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We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The
estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new
idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator
is implemented and compared to other local estimators, showing an excellent performance. © 2017 Wiley
Periodicals, Inc. Numer Methods Partial Differential Eq 000: 000–000, 2017
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I. INTRODUCTION

In many practical problems, the region of interest is much smaller than the whole domain where
a differential equation must be solved to obtain meaningful results. The goal of this article is
to design a new adaptive method for the approximation of general second order elliptic prob-
lems, with the adaptive strategy focused on controlling the error in a localized region of interest.
Throughout this article, local error stands for the H 1(�0) error and �0 is an open subset of
the whole domain � which we refer to as region of interest. Adaptive methods and a posteriori
error estimators for controlling local errors in elliptic problems have already been developed and
studied [1–4]. In these papers the local error is bounded by the sum of two terms. The H1-type
estimators on a region slightly larger than �0 and a weaker norm of the error on the whole domain;
due to the so-called pollution effect. Xu and Zhou [1] bound the latter by the L2(�) error, which
in turn can be bounded a posteriori when the domain � is convex. On the other hand, Demlow
[3] considers Poisson’s equation −�u = f and bounds the L2(�) error by the Lp(�) estimators
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2 GARAU AND MORIN

for some p > 2 —when the L2(�) estimators are not available due to geometry constraints (e.g.,
reentrant corners). Recall that all known L2-type a posteriori error estimators are not a guaranteed
upper bound for the L2(�) error unless the problem is H2-regular, because the only available
proofs are based on duality techniques. Liao and Nochetto [2], instead, resort to estimators for
the error in a weighted L2(�) norm, with weights that are singular at the reentrant corners; their
result is valid for the equation −∇ · (A∇u) = f with A smooth. Very recently, Demlow [4]
defined adaptive methods which control the local H1 error and also the pollution error in L2, and
proved optimality for Poisson’s equation on convex polyhedral domains of any dimension.

In this work, we bound the local H1 error by a weighted H1 error on the whole domain, and
then by a posteriori error estimators of residual type. The weight is chosen such that the global
weighted error is an upper bound of the local H1 error, but does not overestimate it by too much.
This is a simple idea, motivated by the need to use weighted norms when working with point
sources, and has the advantage of allowing us to work with the general second order linear elliptic
PDE on Lipschitz polygonal/polyhedral domains in 2D/3D without convexity constraints, allow-
ing also discontinuous coefficients. We consider the following problem on a Lipschitz domain
� ⊂ R

n, n = 2, 3, with a polygonal/polyhedral boundary ∂�:⎧⎨
⎩−∇ · (A∇u) + b · ∇u + cu = g, in �

u = 0 on ∂�,
(1)

where A ∈ L∞(�; R
n×n) is symmetric, piecewise W 1,∞ and uniformly positive definite over �,

i.e., there exist constants 0 < γ1 ≤ γ2 such that

γ1|ξ |2 ≤ ξT A(x)ξ ≤ γ2|ξ |2, ∀x ∈ �, ξ ∈ R
n;

b ∈ W 1,∞(�; R
n), and c ∈ L∞(�) with c − 1

2 div(b) ≥ 0
We consider both the case of regular sources, i.e., g ∈ L2(�), and the case of a singular point

source assuming that g = f + νδx0 , where f ∈ L2(�), ν ∈ R and δx0 is the Dirac delta distri-
bution supported at an inner point x0 of �. Applications arise in different areas, such as in the
study of pollutant diffusion in aquatic media [5], in the mathematical modeling of electromagnetic
fields [6], or in optimal control of elliptic problems with state constraints [7]. Other applications
involve the coupling between reaction-diffusion problems taking place in domains of different
dimension, which arise in tissue perfusion models [8].

When ν = 0 (g = f ∈ L2(�)) we say that u ∈ H 1
0 (�) := W

1,2
0 (�) is a weak solution of (1) if

B[u, v] = F(v), ∀v ∈ H 1
0 (�),

where B is the bilinear form given by

B[u, v] =
∫

�

A∇u · ∇v + b · ∇uv + cuv, (2)

and F(v) := ∫
�

f v. If ν 	= 0, the solution u of (1) does not belong to H 1
0 (�), but defining

the weight ω(x) ∼= |x − x0|2α for certain values of α > 0, the following weak formulation is
well-posed [9, Theorem 2.3]

u ∈ H 1
0 (�, ω) : B[u, v] = F(v), ∀v ∈ H 1

0 (�, ω−1),
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ADAPTIVE CONTROL OF LOCAL ERRORS 3

where F(v) = ∫
�

f v + νδx0(v) and B[·, ·] is given by Eq. (2). Here, H 1
0 (�, ω) and H 1

0 (�, ω−1)

denote weighted Sobolev spaces which will be explicitely defined in the next section.
The main results of this article are presented in Section III(B) where a posteriori error esti-

mators are presented for the weighted error, and the reliability and efficiency are discussed. The
numerical results of Section IV show an excellent performance of an adaptive method guided by
these a posteriori estimators.

The rest of the article is organized as follows. In Section II we discuss the formulation of
elliptic problems in weighted Sobolev spaces, including the design of weights which localize the
error and cope with the singularities due to the point source. In Section III we state the discrete
formulation of the problem and present a posteriori error estimators for the weighted norm of the
error with their reliability and efficiency. In Section IV we present numerical experiments.

II. LINEAR ELLIPTIC PROBLEMS IN WEIGHTED SPACES

We start this section briefly introducing some notions about weighted Sobolev spaces, which are
useful for the purpose of this article.

A. Weighted Sobolev spaces

We consider weights belonging to the Muckenhoupt class A2, which are defined as the set of
positive functions ω ∈ L1

loc(R
n) such that their A2-constant

sup
B

(
1

|B|
∫

B

ω(x)dx

)(
1

|B|
∫

B

ω(x)−1dx

)

is finite, where the supremum is taken over all balls B in R
n.

Let � ⊂ R
n be a bounded domain with Lipschitz boundary. If ω ∈ A2, we denote by L2(�, ω)

the space of measurable functions u such that

‖u‖L2(�,ω) :=
(∫

�

|u(x)|2ω(x)dx

) 1
2

< ∞.

Notice that L2(�, ω) is a Hilbert space equipped with the scalar product

〈u, v〉�,ω :=
∫

�

u(x)v(x)ω(x)dx.

We also define the weighted Sobolev space H 1(�, ω) of weakly differentiable functions u such
that ‖u‖H1(�,ω) < ∞, where

‖u‖H1(�,ω) := ‖u‖L2(�,ω) + ‖∇u‖L2(�,ω).

Finally, H 1
0 (�, ω) is the closure of C∞

0 (�) in H 1(�, ω). By [10, Theorem 1.3] we have that a
Poincaré inequality holds in H 1

0 (�, ω), and thus,

‖u‖H1
0 (�,ω) := ‖∇u‖L2(�,ω)

is a norm in H 1
0 (�, ω) equivalent to the inherited norm ‖u‖H1(�,ω). More precisely, there exists a

constant CP > 0, depending on n, the diameter of �, and the A2-constant of ω such that

‖u‖H1
0 (�,ω) ≤ ‖u‖H1(�,ω) ≤ CP ‖u‖H1

0 (�,ω), u ∈ H 1
0 (�, ω). (3)
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4 GARAU AND MORIN

B. Well-Posedness

The next result generalizes those given by [9, Theorem 2.3] and [11, Lemma 7.7]. When consid-
ering the full elliptic equation, we will need to assume that the weight function ω satisfies the
following:

Assumption 2.1. The positive weight ω ∈ L1
loc(R

n) satisfies that H 1
0 (�) ⊂ L2(�, ω−1), i.e.,

there exists a constant CE > 0 such that

‖v‖L2(�,ω−1) ≤ CE‖∇v‖L2(�), for v ∈ H 1
0 (�).

Remark 2.2. By [11, Theorem 6.1] (see also [12]) we have that a weight ω ∈ A2 fulfills
H 1

0 (�) ⊂ L2(�, ω−1) if there exists a constant Cω > 0 such that the following compatibility
condition holds:(∫

B(x,r)
ω−1

)(∫
B(x,R)

ω−1

)−1

≤ Cω

( r

R

)n−2
, for all x ∈ � and r ≤ R. (4)

It can be easily checked that if ω(x) ∼= |x − x0|2α , where x0 is an inner point of �, then (4)
holds for α < 1.

Theorem 2.3. Let ω ∈ A2 and ω ∈ L∞(�). In addition, if b 	≡ 0 or c 	≡ 0, let us suppose that
Assumption 2.1 holds. Let B[·, ·] : H 1

0 (�, ω) × H 1
0 (�, ω−1) → R be as in (2). Then, for each

F ∈ (H 1
0 (�, ω−1))′, there exists a unique solution u ∈ H 1

0 (�, ω) of

B[u, v] = F(v), ∀v ∈ H 1
0 (�, ω−1),

which satisfies

‖u‖H1
0 (�,ω) ≤ C∗‖F‖(H1

0 (�,ω−1))′ ,

where the constant C∗ = 2
γ1

(1 + ‖ω‖ 1
2
L∞(�)

CP CE

γ1
max

{‖b‖L∞(�), ‖c‖L∞(�)

}
)

Moreover, the following inf-sup condition holds:

inf
w∈H1

0 (�,ω)

sup
v∈H1

0 (�,ω−1)

B[w, v]
‖w‖H1

0 (�,ω)‖v‖H1
0 (�,ω−1)

≥ 1

C∗
. (5)

The proof of this theorem is identical to that of [9, Theorem 2.3] and will thus be omitted in
this article.

C. Global Weighted Norms to Localize the Energy Norm

Let the region of interest �0 be a fixed open subset of �. We are interested in estimating ‖e‖H1(�0),
where e is the error between the weak solution of problem (1) and its finite element approxima-
tion. We will develop a posteriori error estimators and propose adaptive methods oriented toward
reducing the local error ‖e‖H1(�0) with the least amount of degrees of freedom (DOF).

The weight in charge of localizing the H1-norm is ϕ0 which we only assume to be in L1
loc(R

n)

and satisfy the following properties:

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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(a) ϕ0(x) > 0 for a.e. x ∈ R
n and ϕ0 ∈ A2.

(b) ϕ0(x) ≤ 1, for a.e. x ∈ � and ϕ0(x) = 1, for a.e. x ∈ �0.
(c) There exists a constant Cϕ0 > 0 such that

(∫
B(x,r)

ϕ−1
0

)(∫
B(x,R)

ϕ−1
0

)−1

≤ Cϕ0

( r

R

)n−2
, for all x ∈ � and r ≤ R. (6)

A simple way to construct such a weight is to let ϕ0(x) := ϕ(dist(x, �0)), with ϕ : R
+ → R

+

a decreasing positive function such that ϕ(0) = 1. In Section IV we make some particular choices
of ϕ and ϕ0.

Recall that the source term of problem (1) is g = f + νδx0 , with f ∈ L2(�), ν ∈ R and δx0 is
the Dirac delta distribution supported at an inner point x0 of �. From now on, we assume that x0

does not belong to the region of interest, that is, x0 /∈ �0.
The use of a weight will also allow us to overcome the difficulty produced by a Dirac delta

source term. We thus consider two cases depending on the actual presence of a point source:

• Case 1: There is no point source. If ν = 0, let

ω(x) = ϕ0(x), x ∈ R
n. (7a)

• Case 2: There is a point source. If ν 	= 0, let

ω(x) = min

((
dx0(x)

D0

)2α

, ϕ0(x)

)
, x ∈ R

n. (7b)

Here, D0 := dist(x0, �0) = inf
x∈�0

|x − x0| > 0, dx0(x) := |x − x0|, for x ∈ R
n, and α is fixed,

with α ∈ I, where I = (n/2 − 1, n/2) if b ≡ 0 and c ≡ 0 and I = (n/2 − 1, 1) otherwise.

We claim that the weight ω defined by Eq. (7) satisfies the hypoteses of Theorem 2.3. Indeed,
since d2α

x0
∈ A2 if and only if −n/2 < α < n/2 [9], and since ϕ0 ∈ A2 we conclude that in both

cases ω ∈ A2, because—as can be easily checked—the minimum of two A2 weights also belongs
to A2. Additionally, we have to check that Assumption 2.1 holds when b 	≡ 0 or c 	≡ 0. In view
of Remark 2.2, it is enough to check that ω satisfies the compatibility condition (4). We notice
that this is indeed the case, due to assumption (6) on ϕ0 and the fact that (4) also holds for the
weight d2α

x0
, for α < 1. The requirement α > n/2 − 1 is necessary to have δx0 well defined in

H 1
0 (�, ω−1); this is discussed in the next section.
Furthermore, since ω = 1 in �0,

‖u‖H1(�0) ≤ ‖u‖H1(�,ω),

i.e., the usual local energy ‖u‖H1(�0) is bounded above by the global weighted norm ‖u‖H1(�,ω).
This bound becomes sharper when ϕ0 is chosen smaller on � \ �0.

In Section III(B) we develop a posteriori estimators for the error ‖e‖H1(�,ω), they will be used
to guide an adaptive method, its goal is to reduce the desired quantity ‖e‖H1(�0).

Numerical Methods for Partial Differential Equations DOI 10.1002/num



6 GARAU AND MORIN

D. Weak Formulation

To state a variational formulation for the linear elliptic problem (1), we first note that, due to
the definition of the weight ω given by (7), if ν 	= 0, H 1

0 (�, ω−1) ⊂ H 1
0 (�, d−2α

x0
). Thus, in

view of [13, Lema 7.1.3] we have that 〈g, v〉 := ∫
�

f v + ν〈δx0 , v〉 is a bounded linear functional
on H 1

0 (�, ω−1), for f ∈ L2(�), whenever n

2 − 1 < α < n

2 . We consider the following weak
formulation of problem (1):

u ∈ H 1
0 (�, ω) : B[u, v] =

∫
�

f v + ν〈δx0 , v〉, ∀v ∈ H 1
0 (�, ω−1). (8)

Recall that B is the bilinear form given by Eq. (2), which is clearly well-defined and bounded in
H 1

0 (�, ω) × H 1
0 (�, ω−1) due to Hölder inequality. As a consequence of Theorem 2.3, the bilin-

ear form B[·, ·] satisfies the inf-sup condition (5), which yields the existence and uniqueness of
solution to the variational problem (8).

III. DISCRETE PROBLEM AND A POSTERIORI ERROR ANALYSIS

A. Finite Element Discretization

Let T be a conforming triangulation of the domain � ⊂ R
n. That is, a partition of � into

n-simplexes such that if two elements intersect, they do so at a full vertex/edge/face of both
elements. We define the mesh regularity constant

κ := sup
T ∈T

diam(T )

ρT

,

where diam(T ) is the diameter of T, and ρT is the radius of the largest ball contained in it. Also, the
diameter of any element T ∈ T is equivalent to the local mesh-size hT := |T |1/n, with equivalence
constants depending on κ .

On the other hand, we denote the subset of T consisting of an element T and its neighbors by
NT , and the union of the elements in NT by ST . More precisely, for T ∈ T ,

NT := {T ′ ∈ T | T ∩ T ′ 	= ∅} , ST := ∪
T ′∈NT

T ′.

We denote by E� the set of sides (edges for n = 2 and faces for n = 3) of the elements in T
which are inside �, and by E∂� the set of sides which lie on the boundary of �. We define SE

as the union of the two elements sharing E, if E ∈ E�, and as the unique element TE satisfying
E ⊂ ∂TE if E ∈ E∂�.

For the discretization, we consider piecewise polynomial Lagrange finite elements, more
precisely, we let

V
�
T := {V ∈ H 1

0 (�)| V|T ∈ P�(T ), ∀T ∈ T
}

.

where � ∈ N is a fixed polynomial degree. The discrete counterpart of Eq. (8) reads:

U ∈ V
�
T : B[U , V ] =

∫
�

f V + ν〈δx0 , V 〉, ∀V ∈ V
�
T . (9)

Notice that it is the standard finite element discretization. The weighted norms have no influence
in the formulation of the discrete problem.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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B. A Posteriori Estimation of the Local Error

In this section, we derive computable bounds for the error measured in the weighted norm
‖ · ‖H1(�,ω), where the weight function ω is given by Eq. (7).

Let u be the solution of Eq. (8) and let U ∈ VT be the solution of the discrete problem (9).
Integrating by parts on each T ∈ T we have that

B[U − u, v] =
∑
T ∈T

(∫
T

Rv +
∫

∂T

J v

)
− ν〈δx0 , v〉, ∀v ∈ H 1

0 (�, ω−1),

where R denotes the element residual given by

R|T := −∇ · (A∇U) + b · ∇U + cU − f , ∀T ∈ T ,

and J is the jump residual given by

J|E := 1

2

[
A∇U|T1

· �n1 + A∇U|T2
· �n2

]
, if E ∈ E�, J|E = 0, if E ∈ E∂�.

Here, T 1 and T 2 denote the elements of T sharing E, and �n1 and �n2 are the outward unit normals
of T 1 and T 2 on E, respectively.

Let ωT := sup
x∈ST

ω(x). We define a posteriori local error estimator ηT by

η2
T :=

{
h2

T ωT ‖R‖2
L2(T )

+ hT ωT ‖J‖2
L2(∂T )

+ ν2D−2α
0 h2α+2−n

T , if x0 ∈ T

h2
T ωT ‖R‖2

L2(T )
+ hT ωT ‖J‖2

L2(∂T )
, if x0 /∈ T

(10)

and the global error estimator η by η := (∑T ∈T η2
T

) 1
2 .

Notice that for elements T such that ST ⊂ �0, ωT = 1 so that the local estimator ηT coincides
with the usual local H1-estimator, i.e.,

ηT =
(
h2

T ‖R‖2
L2(T )

+ hT ‖J‖2
L2(∂T )

) 1
2
,

whereas for the others elements the usual local H1-estimator is weakened by the constant ωT .
The exact same proof of [9, Theorem 5.1] allows us to conclude the assertion of the following

theorem.

Theorem 3.1. (Reliability of the global error estimator). Let ω be defined by Eq. (7). Let u ∈
H 1

0 (�, ω) be the solution of problem (8) and let U ∈ V
�
T be the solution of the discrete problem

(9). Then, there exists a constant c1 = c1(κ , α) such that

‖U − u‖H1(�,ω) ≤ c1C∗CP η,

where C∗ is the continuous inf-sup constant from Eq. (5) and CP is the Poincaré constant from
Eq. (3).

We now discuss the efficiency of the local error estimators. In this context, the boundedness of
the bilinear form yields the following: if CB := max {γ2, ‖b‖L∞ , ‖c‖L∞}, then∣∣∣∣B[U , v] −

(∫
�

f v + ν〈δx0 , v〉
)∣∣∣∣ = |B[U , v] − B[u, v]| ≤ CB‖U − u‖H1(�,ω)‖v‖H1(�,ω−1),

Numerical Methods for Partial Differential Equations DOI 10.1002/num



8 GARAU AND MORIN

for all � ⊂ � and all v ∈ H 1
0 (�, ω−1) with supp(v) ⊂ �. This bound and the usual steps with

scaled bubble functions, as first introduced in [14, Section 4] (see also Ref. [15]), allow us to
conclude the following result, related to the elements which are far away from x0; the detailed
proof is omitted.

Theorem 3.2. (Efficiency of local estimators 1). Let u ∈ H 1
0 (�, ω) be the solution of problem

(8) and let U ∈ V
�
T be the solution of the discrete problem (9). Then, there exists a constant

c2 = c2(κ) such that

c2ηT ≤ CT
ω CB‖U − u‖H1(ST ,ω) + oscT , (11)

for all T ∈ T such that x0 /∈ ST , where CT
ω :=

(
maxST

ω

minST
ω

) 1
2
. Here, the local oscillation oscT is

given by

oscT :=
(
h2

T ωT ‖R − R̄‖2
L2(ST )

+ hT ωT ‖J − J̄‖2
L2(∂T )

) 1
2
, (12)

where R̄|T ′ denotes the L2 projection of R on P�−1(T
′), for all T ′ ∈ T , and for each side E, J̄|E

denotes the L2 projection of J on P�−1(E)

As it usually happens for residual based error estimators, the lower bound is local, and holds
up to some oscillation terms. Notice that for elements T such that ST ⊂ �0, this result coincides
with the usual H1-local error estimation, because ω|ST

≡ 1.

Remark 3.3. We notice that the constants in the estimation (11), depend on the weight ω only

through the quotient CT
ω =

(
maxST

ω

minST
ω

) 1
2
, which tends to one when the meshsize tends to zero,

provided ω is continuous.

Now we consider the efficiency of the local estimators asociated to the elements T which are
near x0, more precisely, elements T such that x0 ∈ ST . As a consequence of [9, Theorem 5.3] we

obtain the following result, which holds if we assume that for such T ’s, ω|ST
=
(

dx0
D0

)2α

. Taking

into account the definition of ω given in Eq. (7), we notice that this will be the case as soon as the
mesh around x0 is fairly refined, because dist(x0, �0) > 0.

Theorem 3.4. (Efficiency of local estimators 2). Let u ∈ H 1
0 (�, ω) be the solution of problem

(8) and let U ∈ V
�
T be the solution of the discrete problem (9). Then, there exists a constant

c3 = c3(κ , α) > 0 such that

c3ηT ≤ CB‖U − u‖H1(ST ,ω) + oscT ,

for all T ∈ T such that x0 ∈ ST .1

1 The oscillation oscT when x0 /∈ T is given by (12). In the case that x0 ∈ T , the jump oscillations in Eq. (12) are
considered over all E ∈ E� that touch T, not only those contained in ∂T (Cf. Ref. [9])

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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IV. NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section we perform some numerical experiments in two-dimensional (2D) domains with
linear elements (� = 1), to illustrate the performance of our estimators and compare with other
already known estimators [2, 3, 9]. We consider a standard adaptive loop of the form

Solve → Estimate/Mark → Refine.

The step Solve consists in solving the discrete system (9) for the current mesh T . For the step
Estimate/Mark we consider the computation of different alternative a posteriori error estimators
and select in M, for refinement, some elements of T according to different marking strategies.
This gives rise to particular adaptive algorithms that we describe in detail below. The last step
Refine consists in performing two bisections to each marked element, and refining some extra
elements to keep conformity of the meshes, using the newest-vertex bisection. We used a custom
implementation in MATLAB.

We now describe in detail the three Estimate/Mark alternatives to be considered in this article.
We start with our proposal.

Localized Weighted Estimators (LWE). We consider two possible choices for the function ϕ

in Section II(C), that we call ϕ1 and ϕ2, respectively.

• ϕ1(x) := (1 + a1
x

L

)−1
, where L := maxx∈�dist(x, �0) and a1 is a parameter to be fixed.

• ϕ2(x) :=
{

a2, x>0,
1, x=0, where a2 is a small parameter to be fixed.

Then, for j = 1, 2, we denote ωj the corresponding weight given by Eq. (7), where ϕ0(x) =
ϕj (dist(x, �0)) and α = 1

2 .
The local a posteriori error estimator given by Eq. (10) when using ω = ω2 is almost identical

to the one proposed by Bank and Holst in Ref. [16], in the context of a parallel adaptive meshing
algorithm. Their idea was to multiply the estimators corresponding to elements outside the region
of interest by a very small number (10−6), so that those elements are not selected for refinement.
We found that the choice a2 = 10−4 yields the best performance in the experiments reported in
Section IV. This choice favors the refinement inside the region of interest, but also performs some
significant refinement outside, to control the pollution error and lead to convergence.

We compute the local estimators ηT given by Eq. (10) and apply the Dörfler strategy with para-
meter θ = 0.5 for marking, i.e., we collect in M those elements T ∈ T with largest estimators
ηT until ∑

T ∈M

η2
T ≥ θ 2

∑
T ∈T

η2
T .

Liao-Nochetto’s Estimators (LNE). In [2], Liao and Nochetto considered the equation
−div(A(x)∇u) = f in 2D with homogeneous Dirichlet boundary conditions for a smooth
coefficient matrix A(x), and proved that

‖u − U‖2
H1(�0)

≤ CLN

∑
T ∈T

η2
LN,T ,

with

η2
LN,T =

{
η2

1(T ) if T ⊂ �1,
1
d2 maxi | log hi |η2

0,−β(T ) if T 	⊂ �1,

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 GARAU AND MORIN

where hi denotes the meshsize at the i-th reentrant corner of �, d = dist(� \ �1, �0), �1 ⊃ �0

and

η2
1(T ) = h2

T ‖ − div(A∇U) − f ‖2
L2(T )

+ hT ‖[A∇U ]‖2
L2(∂T )

,

η2
0,−β(T ) = h4

T ‖(−div(A∇U) − f )σ−β‖2
L2(T )

+ h3
T ‖[A∇U ]σ−β‖2

L2(∂T )
.

Here σ−β : � → R is a mesh-dependent weight defined as

σ−β(x) = min
i

(
r2
i (x) + h(x)2

)−βi/2
,

with ri the distance to the i-th corner of �, h(x) = hT if x ∈ T , and βi = max {0, 1 − π/wi}
where wi is the size of the inner angle at the i-th corner of �.

Notice that the estimators depend on the choice of the set �1, which is slightly larger than �0,
or in other words, on the parameter d = dist(� \ �1, �0).

They also propose to use Dörfler’s strategy, i.e., in each step of the adaptive loop, the set of
marked elements M is chosen to satisfy∑

T ∈M

η2
LN,T ≥ θ 2

∑
T ∈T

η2
LN,T ,

for some θ ∈ (0, 1). We chose θ = 0.5 in our experiments below.
It is worth noticing that even though the Liao–Nochetto’s estimator (LNE) was developed for

source terms g = f ∈ L2(�), the same estimator constitutes an upper bound for the error when
g = f + νδx0 , if x0 is a vertex of the triangulation. A proof of this fact can be obtained following
the steps in Ref. [17], where Lp and W 1,p estimators were developed for Poisson’s equation with a
point source, and the authors first observed the surprising fact that the estimator is not explicitely
influenced by the point source, when it is located at a vertex of the triangulation. Notice also that
η2

1(T ) is computed only for elements T such that x0 /∈ T .
Demlow’s Estimators (DE). In Ref. [3], Demlow considered Poisson equation −�u = f and

proved that

‖u − U‖H1(�0) ≤ CD

⎡
⎢⎣
⎛
⎜⎝∑

T ∈T
T ⊂�1

η2
1(T )

⎞
⎟⎠

1/2

+ 1

d
1
2 + 1

p

(∑
T ∈T

η
p

Lp (T )

)1/p

⎤
⎥⎦ ,

for p = 2 if � is convex and 4 < p < ∞ otherwise, where η1(T ) is defined as in the previous
paragraph (with A = I ), and

η
p

Lp (T ) = h
2p

T ‖ − �U − f ‖p

Lp(T ) + h
p+1
T ‖[∇U ]‖p

Lp(∂T ).

Demlow proved convergence of an AFEM with adaptive pollution control, which is based on the
following marking strategy [3, Section 4.3]: Given ζ > 0,

(a) if (
∑

T ∈T
T ⊂�1

η2
1(T ))

1/2
> ζ(

∑
T ∈T η

p

Lp (T ))
1/p, then

take M ⊂ {T ∈ T : T ⊂ �1} such that
∑
T ∈L

η2
1(T ) ≥ θ 2

∑
T ∈T

T ⊂�1

η2
1(T ),
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(b) otherwise,

take M ⊂ T such that
∑
T ∈M

η
p

Lp (T ) ≥ θp
∑
T ∈T

η
p

Lp (T ).

Demlow also proved optimality of this strategy in Ref. [4], where he calls it the alternating
marking strategy. We chose θ = 0.5 in our experiments below.

Notice that in this case, not only the parameter d has to be chosen, but also the power p and
the coefficient ζ for the separate marking.

We present three examples. The first one with a known solution to Poisson’s equation on an
L-shaped domain with a point source, the second one with a known solution to a diffusion problem
with discontinuous coefficient A, piecewise constant on a checkerboard pattern. The third one
is a diffusion-advection-reaction problem, with variable coefficients, simulating a wiggling flow
on a canal. The goal of the first two examples is to compare the three proposals stated above.
We have run the algorithms considering different choices of the parameters a1 and a2 for the
localized weighted estimators (LWE), the parameter d for LNE and the parameters d and ζ for
Demlow’s estimators (DE), but we only report the results corresponding to the best performance
of each proposal. The goal of the third example is to show the performance of the newly proposed
algorithm in a similar to real life problem, with variable convection coefficient, which simulates
the transport, decay and diffusion of a pollutant from a point source.

A. Point Source on L-Shaped Domain

We consider the equation −�u = δx0 in � = (−1, 1)2/[0, 1]2 with Dirichlet boundary val-
ues on ∂� and x0 = (0.5, 0.5). The boundary values were taken such that the exact solution is
u(x) = − 1

2π
log |x − x0| + |x|2/3 sin(2φ/3), with φ the angle between x and the positive x1-

axis. This solution exhibits two different singularities, due to the reentrant corner and the point
source, respectively. We considered �0 a strip on the left side of the domain, namely the set
�0 = (−1, −0.5) × (−1, 1). To compare our proposal LWE with those by [2, 3] (LNE and DE,
respectively), we show in Fig. 1 the local error decay (i.e., ‖u − U‖H1(�0)) versus DOFs obtained
with the different strategies. We have considered a1 = 105 and a2 = 10−4 in the weights ω1 and

ω2 for LWE, respectively; d = 0.25 for LNE; and d = 0.25, p = 5 and ζ = 1
2d

− 1
2 − 1

p for DE. We
have also considered the algorithm guided by the global weighted estimators (H 1

α (�)-estimators,
with α = 1

2 ) from Ref. [9], because

‖u − U‖H1(�0) ≤ C�0,x0‖u − U‖H1
α (�) ≤ CAGM

(∑
T ∈T

η2
AGM ,T

) 1
2

, (13)

where ‖ · ‖H1
α (�) := ‖ · ‖L2(�,d2α

x0
) + ‖∇ · ‖L2(�,d2α

x0
).

We notice that the new proposal (LWE) behaves a bit better than the one by Liao–Nochetto
(LNE) and is very similar to the one by Demlow (DE).

The meshes obtained after 5, 10, 15, 20, 25, and 30 iterations of the adaptive algorithm guided
by the H 1(�, ω1)-estimators (LWE) are shown in Fig. 2. It is worth noticing how the refinement
concentrates around x0, the reentrant corner and the region of interest �0.

Finally, to compare the behavior of the LWE for different parameters we present in Fig. 3 the
local error decay for different parameters defining the weights ω1 (left) and ω2 (right). We notice
that the behavior of the adaptive algorithm is similar, and quasi-optimal, for all the parameters

Numerical Methods for Partial Differential Equations DOI 10.1002/num



12 GARAU AND MORIN

FIG. 1. Error decay and initial mesh with �0 shaded (225 DOFs). We plot the H 1(�0)-error versus the
number of DOFs, obtained with an adaptive procedure guided by the newly proposed estimators taking
α = 1

2 ; and a1 = 105 and a2 = 10−4 in the weights ω1 and ω2 for LWE, respectively; and also by the
estimators proposed by Liao–Nochetto (LNE) with d = 0.25, by Demlow (DE) with d = 0.25, p = 5 and

ζ = 1
2 d

− 1
2 − 1

p , and the (global) H 1
α (�)-estimators from Eq. (13), with α = 1

2 . The new proposal behaves
a bit better than the one by Liao–Nochetto and is very similar to the one by Demlow. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 2. Meshes after 5, 10, 15, 20, 25, and 30 iterations of the adaptive algorithm guided by the H 1(�, ω1)-
estimators (LWE). They have 345, 486, 1052, 3523, 19715, and 71403 degrees of freedom, respectively. It
is worth noticing how the refinement concentrates around x0, the reentrant corner and the region of interest
�0. [Color figure can be viewed at wileyonlinelibrary.com]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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tested, in a wide range of possibilities. The differences between the curves with respect to the
lowest error curve are significant when the parameters differ from the best one by several orders
of magnitude.

We remark that we have chosen α = 1
2 for simplicity, taking into account that any α ∈ (0, 1) is

admissible and the fact that the results should not be sensitive to the particular choice of α, unless
it is very close to zero. This issue has been studied and reported in [9, Example 6.1].

B. Discontinuous Coefficients

We now consider the following diffusion equation with discontinuous diffusion coefficient⎧⎨
⎩−∇ · (a∇u) = 0 in �

u = g on ∂�,

with � = (−1, 1)2, and �0 = (−1, 1) × (−1, −0.75), a band at the lower side of the square. We
consider two situations, one with a(x1, x2) = 25.2741423690882 if x1x2 > 0 and 1 otherwise,
and another one with a(x1, x2) = 161.447638797588 if x1x2 > 0 and 1 otherwise. The boundary
values were taken so that the exact solution is, in polar coordinates, u(r , φ) = rγ μ(φ), where

μ(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos((π/2 − σ)γ ) · cos((φ − π/2 + ρ)γ ) if 0 ≤ φ ≤ π/2

cos(ργ ) · cos((φ − π + σ)γ ) if π/2 ≤ φ ≤ π

cos(σγ ) · cos((φ − π − ρ)γ ) if π ≤ φ < 3π/2

cos((π/2 − ρ)γ ) · cos((φ − 3π/2 − σ)γ ) if 3π/2 ≤ φ ≤ 2π .

The constants take the values ρ = 0.785398163397448, γ = 0.25, σ = −5.49778714378214
in the first case and ρ = 0.785398163397448, γ = 0.1, σ = −14.9225651045515 in the second.
These solutions have a singularity like |x|0.25 and |x|0.1, respectively, around the origin.

The estimators from Refs. [2, 3], which need a duality argument for the lower order error, do
not carry over immediately to this situation due to the lack of corresponding regularity results
with discontinuous coefficients. To make a comparison, we assume that the upper bound for the
LNE holds with

σ−β(x) = (|x|2 + h(x)2
)−β/2

,

where β = 1 − γ , and for the DE, we assume the upper bound holds for p = 9 in the first case and

p = 21 in the second case
(
p =

⌈
2
γ

⌉)
.

We believe this is reasonable under the assumption that the precise singularity |x|γ is the worst
one for such coefficients. The chosen values of p satisfy that the exact solution u belongs to
W 2,p′

(�) with 1/p + 1/p′ = 1. However, we emphasize that the equivalences between error and
estimator for the Liao–Nochetto and DE have not been rigorously proved, we infer the possible
form of the estimators by analogy after looking at the worst singularity.

To compare the behavior of our method with those of Liao-Nochetto and Demlow we plot in
Fig. 4 the local error (i.e., ‖u − U‖H1(�0)) versus the number of DOFs. For the first case (left),
we have taken a1 = 104 and a2 = 10−4 in the weights ω1 and ω2 for LWE, respectively; d = 0.25

for LNE; and d = 0.125, p = 9 and ζ = 1
4d

− 1
2 − 1

p for DE. For the second case (right), we have
considered a1 = 105 and a2 = 10−4 in the weights ω1 and ω2 for LWE, respectively; d = 0.75

Numerical Methods for Partial Differential Equations DOI 10.1002/num



14 GARAU AND MORIN

FIG. 3. We plot the H 1(�0)-error versus the number of degrees of freedom (DOFs), obtained with
an adaptive procedure guided by the (global) H 1

α (�)-estimators from Eq. (13), with α = 1
2 ; and the

newly proposed LWE taking a1 = 101, 102, 103, 104, 105, 106, 107 in the weight ω1 (left) and a2 =
10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7 in the weight ω2 (right). We notice that the behavior of the adaptive
algorithm is similar, and quasi-optimal, for all the parameters tested, in a wide range of possibilities. The dif-
ferences between the curves with respect to the lowest error curve are significant when the parameters differ
from the best one by several orders of magnitude. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Local error versus DOFs for the discontinuous coefficient examples. The situation is similar to the
one depicted for the L-shaped domain. Our approach is a bit better than the one by Liao and Nochetto (LNE)
and very similar to the one by Demlow (DE). We recall that our estimators are indeed an upper bound for the
error, but there is no rigorous proof (yet) that the others bound the local error, due to the lack of a corresponding
regularity result for the duality approach. [Color figure can be viewed at wileyonlinelibrary.com]

for LNE; and d = 0.125, p = 21 and ζ = 1
4d

− 1
2 − 1

p for DE. We have also considered the algorithm
guided by the standard global H 1(�)-estimators.

A sequence of meshes for the more singular case is shown in Fig. 5.

C. Diffusion–Advection–Reaction with a Point Source

We end this section by showing how the adaptive method behaves on a diffusion–advection–reaction
equation. This is another case where the duality theory fails and our approach provides a simple
a posteriori estimator for the local error, by just using an appropriate weight. We consider the

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. Meshes after 10, 20, and 30 iterations of the adaptive algorithm guided by the H 1(�, ω1)-estimators
(LWE) for the more singular case.

equation

⎧⎪⎪⎨
⎪⎪⎩

−0.02�u +
[

2
sin(5x1)

]
· ∇u + 0.1u = δ(0.2,0.4) in � = (0, 3) × (0, 1),

u = 0 on ∂� ∩ {x1 < 3} ,
∂u

∂n
= 0 on ∂� ∩ {x1 = 3} ,

and the region of interest is �0 = (0, 3) × (0, 0.25). An approximate solution obtained with
an adaptive method tailored to the Wα error has been presented in Ref. [9]. We now present the
sequence of meshes (Fig. 6) obtained by the new LWE taking α = 1

2 and a1 = 105 in the definition
of the weight ω1. Notice that the refinement focuses on the region of interest �0 which is now a
narrow band at the bottom of the domain. This emulates the situation where there is a pollutant
discharge in a river or canal, and we are interested in the amount of pollutant at the coast.

Remark 4.1. (3D situation). It is known that edge singularities on polyhedral domains are not
always resolvable with the expected rate DOF −�/3 in the H1-norm when using AFEM with
shape-regular (isotropic) elements of degree �. Our algorithm suffers from the same limitation,
even when �0 is at a positive distance from the edges. Indeed, consider the case where � is
a polyhedral domain in 3D with edges that lead to singularities which can only be adaptively
resolved with rate DOF −�/3+σ in the energy norm (for some σ > 0). If no point source is present,
the weighted norms presented here are in fact equivalent to the energy norm, albeit with poten-
tially quite large constants. Thus, our algorithm will eventually lead to an error decrease with rate
DOF −�/3+σ . On the other hand, the theory of Ref. [4] essentially ensures that the algorithms of
Demlow or a slight modification of the one by Liao and Nochetto will yield a convergence rate
DOF −�/3 whenever the exact solution can be approximated in the norm ‖ · ‖H1(�0) + ‖ · ‖L2(�)

with such a rate. This will be the case if �0 is at positive distance from the edges, for some degrees
�. To be able to obtain such rates with our algorithm, one could try to use weights that vanish at
the edges; the study of this idea falls beyond the scope of this article, and will be subject of future
research.

The authors would like to thank the referees for meaningful suggestions and comments.
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16 GARAU AND MORIN

FIG. 6. Sequence of meshes for the diffusion-advection-reaction experiment. Meshes obtained after 15
(2338 elements/1234 DOFs), 20 (4799 elements/2473 DOFs) and 25 (251744 elements/126181 DOFs) iter-
ations of the adaptive algorithm guided by the LWE. During the first 14 adaptive steps the refinement was
focused on solving the singularity due to the point source. Starting at step 15, the meshes get refined at the
region of interest, and a combination of refinement around the singularity and the region of interest occurs
after step 20.
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