these cases, the system is prevented from
exploring large amplitudes of vibration and, therefore, the
nonlinearity is not much evidenced.
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Appendix A. Amplitude–frequency equation leading
to a polynomial of tenth degree

The amplitude–frequency equation, equation (12), can be put
in a more convenient form, getting rid of the radicals. The final
expression, which is a tenth degree polynomial on (Z) (after
discarding the Z = 0 root), P(Z), reads

c10 Z10 + c8 Z8 + c6 Z6 + c4 Z4 + c2 Z2 + c0 = 0, (A.1)

with the coefficients, c10, . . . , c0 (which are functions of
ω, ωNL, ξ, f0) given by

c10 = −ω8
− 16ξ 4ω4

NLω4
− 8ω6ξ 2ω2

NL, (A.2)

c8 = 2ω8 + 16ω6ξ 2ω2
NL − 8ω2

NLω6
− 32ω4

NLω4ξ 2

+ 32ξ 4ω4
NLω4 + 8ξ 2ω2

NLω2 f 2
0 + 2ω4 f 2

0 , (A.3)

c6 = − 4ω4 f 2
0 + 64ω4

NLω4ξ 2
− f 4

0 − 24ω4
NLω4 + 16ω2

NLω6

− 32ω6
NLξ 2ω2

− 16ξ 2ω2
NLω2 f 2

0 − ω8
− 8ω6ξ 2ω2

NL

− 16ξ 4ω4
NLω4 + 8ω2

NLω2 f 2
0 , (A.4)

c4 = 8ξ 2ω2
NLω2 f 2

0 + 96ω6
NLξ 2ω2 + 2ω4 f 2

0 + 40ω4
NLω4

− 32ω4
NLω4ξ 2

− 32ω6
NLω2 + 8ω4

NL f 2
0 + 2 f 4

0

− 8ω2
NLω6

− 16ω2
NLω2 f 2

0 , (A.5)

c2 = −16ω8
NL − f 4

0 + 32ω6
NLω2

− 64ω6
NLξ 2ω2

− 24ω4
NL f 2

0

+ 8ω2
NLω2 f 2

0 − 16ω4
NLω4, (A.6)

and the independent term

c0 = 16ω4
NL f 2

0 . (A.7)

Then, P(Z) can be thought of as a quintic equation in Z2
= Y .

As stated by [29] it was first proved by Ruffini (1799) and
later by Abel (1826) and Galois (1832) more rigorously that
the solutions in radicals to the polynomials of degree five
and higher are impossible. This does not mean that there is
no algebraic solution to the general quintic equation, but that
the existence of such solutions is restricted to a certain type
of them. In our case, such an impossibility implies that the
roots of equation (A.1) can be obtained only if its coefficients
satisfy certain conditions stipulated in [29]. Since it is the aim
of the present work to obtain the nature of the roots in all the
ω, ωNL planes and not only for the curve defined by such a
restriction, this must be done numerically.
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