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Abstract A stochastic model is proposed to study the

behavior of structural sawn beams of Argentinean Euca-

lyptus grandis with the aim of improving the predictability

of the elastic deformations. The enhancement of the mid-

span deflection calculation is based on a probabilistic

model of the Modulus of Elasticity (MOE) and the repre-

sentation of its lengthwise variability through a random

field. The standard model that uses a MOE variable

assumed random from piece to piece but deterministic

(constant) within each piece is obtained as a particular

case. In order to obtain a statistical representation of the

MOE, the Principle of Maximum Entropy (PME) is

employed. Experimental data obtained from bending tests

are employed to find the parameters of the derived Prob-

ability Density Function (PDF). The PDF of the mid-span

deformations is numerically obtained through the

Stochastic Finite Element Method (SFEM) and Monte

Carlo Simulations (MCS). Numerical results are validated

with experimental values. Deflections of structural sized

beams under usual loads are obtained. Finally, the

stochastic model is used to compare with the serviceability

requirements established in the Argentinean design code. It

is shown that the structural performance of timber beams is

found through a more realistic material approach.

1 Introduction

Timber as a construction material exhibits important vari-

ability in its mechanical properties. Thus, the analysis of

the structural behavior of timber beams requires the

inclusion of these variabilities in order to obtain significant

results. Their performance should usually satisfy two main

requirements. One is strength, usually expressed in terms of

the load bearing capacity. The other requirement is ser-

viceability, which refers to the ability of the structural

system to perform satisfactorily under normal use. For this

reason, serviceability is very important in the structural

design. Design rules give recommendations for limits of

instantaneous and final deformations which can be used in

the absence of more precise information. A linear rela-

tionship between the total and the instantaneous deforma-

tions is usually assumed by the design rules included in the

codes. Instantaneous deflection can be obtained by means

of the standard solution based on elementary beam theory

considering the MOE value constant throughout the

structural member.

The timber species studied in this work is the Argen-

tinean Eucalyptus grandis. A simple method for visually

strength grading of this sawn timber has been developed by

Piter et al. (2004a). In accordance with their results, it is

possible to assign a grade of good quality Argentinean

Eucalyptus grandis to the strength classes C30, C24 and

C18 (from highest to lower quality) of the international

system established in EN 338 (2009). As reported by Piter,

the presence of pith and knots reduces significantly the

strength and the stiffness of the timber. These features are

also considered the most important visual characteristics

for the strength grading of this material by the Argentinean

standard IRAM 9662-2 (2006). The basis for the machine

strength grading of this species was reported in Piter et al.
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(2004b). However, no method for machine strength grading

was adopted by this standard.

Due to its natural origin, structural timber is character-

ized by considerable lengthwise variability of its mechan-

ical properties. However, these properties are usually

treated as random variables and their spatial variability is

not explicitly taken into account in design practice (i.e.

they are considered constant along the length). The

designer uses the properties established by the codes which

are then applied to the calculation of the whole piece

without considering that the defects and properties (within

the established limits of the strength grading) vary along

the length of the same piece. Growth defects such as knots

are the main source of the lengthwise variability of the

bending strength and stiffness in sawn beams. It is apparent

that a stochastic approach that accounts for this effect

becomes necessary in order to attain a more realistic

structural model.

The stochastic approaches employed for the modeling

of the timber mechanical properties are derived from the

probabilistic theories of random variables and stochastic

processes. These methods allow the simulation of the

timber mechanical properties with the aim of performing

the structural analysis. Random process approaches have

been employed in order to simulate the lengthwise vari-

ability of the timber mechanical properties. As is men-

tioned in Kandler et al. (2015a), these approaches can be

divided into Discrete Parameter Space Models (DPSM)

and Continuous Parameter Space Models (CPSM). In the

first group, timber elements are divided in segments of

equal size and a single stiffness value is assigned to each

segment. The second group can be divided into two

subgroups: the Weak Zone Models (WZM) in which the

location of the timber defects can vary randomly and

another group that accounts for Continuous Stiffness

Profiles (CSPM). Regarding the DPSM, one of the first

studies was presented by Kline et al. (1986). In it, the

MOE variability is modeled with a second-order Markov

model. This method is applied in order to generate

serially correlated MOEs along segments for a piece of

lumber. Czmoch (1998) assumed the MOE variation as a

stationary Gaussian random field simulated through the

Nataf transformation (Der Kiureghian and Liu 1986) and

the mid-span deflection was found through the Finite

Element Method (FEM). Despite the fact that a contin-

uous method was employed to simulate the random field,

the discretization technique of the random process, the

midpoint method (Der Kiureghian and Ke 1988), allows

to classify it in the group of DPSM. In Lam and Varoğlu

(1991), a model to simulate the lengthwise variation of

the tensile strength was presented. These are some of the

many works that employ the DPSM. The WZM are

frequently intended to model bending and tensile

strength, and to a lesser extent bending and tensile

stiffness. Köhler (2007) models the lengthwise variability

of the bending strength following the weak zone

approach proposed by Isaksson (1999) for the bending

moment capacity. Fink and Köhler (2014) report a model

for the prediction of the local tensile strength and stiff-

ness properties of knot clusters in structural timber.

Garcı́a et al. (2016) present a WZM of Eucalyptus

grandis sawn beams, applied to the study of structural

eigenproblems. In the weak zone model, the structural

timber is represented as a composite of short weak zones

connected by longer sections of clear wood. The WZM

are also associated with the hierarchical models in which

frequently two levels are distinguished, the first is the

variability among members and the second one is the

variability within each member due to the knot presence.

This approach considers the equicorrelation of the ran-

dom field, i.e. the values of the MOE along the timber

member are equally correlated. Ditlevsen and Källsner

(2005) report a hierarchical model which represents the

lengthwise variability of the bending strength. Brandner

and Schickofer (2015) use probabilistic models for the

MOE and the shear modulus considering serial and par-

allel systems to represent timber elements. Finally, within

the group of CSPM, Wang and Foschi (1992) carry out a

reliability study in laminated beams in which the MOE is

simulated by a stationary random process and the

deflections are obtained through the FEM. Kandler et al.

(2015b) study the influence of the longitudinal stiffness

variability of wooden lamellas on the effective stiffness

of Glued Laminated Timber (GLT) beams. The longitu-

dinal stiffness profile of each lamella was obtained from

the fiber angle information in combination with a

micromechanical model for wood. The prediction of the

effective GLT stiffness was carried out through a FEM

model. Generally, hierarchical models employ a random

field with an equicorrelation structure. In contrast, CSPM

employs a correlation structure with Markov properties.

An extensive literature review and discussion of both

correlation approaches can be found in Brandner (2012).

The combination of stochastic approaches and the Finite

Element Method (FEM) gives place to the Stochastic Finite

Element Method (SFEM). In Der Kiureghian and Ke

(1988), the SFEM is applied to perform structural relia-

bility studies. Among other results, the authors studied

several techniques for the simulation and discretization of

the random field in order to obtain a good representation of

the material properties variability. Ghanem and Spanos

(1991) in their book related to SFEM, represent the random

system parameters as second order stochastic processes

defined by their mean and covariance functions. The Kar-

hunen-Loève expansion is used to represent these processes

in terms of a countable set of uncorrelated random
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variables. This expansion is extensively employed in the

simulation of Gaussian random fields. The non-Gaussian

version of this method can be found in Mulani (2006). An

alternative tool to simulate random fields is the Nataf

transformation (e.g. Der Kiureghian and Liu 1986) applied

to structural reliability studies under incomplete probability

information of the random variables. If only marginal PDFs

and correlation data are available, even for non-Normal

random variables, the Nataf transformation can be applied

to give a set of independent Normal random variables.

Melchers (1999) deals with this transformation. The

application of the methodology previously described

together with the well-known Monte Carlo Simulation

(MCS) approach, lead to a more realistic representation of

mechanical systems. Frequently, the results of these mod-

els are employed to carry out reliability analyses in order to

find the Probability of Failure (PF) of a system with

stochastic properties (Melchers 1999).

The aim of the present work is to propose a stochastic

model of the lengthwise variability of the MOE in timber

sawn beams of Argentinean Eucalyptus grandis capable of

improving the predictability of the mid-span deflection

with respect to the traditional assumption of constant MOE

along the beam span. The proposed stochastic model starts

from a CSPM composed of a marginal probability distri-

bution of the MOE and an adequate correlation structure.

Unlike the reference works, the experimental information

of the probability of the MOE is obtained from the third-

point load bending tests. The construction of an adequate

model starting from these experimental values supposes an

advantage in comparison with models with a more precise

material description and more expensive to develop. In

order to state the stochastic model, in a first instance, the

results obtained from two well-known theoretical beam

models (i.e. Euler-Bernoulli and Timoshenko theories)

with the timber properties applicable to each one (global

and local MOE, respectively), are compared with experi-

mental results. Then, after the most appropriate theory and

material properties are selected, the PDF of the MOE is

defined through the application of the Principle of Maxi-

mum Entropy (PME) proposed by Shannon (1948) and

Jaynes (1957). Later, for the construction of a more real-

istic material model, the Nataf Transformation (NT) and

the non-Gaussian Karhunen-Loève expansion (NGKL) are

employed and their results obtained from MCS and the

SFEM are compared. A validation of these numerical

results with the experimental outcomes is carried out to

study the applicability of the model. Then, the proposed

stochastic model is employed to evaluate the mid-span

deflection. Finally, a study regarding the serviceability

performance is presented. The limits recommended by the

Argentinean design rules (CIRSOC 601, 2013) for the

instantaneous deflections are contrasted. The Monte Carlo

Method (MCM) is employed for this analysis. The

stochastic approach that takes into account the lengthwise

variability of the MOE leads to a more precise prediction of

the serviceability performance than the model with con-

stant MOE along the beam span.

2 Materials and methods

The study of the mid-span deflection of a simply supported

timber beam is presented herein. The mid-span deflection

v(L/2) can be evaluated after solving the well-known

Euler–Bernoulli (E–B) equation as follows:

d2

dx2
eðxÞiðxÞ d2vðxÞ

dx2

� �
¼ f ðxÞ; ð1Þ

where v(x) is the transverse displacement of the beam, e(x)

is the MOE, i(x) is the second moment of area with respect

to the z axis and f(x) is the externally applied load. This

expression is widely employed for the calculation of

instantaneous deflections and its subsequent comparison

with the limits established by the design rules. Despite that

most of the results that will be presented in the work are

based on the E–B beam theory, outcomes from the

Timoshenko beam formulation will also be reported. The

governing equations are:

d

dx
g xð Þa xð Þks

bw xð Þþ dv xð Þ
dx

� �� �
þ f ðxÞ ¼ 0

d

dx
e xð Þi xð Þdbw xð Þ

dx

 !
� g xð Þa xð Þks

bw xð Þþ dv xð Þ
dx

� �
¼ 0

8>>>><
>>>>:

ð2Þ

where g xð Þ is the shear modulus, a xð Þ is the beam cross

section, ks is the shear correction coefficient and bw xð Þ
denotes the rotation about the z axis.

In the present work, the lengthwise variability of the

MOE is represented by means of the random field E(x). In

what follows, capital letters denote random variables/pro-

cesses. A deterministic value is assumed for the second

moment of area i0. The MOE modeled as a random vari-

able E, and in consequence constant along the beam span,

is then obtained as a particular case of the random (cor-

related) field. Equation (1) written with the random quan-

tities E(x) and V(x) has the following expression:

d2

dx2
EðxÞi0

d2VðxÞ
dx2

� �
¼ f ðxÞ: ð3Þ

2.1 Finite elements discretization

Let us state the variational formulation prescribing a set of

admissible functions w:
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Z L

0

�
o2

ox2
eðxÞiðxÞ o

2vðx; tÞ
ox2

� �
� f ðxÞ

�
/ðxÞdx ¼ 0 8/ 2 w

ð4Þ

For the pinned–pinned beam,

w ¼ f/ : ½0; L� ! R;/ is piecewise C2 and bounded;

/ð0Þ ¼ 0;/ðLÞ ¼ 0g: ð5Þ

This formulation, together with the boundary conditions,

conduces to the following form of the variational problem:

Kðv;/Þ � Fð/Þ ¼ 0 8/ 2 w ð6Þ

where Fð/Þ and Kðv;/Þ are the force and stiffness

operators respectively, defined as follows:

Kðv;/Þ ¼
Z L

0

eðxÞiðxÞ o
2vðx; tÞ
ox2

o2/ðxÞ
ox2

dx and

Fð/Þ ¼
Z L

0

f ðxÞ/ðxÞdx ð7Þ

Equation (6) is numerically approximated using the

Galerkin Method. A N-dimensional subspace wN � w is

defined and approximating functions vN 2 wN are searched

for. The variational problem can be formulated as follows:

Find vN 2 wN such that:

KðvN ;/Þ � Fð/Þ ¼ 0 8/ 2 wN ð8Þ

Applying the standard finite element methodology (e.g.

Bathe 1982) the variational form, (Eq. (8)) is discretized.

Euler-Bernoulli beam elements with two nodes and two

degrees of freedom per node (transverse displacement and

rotation, respectively) are employed. Hermitian shape

functions(ni, nj) for the spatial interpolation of the

transverse deflection v(x) in terms of nodal variables are

considered. The components of the beam element stiffness

matrix and the nodal force vector are obtained from:

Ke;ij ¼
Z Le

0

EðxÞi0
d2niðxÞ

dx2
d2njðxÞ

dx2
dx and

Fe;j ¼
Z Le

0

f ðxÞnjðxÞdx: ð9Þ

After assembling the element stiffness matrices and

vectors, the following matrix equation is obtained:

½K� df g ¼ Ff g; ð10Þ

where [K] is the n � n positive-definite global stiffness

matrix, df g is the n � 1 vector of global nodal displace-

ments and Ff g is the n � 1 vector of global nodal forces.

It is important to remark that in the first part of the

study, the MOE is represented as a random field. Later, the

particular case of a random variable is derived from it.

Hence, in the following section, probabilistic tools to

simulate a random field are introduced.

2.2 MOE lengthwise variability represented

by a random field

A random field can be defined as a set of random variables

which evolve as a function of a parameter, in this case the

position x along the beam length. This set of random

variables has a multidimensional PDF with a certain degree

of correlation. In order to simulate the random field, it is

necessary to define the characteristics of the set of random

variables. In this subsection, the components of a multi-

dimensional PDF will be presented.

2.2.1 Nataf transformation

The Nataf Transformation (NT) is employed in order to

generate and simulate the MOE random field. It was

introduced in the field of structural engineering by Der

Kiureghian and Liu (1986). This method allows to build a

multidimensional PDF that fits some prescribed marginal

distributions fXi
ðxiÞ and some correlation matrix R:

fXðx1; . . .; xMÞ ¼
YM
i¼1

fXi
ðxiÞ

uðniÞ
uMðn;R0Þ; ð11Þ

where uM and u are the multidimensional and one-

dimensional normal standard distributions, respectively.

The correlation matrix R0 is computed term by term by

solving the following integral for qij:

qij ¼
Z 1

�1

Z 1

�1

xi � lXi

rXi

� �
xj � lXj

rXj

� �
u2ðni; nj; q0ijÞdnidnj;

ð12Þ

where qij and q0ij are the non-dimensional correlation

matrix elements. In order to apply this method in this work,

it is necessary to define the marginal PDF of the MOE and

the correlation matrix of the random field. They are pre-

sented in the following subsections. For more details on

this transformation, the interested reader is referred to Der

Kiureghian and Liu (1986).

2.2.2 Non-Gaussian Karhunen–Loève expansion

In addition to the Nataf transformation and with the same

purpose, the non-Gaussian Karhunen–Loève expansion

(NGKL) is applied in order to simulate the MOE random

field. The NGKL of the random field of the MOE has the

following expression:
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E x; hð Þ ¼ EðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
niðhÞfiðxÞ; ð13Þ

in which ki and fiðxÞ are the eigenvalues and eigenfunctions
of the covariance function Cðx1; x2Þ, respectively. By

definition, Cðx1; x2Þ is bounded, symmetric and positive

definite. Following the Mercer’s Theorem, it has the

following spectral decomposition:

Cðx1; x2Þ ¼
X1
i¼1

kifiðx1Þfiðx2Þ; ð14Þ

and its eigenvalues and eigenfunctions are the solution of

the homogeneous Fredholm integral equation of the second

kind given byZ
D

Cðx1; x2Þfiðx1Þdx1 ¼ kifiðx2Þ: ð15Þ

The eigenfunctions form a complete orthogonal set. The

parameter ni is a set of uncorrelated random variables. If the

random process is Gaussian, then niðhÞ are zero mean

uncorrelated Gaussian variables. Uncorrelated standard

Normal variables are independent, so the question of

independence does not arise in the Karhunen–Loève

expansion of a Gaussian random process. Otherwise, in the

case of non-Gaussian random variables, uncorrelated and

independence are not equivalent. To obtain NGKL basis

random variables niðhÞ for a non-Gaussian process, the

marginal density function should be available. Following the

work of Mulani (2006), a non-linear transformation method

is applied to obtain the NGKL basis random variables niðhÞ
of a non-Gaussian process. For the practical implementation,

the series are approximated by a finite number of terms M,

giving place to

E x; hð Þ ¼ EðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
niðhÞfiðxÞ: ð16Þ

2.3 Marginal PDF of the MOE

If a stochastic approach is applied to this problem, first a

PDF should be chosen for the random variable. A statistical

concept of entropy was introduced by Shannon (1948) and

its maximization by Jaynes (1957). The Principle of

Maximum Entropy (PME) states that, subjected to known

constrains, the PDF which best represents the current state

of knowledge is the one with largest entropy. The measure

of uncertainties of a continuous random variable X is

defined by the following expression

SðfXÞ ¼ �
Z

D

fXðxÞlnðfXðxÞÞdx; ð17Þ

in which fX stands for the PDF of the random variable

X and D is its domain. The maximization of the entropy

conduces to a optimization problem which can be solved

through Lagrange multipliers.

In order to find the parameters of the marginal PDF of

the MOE, experimental data presented by Piter (2003) are

employed. These values were obtained by means of third-

point loading bending tests, performed with 349 sawn

beam samples of Argentinean Eucalyptus grandis of

structural dimensions. The bending tests were carried out

according to the standard EN 408 (1996). The worst defects

of the beams were located in the constant bending moment

zone, between the two concentrated loads and in the tensile

region of the cross section. The sawn beams of the samples

have the following dimensions (in mm): sample 1 (S1) 50

beams of 50 �50 � 1000, sample 2 (S2) 50 beams of 50 �
75 � 1500, sample 3 (S3) 50 beams of 50 � 100 � 2000,

sample 4 (S4) 50 beams of 50 � 150 � 3000 and sample 5

(S5) 149 beams of 100 � 25 � 500. Samples 1–4 were

tested edgewise and sample 5, flatwise. The values of the

MOE were calculated taking into account the shear

deformation (global MOE Eglobal) in all the samples. Also,

for S4, the local MOE (Elocal) was obtained. This value of

the MOE was calculated in the pure bending zone of the

tested beams, free of shear deformations. The expressions

to calculate the global and the local MOE are:

Eglobal ¼
L3 F2�F1ð Þ

4:7bh3ðwG2�wG1Þ
and Elocal ¼

al21 F2�F1ð Þ
16IðwL2�wL1Þ

ð18Þ

where ðF2 � F1Þ is the load increment, ðwG2 � wG1Þ is the
global mid-span deflection increment corresponding to the

load increment, ðwL2 � wL1Þ is the local mid-span deflec-

tion increment measured in the constant moment region

and corresponding to the same load increment, b is the

width of the cross section, h the height of the cross section,

a is the distance between one load and the nearest support,

l1 is the central gauge length of five times the height of the

section and I is the second moment of area. The load

increment is within the linear elastic range of the material.

Values of the MOE experimentally obtained were cor-

rected to a reference moisture content of 12% according to

EN 384 (1996). In Table 1, the results of the bending test

are shown.

The tested beams were visually strength graded

according to the criterion adopted by the Argentinean

standard IRAM 9662-2 (2006) (Table 2).

This code includes two strength classes (C1 and C2),

while the third class (C3) is composed of pieces whose

defects exceed the limits established for C1 and C2. The

presence of pith and knots are considered the most

important visual characteristics for the strength grading of

this material. Each sample is composed of the following

quantities and percentages of timber quality according to
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the visual grading (C1, C2, C3): S1 [8 (16%), 12 (24%), 22

(44%)], S2 [19 (38%), 13 (26%), 18 (36%)], S3 [9 (18%), 6

(12%), 35 (70%)], S4 [12 (24%), 3 (6%), 35 (70%)] and S5

[71 (48%), 29 (19%), 49 (33%)]. Then, a machine strength

grading was also performed by Piter et al. (2004b),

resulting in the following quantities and percentages: S1

[16 (32%), 16 (32%), 18 (36%)], S2 [29 (58%), 10 (20%),

11 (22%)], S3 [14 (28%), 9 (18 27 (54%)], S4 [18 (36%), 4

(8%), 28 (56%)] and S5 [82 (55%), 47 (31%), 20 (14%)].

The Argentinean standard IRAM 9662-2 (2006) only

considers the visual strength grading.

Structural elements of this timber species subjected to

bending usually present a nominal height ranging from 25

to 150 mm. The lowest height is typical for boards loaded

on the wider face. Pieces with a height higher than 150 mm

are not usually available because of the relatively small

diameter of the stems which are normally obtained from

short rotation plantation trees.

According to the American standard ASTM D 198

(2002), the third-point load bending test is representative of

the usually assumed uniform load distribution on beams.

When the loads are applied at the one-third points the

moment distribution of the beam simulates that for loads

uniformly distributed across the span to develop the

bending moment of similar magnitude.

2.4 Correlation function of the MOE random field

The structure of the random field is described by means of

the correlation function. Traditionally two structures of

correlation have been employed in the references works

regarding the lengthwise variability of mechanical timber

properties. The first one is the correlation with distance

dependence and the second is the equicorrelation model. In

accordance with Continuous Stiffness Profiles Models

(CSPM), which frequently employ correlation structures

with Markov properties, an exponential correlation func-

tion proposed by Czmoch (1998) is assumed. It is based on

experimental test carried out on pine-spruce beams grade

K24 according to the Swedish standard SBN 1980 (1981)

and it writes

qij ¼ exp �2
x
ðjÞ
c � x

ðiÞ
c

��� ���
d

0
@

1
A; ð19Þ

where d is the correlation length which measures the decay

of the correlation. Here, the values considered for the

correlation length of the MOE random field are d =1.34 m

(d1) and d ! 1 (d1). When d ! 1, the random field

becomes fully correlated and it can be interpreted as a

random variable in the limit. It represents a beam with

homogeneous stochastic MOE. This case is used in the

design practice and in reliability studies.

Czmoch (1998) found experimentally that the correla-

tion length of the MOE for pine-spruce beams, is approx-

imately 1.4 m for the serviceability load level, and around

0.7 m for a load level close to the load carrying capacity.

These values of correlation length were determined in

beams with dimensions and load levels similar to the ones

employed in the following sections of the present work.

Table 1 Summary of the

results for mechanical

properties corresponding to

samples subjected to bending

tests, Piter et al. (2004a)

Mechanical properties Statistical values S1 S2 S3 S4 S5

50 mm 75 mm 100 mm 150 mm 25 mm

f (N/mm2) Min 17.4 22.9 21.6 11.5 27.5

Mean 42.4 53.6 43.9 40.3 62.1

Max 80.3 115.1 65.2 67.2 111.4

SD 12.3 16.8 10.2 13.1 15.8

Eg (N/mm2) Min 6800 7400 9000 8300 6100

Mean 10,900 12,700 11,800 12,000 12,200

Max 14,100 21,500 14,900 16,400 19,300

SD 1860 2700 1560 1590 2440

q (kg/m3) Min 419 444 430 431 421

Mean 533 567 527 513 564

Max 705 1094 732 587 739

SD 76 110 72 37 65

Bending strength (f), global MOE (Eg) and density (q)

Table 2 Eucalyptus grandis strength classes, according to the

Argentinean standard IRAM 9662-2 (2006)

Strength class Presence of pith Knot ratio Grain deviation

C1 No K � 1=3 gd \1=12

C2 No 1=3\ K � 2=3 gd \1=9

C3 Yes 2=3\ K 1=9\ gd
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The Eucalyptus grandis cultivated in the Mesopotamian

provinces of Argentina has a very high MOE/density ratio

more similar to that adopted by European standards for

poplar and coniferous than the corresponding one to

deciduous species. This conclusion was drawn by Piter

(2003). Then, following the results published in Piter et al.

(2004a), it is possible to assign a grade of good quality

Argentinean Eucalyptus grandis to strength class C30, a

second one to C24, and the lowest quality one to C18 of the

international system established in EN 338 (2009).

3 Results and discussion

3.1 Beam theories and material properties

This section starts with the study of the two well-known

Euler–Bernoulli (E–B) and Timoshenko (T) beam theories,

and their application to the deflection problem of timber

beams. Regarding each one of them, the selection of the

material properties is found in the implicit manner. The

local MOE (Elocal) is free of shear effects and it is obtained

in the central part of the beam therefore is more represen-

tative of the pure bending behavior of the material. This

MOE value is applied to the Timoshenko beam theory

considering additionally the shear modulus G, which is

obtained from the relationship G ¼ Elocal=16, G ¼
Elocal=15:94 and G ¼ Elocal=16:07 according to the rela-

tionship established by the norm EN 338 (2009) for

strength classes C30, C24 and C18, respectively. The glo-

bal MOE (Eglobal) includes the zones of the beams under

shear effects, thus it is representative of the global stiffness

of the beam. This MOE value is applied to the E-B beam

theory for the calculation of the mid-span deflection. The

analytical deflections were obtained according to the above

mentioned assumptions. Beams dimensions and mechani-

cal properties correspond to S4. As a result of the

comparison, analytical deflections obtained from the E-B

theory with the Eglobal are closer to the experimental results

in 70% of the sample. Results of the comparison between

experimental outcomes and analytical ones for both theo-

ries of the S4 are shown in Fig. 1. Vertical and horizontal

axis indicate Timoshenko and Euler Bernoulli deviations

regarding the experimental deflections (ðvðL=2ÞT�
vðL=2ÞExpÞ % and ðvðL=2ÞE�B � vðL=2ÞExpÞ %), respec-

tively. The left plot corresponds to visually graded beams

and the right plot to mechanical graded beams. As can be

observed, the E-B theory shows the best fit and no depen-

dence on the beam quality is observed. This comparison

was carried out due to the fact that some standards as the

Eurocode 5 (Porteous and Kermani 2007) and the NDS

(2005) include the shear deformation for the calculation of

deflections but according to the results of this section, the

E-B theory adjusts better.

An experimental study of the relationship between the

global and local MOE in sawn beams of Argentinean Eu-

calyptus grandis was presented in Piter et al. (2003). This

work reports that the local MOE presents a mean value

6–7% larger than the corresponding global one.

It should be noted that although the value of G used in

the previous analysis is estimated, not measured, this

Elocal=G relationship is usually employed in the engineer-

ing practice. Thus, the source of discrepancy between the

numerical and experimental results may be due not only to

the selected theory (E–B or T) but also to the G value

estimation.

Despite the fact that the E–B theory with the global

MOE constant along the beam span has proved its relative

accuracy in the prediction of the mid-span deflection of the

sample S4, not in all beams the analytical results with the

assumption of constant MOE along the span lead to satis-

factory outcomes. Therefore, in what follows, an

improvement of the prediction of the mid-span deflection

based on a stochastic framework is presented.
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Fig. 1 Percentages differences

between the measured

deflection of a beam and its

corresponding numerical

deflection obtained from Euler–

Bernoulli and Timoshenko

beam theories. Left plot beams

classified with visual grading,

right plot same beams classified

with machine grading
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3.2 Probability density function of the MOE

Firstly, it is necessary to define the PDF of the MOE. To

achieve this, the Principle of Maximum Entropy (PME) is

employed. It is possible to demonstrate that the application

of the principle under the constraints of positiveness due to

a real positive domain of the MOE, known first moment

and bounded second moment, leads to a gamma PDF.

Second, the Kolmogorov–Smirnov (K–S) test of fit, e.g.

Benjamin and Cornell (1970), is applied in order to verify

the result of the previous application of the PME. The level

of significance a of the parametric hypothesis is assumed to

be 0.05. For a ¼ 0.05, the critical value for the K–S test of

fit is equal to c ¼ 1.36. In addition to the gamma distri-

bution, suggested by the PME, the test of fit is also carried

out with the log-normal and normal distributions. The first

one was selected following Köhler et al. (2007) and the

second distribution since it is often employed to represent

mechanical properties. The K–S statistics obtained from

the test of fit are: 0.63, 0.73 and 0.98 for the gamma, log-

normal and normal distributions, respectively. The three

distributions fit the K–S test requirements. As can be

observed, the gamma distribution fits the experimental data

best. However, the use of the normal distribution in the

model would occasionally lead to negative values of the

MOE. Thus, the gamma and log-normal distribution seem

to be more suitable. Also, a truncated normal distribution

would be an alternative. Supported by the PME and in view

of the test of fit results, the gamma distribution is adopted.

The gamma marginal distribution of the MOE is described

by the following PDF:

f ðx j a; bÞ ¼ 1

baCðaÞ xa�1e�
x
b; ð20Þ

where a ¼ 28:727 and b ¼ 0:44 are the shape and the scale

parameters, respectively and C is the Gamma function. The

mean value, standard deviation and coefficient of variation

of the random variable global MOE are respectively:

l ¼12.639 GPa, r ¼ 2.358 GPa and d ¼ r=l ¼ 0.186. The

marginal parameters of the MOE distribution were esti-

mated with the help of the maximum likelihood method

(MLM) employing experimental results of the samples

presented in Table 1 and reported in Piter (2003).

The selection of the MOE distribution is a point of

interest in this work and this fact is easily demonstrated

obtaining the percentile 0.05 of the gamma, log-normal and

normal distributions with the same mean and standard

deviation values. These values of percentile for each dis-

tribution are 9.027, 9.165 and 8.76 GPa, respectively and

lead to deflections 2.95% (gamma) and 4.45% (log-normal)

lower with respect to the 0.05 percentile of the normal one.

This value of percentile was chosen due to the fact that it is

extensively employed for the design codes in the verifica-

tion of serviceability conditions. For situations in which a

more exhaustive deflections control is required, the 0.05

percentile is recommended by the codes. The comparison

among the percentile for different distributions is fre-

quently named as the tail sensitivity problem, e.g. Melchers

(1999), and consists in the selection of the best available

probabilistic models, in particular those which best model

the relevant extreme (‘tails’) of the PDF.

3.3 Lengthwise variability of the MOE

Two approaches for modeling the lengthwise variability of

the MOE are employed and compared. One is the Nataf

Transformation (NT) and the other is the Non-Gaussian

Karhunen–Loève expansion (NGKL). Both stochastic

methods are used in combination with the FEM, resulting

in the SFEM. To implement each one of these methods, a

discretization technique is necessary. In the first case, the

integration point method with nine Gauss-Legendre

quadrature points is applied and in the second case, the

KLE itself, Eq. (16), yields a discretization technique

(Sudret and Der Kiureghian 2000).

It is evident that, if the input is random, the outcomes

are also random. In Fig. 2, a convergence study for the

random field simulated through the Nataf transformation is

shown, where ns is the number of independent Monte Carlo

simulations, E[V(L/2)] is the mean value of the mid-span

deflection and r½VðL=2Þ� is the standard deviation of the

random variable V(L/2). Due to the simple shape of the

PDF, the adopted convergence criterion is jE½VðL=2Þns� �
E½VðL=2Þns�200�j � 0:05 mm where E½VðL=2Þns� is the

mean value of the mid-span deflection for a number of

simulations ns and E½VðL=2Þns�200� is the mean value of the

mid-span deflection for a number of simulations ns � 200.

A fast convergence is observed for the mean value and the

standard deviation for the studied values of the correlation

d. This study was carried out in order to determine the

appropiate number of simulations to attain a prescribed

accuracy taking into account the results that will be shown

below.

The first similarities and differences between the two

approaches to model the MOE (i.e., either a random vari-

able or a random field ) can be observed in Fig. 2. The

mean values of V(L/2) remain approximately equal for both

approaches. The differences are evident in the standard

deviation of V(L/2). The curves of Fig. 2 (right plot) are

evidently separated. A correlation length value d1 yields

larger second moment values (variance). This last obser-

vation is the principal difference that the stochastic models

exhibit, and the influence on the structural response will be

analyzed and discussed in the following subsections.
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The application of the NGKL requires the determination

of the numbers of terms necessary for an adequate repre-

sentation of the random field and its properties. Figure 3

depicts the results of this stochastic approach and a com-

parison with the PDF of the mid-span deflection (f(V(L/2)))

obtained with the NT. As can be observed in Fig. 3, the

approximation of the covariance function (central plot)

improves in all points of the beam span for more than 20

terms for the NGKL. The comparison between the PDF of

V(L/2) (Fig. 3, right plot) found with the NGKL and the NT

shows that both probabilistic tools employed for the sim-

ulation of the MOE lengthwise variability conduce to

similar results. In Ghanem and Spanos (1991) eigenvalues

and eigenfunctions of an exponential covariance function

were presented for the KLE. No substantial differences

were found although the KL technique exhibits some

practical advantages in its implementation.

3.3.1 Numerical validation of the stochastic approach

In this section, a validation of the numerical (stochastic)

approach with the experimental results of the mid-span

deflection is presented. Experimental data were obtained

from the bending test, performed with the samples S2, S3

and S4. These samples were chosen due to the fact that the

correlation structure of the random field was determined

for beams with similar dimensions to the ones used in this

section. Dimensional parameters employed in the numeri-

cal simulation are given in Table 3.

These dimensional parameters correspond to average

values obtained from the 50 beams of each sample. The

following load values were considered [initial load, (load

step), final load]: [0.6, (0.6), 2.4] kN for the sample S2;

[0.8, (0.8), 4] kN for the sample S3; [0.9, (0.9), 3.6] kN for

27 beams of the sample S4 and [1.2, (1.2), 2.4] kN for 23

beams of the same sample. The first sub-sample of S4 is

composed of: 7 beams C1, 2 beams C2 and 18 C3 beams
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Fig. 3 MOE random field.

Comparison of NT and NGKL.

Left plot first ten eigenvalues of

the covariance function. Central

plot comparison between the

prescribed covariance function

and the ones obtained for

several values of the expansion

terms M (number of terms in the

NGKL). Right plot comparison

between the PDF of the mid-

span deflection f(V(L/2))

obtained for the NGKL and the

NT

Table 3 Dimensional parameters

Parameters S2 S3 S4

Beam height (mm) 66.48 92.45 141.17

Beam width (mm) 41.89 42.03 41.31

Length between supports (m) 1.196 1.664 2.541

Length between forces (m) 0.398 0.554 0.847
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visually graded; 9 beams C1, 3 beams C2 and 15 beams C3

according to machine grading. The second sub-sample is

composed of: 5 beams C1, 1 beam C2 and 17 beams C3

visually graded; 9 beams C1, 1 beam C2 and 13 beams C3

according to machine grading. Then, the proportion of the

beams quality in each sub-sample is similar. No relation

between the beam quality and the value of deflection

experimentally obtained was observed. Some beams of

high quality in samples S2 and S4 have the lowest values of

deflection and beams of lower quality the higher values of

deflection in S3. But these observations are not conclusive

regarding the relationship beam quality-deflection.

The influence of the correlation length can be observed in

Fig. 2. The mean values of the response remain approxi-

mately equal, for both d1 and d1. An increase of d produces

larger standard deviation values of the f[V(L/2)]. This indi-

cates that a homogeneous beam presents higher values of

deflection than an inhomogeneous beam. Also, a large

variation or dispersion from the average or expected value of

V(L/2) is observed. In the bending test, the beams are grad-

ually loaded. At the beginning of the test, distortions are

frequent before the whole beam starts to bend normally. This

behavior is reflected in the load-deformation curve through

changes in the slope. As the test progresses, the beam exhi-

bits a linear response and the differences decrease. However,

due to the characteristics of the internal structure of the

material and the heterogeneities due to the timber defects, the

expected straight line is sometimes lost. For this reason, the

determination of the global MOE requires the proper selec-

tion of the points at the curve so that they are representative

of the linear behavior.

In Fig. 4, a comparison of the numerical and experimental

CDFs (F) of the mid-span deflection for each sample and

load level is presented. Numerical CDFs were obtained with

10,000 MCS. A sensitivity analysis of the correlation length

d was carried out and d was considered to range between 3d1

and d1=2 with a step of d1=4. In the figures, the numerical

mid-span deflection obtained with d1, 3d1, d1=2 and the

value of the correlation length that best fit the experimental

results, are depicted. The criterion established for the

determination of the correlation length that fits best the

experimental results is the quantification of the differences

between the numerical and experimental CDF over the

entire distribution domain (
P

j Fd � FExp: j). In Fig. 4a, the
CDFs of the mid-span deflection F(V(L/2)) for the load

levels considered for S2, are compared. In the lower part of

the CDF (under 50%), experimental results are located

within the numerical CDFs. Deflections for high quality

beams (C1 and C2) are found in this region. The numerically

found CDF differs from the experimental curve in the upper

part of the plot (over 80%). But likewise the lower part of

the CDF, deflections of high quality beams are also located

in this region. For higher load levels, the probabilistic model

with d1 fits best with the experimental CDF under the per-

centile 80%. Meanwhile, the numerical model with 3d1 fits

best the upper part of the experimental CDF (over 80%).

Despite this, d1 achieves the best adjustment in the entire

distribution domain.

The CDFs of the mid-span deflection F(V(L/2)) for the

load levels considered for S3 are compared in Fig. 4b. As

can be seen in the upper part of the experimental CDF

(over 90%), results are located inside the numerical CDFs

range. Meanwhile in the lower part of the CDF (under

30%), numerical results from the probabilistic model with

ð3=4Þd1 and ð1=2Þd1 are located closer to the experimental

ones than the cases included between ð3=4Þd1 and d1. In

the central part of the plot (between the 30 and the 80%)

the difference among the numerical and experimental CDF

is larger. This difference increases with the load level

increment. A lack of experimental outcomes exists in this

region. It is important to remark that S3 has only 28% of

beams of superior quality and constitutes the sample with

the lowest amount of this timber quality. But similarly to

the previous case, there is no relationship between the

timber quality and the experimental mid-span deflection.

The model with ð3=4Þd1 achieves the best representation in

the entire distribution domain.

Figure 4c depicts the CDFs of the mid-span deflection

F(V(L/2)) found with the load levels considered for S4. The

CDF obtained from the probabilistic model with ð5=4Þd1 fits

best with the experimental one for all the load levels and the

two sub-samples. For ð1=2Þd1 the first sub-sample of

experimental results is best adjusted over the percentile 80%.

But the improvement achieved with ð5=4Þd1 in both sub-

samples is highest. Also, the proportion of beam quality in

each sub-sample is similar. The model with d1 tends to

overestimate the lower values of deflections and underesti-

mate the higher values. Unlike the previous sample, the

experimental mid-span deflections of high quality beams are

located in the lower part of the experimental CDF (under

50%) for the higher load steps. Themodel with ð5=4Þd1 is the

best fit in the entire distribution domain.

Results of the sensitivity analysis show that the

numerical outcomes obtained with d1 are, on average,

acceptable and result in a good prediction of mid-span

deflection of the tested sample. The value of the correlation

length for a serviceability load level obtained from pine-

spruce samples is applicable to Eucalyptus grandis struc-

tural elements. Although values of ð3=4Þd1 and ð5=4Þd1

have shown the better adjustment in the mid-span distri-

bution for S3 and S4 respectively, d1 appears to be a rea-

sonable value for the whole study. The statistical

information of the MOE embodied in its PDF constitutes a

solid base from which the structural designer can obtain the
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structural response. Results of the numerical approximation

of the mid-span deflections for both models of MOE

variation (d1 and d) are presented and compared in

Table 4. Differences between the results of the model with

d1 and the experimental values are presented in the sev-

enth column of the table (Fd1 � FExp:). Similarly, for the

values of the correlation length that best fit the

experimental CDFs (Fd � FExp:) in the eighth column.

Also, the mean value, standard deviation (SD), the 5th and

95th percentile (P05 and P95, respectively) are presented in

the table. As can be observed, the predictability of the

experimental results increases with the application of the

numerical model that includes the lengthwise variability of

the MOE, named Fd , in all the samples and load levels.
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Fig. 4 Comparison between

numerical and experimental

CDFs. Sensitivity analysis of

the correlation length parameter

d
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Table 4 Differences in the predictability of the experimental results obtained by numerical models (d1 and d)

Sample Load (kN) Statistics (mm) Exp. d1 d Fd1 � FExp: (%) Fd � FExp: (%)

S2 d ¼ d1 0.6 Mean 1.52 1.45 1.45 10.41 8.64

SD 0.28 0.27 0.24

P05 1.18 1.07 1.14

P95 2.08 1.95 1.89

1.2 Mean 3.01 2.92 2.91 7.39 5.2

SD 0.58 0.56 0.47

P05 2.31 2.12 2.23

P95 4.28 3.97 3.77

1.8 Mean 4.47 4.36 4.38 5.45 3.95

SD 0.89 0.84 0.72

P05 3.34 3.19 3.34

P95 6.32 5.91 5.68

2.4 Mean 5.97 5.82 5.83 6.01 4.15

SD 1.25 1.10 0.95

P05 4.37 4.26 4.46

P95 8.39 7.79 7.55

S3 d ¼ ð3=4Þd1 0.8 Mean 2.05 1.93 1.97 27.78 13.10

SD 0.25 0.37 0.28

P05 1.70 1.41 1.56

P95 2.39 2.63 2.47

1.6 Mean 4.08 3.88 3.87 27.11 6.28

SD 0.52 0.76 0.60

P05 3.34 2.82 3.15

P95 4.87 5.27 4.95

2.4 Mean 6.11 5.91 5.92 33.08 5.73

SD 0.78 1.13 0.86

P05 5.02 4.21 4.66

P95 7.34 7.87 7.43

3.2 Mean 8.18 7.85 7.87 32.15 6.23

SD 1.05 1.47 1.14

P05 6.70 5.66 6.20

P95 9.90 10.40 9.91

4 Mean 10.33 9.81 9.84 31.16 7.58

SD 1.36 1.89 1.42

P05 8.43 7.05 7.76

P95 12.42 13.17 12.43

S4 d ¼ ð5=4Þd1 0.9 Mean 2.21 2.21 2.24 4.90 4.48

SD 0.38 0.42 0.34

P05 1.42 1.59 1.74

P95 2.73 2.99 2.84

1.8 Mean 4.43 4.42 4.47 6.63 2.98

SD 0.55 0.85 0.68

P05 3.56 3.20 3.51

P95 5.34 5.98 5.69

2.7 Mean 6.66 6.65 6.72 9.95 3.19

SD 0.75 1.29 1.01

P05 5.42 4.84 5.27

P95 7.89 9.02 8.55
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3.4 Effects of the lengthwise variability of MOE

on the reliability of timber beams

The comparison between experimental and numerical

results obtained from the probabilistic model that take into

account the lengthwise variability of the MOE in timber

elements has been discussed previously. In this subsection,

a study regarding the performance of structural-sized

beams of Argentinean Eucalyptus grandis is presented and

discussed in comparison with the deflection limits recom-

mended by the Argentinean design rules (CIRSOC 601

2013).

3.4.1 Beams with MOE represented by a random variable

The serviceability limit state function for a simply sup-

ported beam can be expressed as:

gðEÞ ¼ wR � wmðEÞ; ð21Þ

where wR is the deterministic allowable deflection

(reference value) assumed in accordance with the

functional requirement and wmðEÞ is the random mid-

span deflection. Taking into account the instantaneous mid-

span deflection caused by the load configuration considered

in this work, the serviceability limit state function can be

expressed as:

gðEÞ ¼ L

360
� p

Ei

23L3

648
; ð22Þ

where L is the beam length, the first term is the expression

applied to the verification of the instantaneous deflection

due to actions according to the criterion adopted by the

Argentinean design rules (CIRSOC 601 2013) and the

second term is the random mid-span deflection. Following

this standard, the instantaneous deflection can be calculated

using the mean value or the percentile 0.05 of the MOE

distribution, depending on the design situation. For more

critical design situations in which a more exhaustive

deflections control is required, the 0.05 percentile is

recommended by the codes. The probability of exceeding

the serviceability condition, i.e. the probability that the

random mid-span deflection be greater than the allowable

one is defined as:

PF ¼ P g Eð Þ� 0ð Þ ¼
Z

gðEÞ� 0

fEðeÞde; ð23Þ

in which fE is the PDF of the random variable E. This

expression is relatively simple to solve in the case of

d ! 1, i.e. MOE with homogeneous value within the

beam length. It is only necessary to solve the limit state

function when g Eð Þ ¼ 0 in order to find the value of the

dependent variable, say loads, cross sectional dimensions,

beam length. For values of g Eð Þ� 0 the failure occurs, i.e.

the violation of the allowable deflection requirement.

Let us take into account the dimensional parameters of

the sample S4 and the following Eucalyptus grandis

material properties, corresponding to the C1 strength class:

l ¼13.902 GPa and r ¼ 2.364 GPa. If one previously

defines a target value of PF, the load values that produce

this probability of exceeding the serviceability perfor-

mance condition can be found. For a PF equal to 0.05, the

obtained load value is 1.33 kN and for a PF equal to 0.1,

1.43 kN. These load values were verified to be within the

linear elastic range of the material and within the load

magnitudes that have been employed in the bending tests.

When the lengthwise variability of the MOE is considered

in the calculations, the study concerning the serviceability

control leads to a lower PF for lower load levels. Addition-

ally, a higher PF results for load levels closer to the bending

capacity of the beams, always in comparison with the con-

stant MOE assumption. This point will be discussed in the

following subsection. When the properties are considered

Table 4 continued

Sample Load (kN) Statistics (mm) Exp. d1 d Fd1 � FExp: (%) Fd � FExp: (%)

3.6 Mean 8.99 8.88 8.97 10.17 3.83

SD 1.04 1.69 1.34

P05 7.33 6.50 7.02

P95 10.71 11.95 11.37

1.2 Mean 3.03 2.96 2.98 4.17 2.58

SD 0.49 0.58 0.44

P05 2.38 2.14 2.33

P95 3.77 4.02 3.76

2.4 Mean 6.15 5.92 5.98 5.79 2.66

SD 1.02 1.14 0.90

P05 4.78 4.32 4.68

P95 7.49 7.95 7.58
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constant along the structural element the design criteria

(percentile 0.05 of the MOE distribution) are found to be on

the safe side.

3.4.2 Beams with lengthwise MOE variability represented

by a random field

In this section, the PF is approximated by the Monte Carlo

Method (MCM, Melchers 1999) for the load values pre-

viously determined and the MOE is represented by a ran-

dom field with correlation length d1. The MCM is chosen

due to the fact that fE (Eq. (23)) becomes a multidimen-

sional PDF (a random field) in this section and the limit

state function is not straightforward defined as before. This

method provides a simple technique in order to estimate the

probability of failure PF. The confidence interval of PF is

defined as follows:

P cPF � z1�a=2
Sffiffiffiffi
N

p �PF � cPF þ z1�a=2
Sffiffiffiffi
N

p
� �

� 1� a;

ð24Þ

where z1�a=2 is the ð1� a=2Þ quantile of the standard

normal distribution, cPF is the unbiased estimator of PF

and S is its variance. The relative error (RE) of the

estimator cPF with N simulations is defined as

RE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðcPFÞ

q

E½cPF �
¼ r

PF
ffiffiffiffi
N

p � S

cPF
ffiffiffiffi
N

p : ð25Þ

The probability of exceeding the limit value of the

instantaneous deflection decreases when the lengthwise

variability of the MOE is considered, as shown in Table 5.

Also, a probability of failure equal to approximately 0.05

can be achieved for the stochastic model with d1 while its

corresponding case with d ! 1 has a probability of failure

equal to 0.1. Next, in the same table, the RE of the esti-

mator cPF and the confidence interval for a probability of

0.95 with a number of simulations N=100,000 are shown.

The relative error reported in the table shows the accuracy

of the estimator cPF .

Figure 5 depicts the results of the reliability study. The

variation of the estimator cPF with its relative error and the

confidence interval for the corresponding PF in the models

when d ! 1, are shown. The relative error of cPF is lower

in the case d ! 1 and PF = 0.1 due to the reduction of the

ratio between the standard deviation of the estimator and its

value with respect to the case d ! 1 and PF = 0.05.

Additionally, the decrease of the absolute width of the

confidence interval with respect to the increment of N is

observed. The difference in the values of these parameters

is due to the variation of the standard deviation of cPF that

decreases with the increment of cPF .

There exists variability in the mechanical properties

within each strength class established by the norms. The

visual strength grading parameters reduce this variability

with respect to the total population. The designer takes the

properties of the strength class and applies them to the

calculation of the whole piece without considering (within

the established limits) that the defects and properties vary

along the same piece. Following the calculation criterion

considered in the Argentinean standard CIRSOC 601

(2013) without taking into account its lengthwise vari-

ability, a PF = 0.05 is assumed, i.e. there exists a proba-

bility of 0.05 that the MOE takes a smaller value.

According to the results of the present study, the proba-

bility of exceeding the serviceability condition is lower in

the presence of a lengthwise variable MOE than when the

usual calculation rules are applied.

The preceding observations are important for the

practical design of timber elements that adopt a failure

probability of 0.05. The influence of the lengthwise

variability of the MOE in the serviceability performance

for several load values can be appreciated in a fragility

curve. Figure 6 shows the fragility curves of the samples

S2, S3 and S4 for the load levels applied in the experi-

mental test. They were constructed through the calcula-

tion of the PF for each load level. As can be observed for

lower load levels, the PF is lower when there is length-

wise variability of the MOE and vice versa for higher

load levels. Then, the importance of a more precise

deflection prediction is apparent. Another relevant point is

that for these load levels, failure for the bending strength

of the beams were not registered during the experimental

test. This fact shows the importance of the serviceability

performance in the structural design and of a more real-

istic prediction of the mid-span deflection.

4 Conclusion

Structural-sized beams of Argentinean Eucalyptus grandis

with uncertain material properties were studied and in

particular, the mid-span deflection was analyzed in detail.

A stochastic model of the lengthwise variability of the

Table 5 cPF estimator, its relative error (RE) (% of cPF) and the

confidence interval of PF. N = 100,000

PFd!1 P̂Fd1
RE Confidence interval 95%

Lower limit Upper limit

0.05 0.0173 2.37 0.0165 0.0181

0.10 0.0515 1.35 0.0501 0.0529
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Modulus of Elasticity (MOE) that improves the pre-

dictability of the structural response was proposed.

The model relies on experimental values of the MOE

obtained with third-point load bending tests. Usually, the

MOE lengthwise distribution is not known. The present

methodology has shown that, despite this situation,

numerical results fit very satisfactorily the experimental

data. The bending moment distribution along the length of

the beams, and the maximum values, are similar to those

produced by a uniform load. This type of load is more

frequent in structures. Beam dimensions of each sample

are representative of the elements used in the usual timber

structures. Pieces with a height higher than 150 mm are

not usually available because of the relatively small

diameter of the stems which are normally obtained from

short rotation plantation trees. These two facts, load

configuration of the bending test and beam dimensions,

support the eventual extension of the results presented in

the work.

The development of the numerical model involves the

following steps: first, the distribution of the global MOE

was chosen based on the Principle of Maximum Entropy

(PME). Then, the selection was verified with the Kol-

mogorov–Smirnov (K–S) test of fit. The results of the

application of these two tools have shown that the best

Probability Density Function (PDF) to model the MOE is

the gamma PDF instead of the extensively employed nor-

mal PDF. Then, the Euler–Bernoulli beam model with the

application of the global MOE has proved to be more

accurate in the prediction of the deflections of structural

size beams than the Timoshenko beam model that employs

the local MOE and the shear modulus. However, the source

of discrepancy between numerical and experimental results

can be due not only to the selected beam theory but also to

the shear modulus estimation usually employed in the

engineering practice. The structure of correlation of the

random field was adopted and estimative values of the

correlation length were established, supported by the

mechanical similarities that the Argentinean Eucalyptus

grandis shows with respect to coniferous species. Finally,

two approaches were employed and compared in order to

simulate the lengthwise variability of the MOE within a

Stochastic Finite Element Method (SFEM) code. The

applicability of the non-Gaussian Karhunen–Loève
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Fig. 5 Estimator of the

probability of failure (P̂F) and

its respective relative error for a

PF ¼ 0.05 and 0.1 of beams

with a constant MOE
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Numerical results
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expansion (NGKL) and the Nataf Transformation (NT) was

discussed and it was found that both tools lead to similar

results. The first approach is recommended due to its

practical implementation advantages.

Experimental values of the mid-span deflection obtained

from the bending test were evaluated and classified

according to the visual and machine grading of the tested

beams. Results of the machine grading were used in order

to improve the study of the deflections measured in each

sample. The first grading method is applicable under the

Argentinean design code. The machine grading does no

result in decisive considerations regarding the beams

deflections. No relation between the beams quality and the

deflection was observed.

Validation of numerical results of bending tests with

experimental ones was also presented. It is shown that

numerical simulations results with the MOE represented by

a random field, are closer to the experimental outcomes.

Thus, an improvement of the deflection predictability with

respect to the constant MOE assumption was achieved. The

value of the correlation length for a serviceability load

level obtained from pine-spruce beams was shown to be

applicable to Eucalyptus grandis elements. Results of a

sensitive study shows that the highest adjustment in the

mid-span deflection prediction was achieved with values of

correlation length closer to the adopted reference value.

Finally, the Monte Carlo Method (MCM) was applied to

the study of the serviceability performance of timber beams

through the stochastic model presented in this work. When

the lengthwise variability of MOE is considered, the

probability of exceeding the serviceability limit is lower

compared with the use of a constant MOE along the beam

span. This fact is true for low values of the Probability of

Failure(PF). According to the results provided by the

model of lengthwise variability of the MOE for a proba-

bility of failure of 0.05, a model with constant MOE should

be employed considering the 0.1 percentile of the MOE

distribution. This is an important point regarding the Ser-

viceability Limit State (SLS) design of Eucalyptus grandis

timber elements. In order to study the influence of the

lengthwise variability of the MOE for several loads in the

structural performance, the fragility curves of the tested

beams were obtained. For higher values of the PF, the

probability of exceeding the serviceability limit is higher

for a model with lengthwise variability of the MOE. The

findings of this study show the importance of the service-

ability design. The serviceability limit is the first condition

reached while the bending strength failure is far for the

tested samples. Despite this fact, the stochastic model

herein presented has no influence on the Ultimate Limit

State (ULS) design of Eucalyptus grandis timber elements

if a first order beam theory is used. Hence, in the case

herein analyzed, one can infer that the stochastic approach

that takes into account the lengthwise variability of the

MOE leads to a more precise prediction of the service-

ability performance than the model with constant MOE

along the beam span.
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Luleå Tekniska Universitet, Luleå
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