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We present the results of a linear optics photonic implementation of a quantum circuit that
simulates a phase covariant cloner. We experimentally simulate the action of two mirrored 1 → 2
cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show
that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of
noise added to the original input state and therefore mask its presence in a quantum key distribution
protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which
is identified as a potential eavesdropper in a quantum key distribution protocol. The device has
the flexibility to produce mirrored versions that optimally clone states on either the northern or
southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning
machines by tuning the asymmetry on each of the cloning machines.

I. INTRODUCTION

The no-cloning theorem of quantum information is
the formal statement of the fact that unknown quantum
states cannot be perfectly copied [1, 2]. Without this re-
striction one would be allowed to completely determine
the quantum state of a system by measuring copies of it,
even leaving the original system untouched! This theo-
rem underlies the security of all Quantum Key Distribu-
tion (QKD) protocols, and has consequences at a tech-
nological level, imposing limitations on error correction
techniques and on other tasks that involve transmission
of information [3–5]. Despite this strong restriction, sev-
eral approximate cloning machines can be constructed.
That is, the production of imperfect copies is indeed al-
lowed. In general, this is achieved by coupling the sys-
tem to be cloned to an auxiliary system and applying
a trace-preserving, completely-positive map to the com-
posite system [6–10].

Among the family of Quantum Cloning Machines
(QCM), one can make a distinction between universal
cloning machines (UQCM), which copy all the states
with the same fidelity F , regardless of the state |ψ〉 to
be cloned, and state-dependent QCM. Optimum UQCM
can achieve a cloning fidelity F of 5/6 = 0.833 [6–8, 11].
State-dependent machines can be designed to perform
better for those restricted input states than a UQCM.

One of the most relevant features of quantum cloning
is its usefulness for eavesdropping on QKD systems over
noisy quantum channels. This quantum channel is con-
trolled by Eve, the eavesdropper, who can perform any
operation allowed by quantum mechanics. By exploit-
ing quantum cloning, Eve can keep one of the output
states and send another to the legitimate receiver, Bob.
Eve’s strategy is to try to get as much information as she
can while producing as less disturbance in Bob’s state.
For this task, an optimal quantum cloning machine is
required, in the sense that for a given fidelity of the orig-
inal state, the fidelities of the cloned states are maxi-
mal. Depending of the specific QKD protocol, different

cloning machines can be designed for optimal fidelity.
That is, a UQCM may not be optimal for the specific
set of states that are involved in a particular QKD pro-
tocol, but rather a particular state-dependent QCM may
perform optimally the task [12, 13].

The best-known state-dependent QCM is the so-called
phase-covariant QCM. It can optimally clone states of the
form |ψ〉 = 1√

2
(|0〉 + eiφ|1〉), that lie on the equator of

the Bloch sphere. The Phase-Covariant Cloning (PCC)
machine has a remarkable application in quantum cryp-
tography, since it is used in the optimal incoherent strat-
egy for eavesdropping on the BB84 QKD protocol [14–16]
that runs with the bases of eigenstates of σx and σy. The
eavesdropper on BB84 needs to gather information only
on the four states 1√

2
(|0〉 ± |1〉) and 1√

2
(|0〉 ± i|1〉), how-

ever it can be shown that the optimal solution for cloning
these four states and for cloning all the states from the
equator is the same [17].

The task of optimally cloning the equator of the Bloch
sphere can be accomplished without ancilla [18]. This
situation is usually depicted as a 1→ 2 cloning; a single
qubit that interacts with another qubit in a blank state
(Eve’s qubit), which results in a transformation on a two
qubit system that makes two imperfect copies of the first
qubit. The asymmetric PCC transformation on Bob and
Eve’s qubit can be expressed as

|0〉B |0〉E → |0〉B |0〉E
|1〉B |0〉E →

√
1− q|1〉B |0〉E +

√
q|0〉B |1〉E

(1)

where 0 ≤ q ≤ 1 controls the asymmetry of the cloning
operation. Once applied to states on the equator, the
reduced density matrices ρB and ρE can be obtained and
the fidelities of the clones can be calculated as FB =
〈ψ|ρB |ψ〉 = 1

2 (1 +
√

1− q) and FE = 〈ψ|ρE |ψ〉 = 1
2 (1 +√

q). Both fidelities are independent of the phase φ of the
input state and for the symmetric case in which q = 0.5
we obtain FB = FE = 0.8536, outperforming a UQCM.
Therefore, the PCC machine allows for a higher fidelity
than that of the universal cloning machine for all states
on the equator of the Bloch sphere.
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A relevant issue is that being not universal, a PCC
machine comprises an operation that shrinks the Bloch
sphere of the copied state non-uniformly towards the
north pole (i.e. the |0〉 state). As a consequence, a bias
on the σz basis appears when cloning states that lie on
the Bloch sphere’s equator. Such footprint can be eas-
ily detected in a QKD implementation just by adding
a single projective measurement in the σz basis (for ex-
ample, detecting |0〉 states). To overcome this issue, a
desirable property of a PCC machine is for it to be able
to prepare clones with no bias but with the same indi-
vidual fidelity. This can be achieved by performing the
transformation (1) and also its mirrored version, that is,
one that shrinks the bloch sphere towards the |1〉 state.
Several experimental implementations of the PCCM have
been performed mainly using photons [19–23] and NMR
systems [24, 25]. The use of mirrored PCCM has been
introduced in [26–28], in the context of assuming partial
knowledge about the input state.

In this work we simulate the mirrored PCC machines
using two qubits encoded in the polarization and linear
momentum (path) degrees of freedom of a single photon,
and the interaction is produced in a linear optics setup,
via a series of displaced Sagnac polarizing interferome-
ters. We experimentally observe that by alternating ran-
domly between these two operations, Eve can generate
a balanced mixture of cloned states and pass unnoticed
the test sketched above. In spite of the fact that the
polarization-path dual encoding does not produce a phys-
ical clone of the transmitted qubits, with this setup we
can access to the full range of the cloning parameter q,
which allows us to study optimal and non-optimal cloning
conditions. The asymmetry of the clones is easily tunable
by means of a waveplate rotation, without the need of
custom beam splitters or imposing additional losses that
reduce the overall throughput, as required in two photon
experiments. Furthermore, the instrinsic stability of the
displaced Sagnac interferometers does not require any ac-
tive stabilization, allowing to study the PCC protocol in
different regimes.

Section II of this work presents the experimental setup
that implements the phase-covariant cloning machines,
and Section III is devoted to the results obtained for dif-
ferent experimental conditions.

II. PHOTONIC QUANTUM SIMULATOR

The experimental arrangement that implements the
PCC machine is shown in Figure 1. In this scheme, Alice
and Bob share a polarization-entangled photonic state.
Photon pairs are generated by spontaneous parametric
downconversion (SPDC) in a BBO type-I nonlinear crys-
tal arrangement [29, 30], pumped by a 405nm CW laser
diode, polarization entanglement is optimized using tem-
poral and spatial compensating birefringent crystals on
the pump beam and on the photon pair paths. Alice’s
photon is directed into a polarization analysis arrange-

ment where she may perform projective measurements
on her photon. Single-photon counting devices detect the
incoming photons and send the detections to an FPGA-
based coincidence counter.

A. Linear optics PCC implementation

In this quantum simulator, the eavesdropper is en-
coded on the path qubit of Bob’s photon using a displaced
Sagnac interferometer based on a polarizing beam splitter
(PBS) [31]. An equivalent optical setup has been imple-
mented using calcite beam displacers in [32] to study the
dynamics of multipartite entanglement. By associating
the horizontal polarization component H with the state
|0〉 and the vertical polarization V with state |1〉, and
the eavesdropper is represented by the two path modes
of the photon (0 and 1), the PCC transformation is imple-
mented as follows: an incoming photon in mode 0 is split
into its H and V components by the PBS. The vertically
polarized photons are reflected and propagate inside the
interferometer in the clockwise direction, passing through
a half-wave plate (H1) which transforms the vertical po-
larization state into cos(2α)|V 〉+ sin(2α)|H〉, where α is
the physical angle of the half-wave plate. The horizontal
component of this rotated state exits the interferome-
ter, transmitted into mode 1 (dashed-line in Fig.1) with
probability q = sin2(2α), while the vertical component is
reflected into mode 0 with probability 1− q = cos2(2α).

On the other hand, the horizontally polarized photons
of the input state propagate through the interferome-
ter in the counter-clockwise direction and exit through
the PBS into mode 0, with their polarization state un-
changed. In this way, we obtain the following transfor-
mation

|H〉|0〉 → |H〉|0〉
|V 〉|0〉 →

√
1− q|V 〉|0〉+

√
q|H〉|1〉,

(2)

which is a PCC transformation (1) with q = sin2(2α).
A HWP oriented at 0◦ (H2) is placed on the H photons
path to compensate for the optical path difference. The
relative path length of the interferometer is adjusted so
that when H1 is oriented at 0◦ the polarization of the
input state remains unaltered.

Bob performs standard quantum state tomography
(QST) of his polarization state, in coincidence with Al-
ice’s detections, using quarter-wave plates on each path,
a half-wave plate, and a third passage through the polar-
izing beam splitter. H polarized photons on mode 1 are
rotated by a HWP oriented at 45◦ (H3) just before pass-
ing through the PBS. This operation recombines mode 1
into mode 0 coherently so that both modes exit the inter-
ferometer through the same path. Eve’s qubit encoded on
Bob’s path photon is mapped into a polarization qubit by
this operation, since photons propagating through mode
0 are horizontally polarized at the output of the PBS and
photons propagating through mode 1 are vertically po-
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larized. Therefore, Eve can also perform standard QST
on her qubit using a QWP, a HWP and a PBS.

Quartz

Hpump,

BBO

PBS
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H1,

H2,0°

H0,0°

H3,45°QST
Bob QST

Eve
HWP

QWP

-BBO

FIG. 1: (Color online) Experimental setup for the implemen-
tation of the phase covariant cloning machine. The PCC ma-
chine is implemented using a displaced Sagnac polarization
interferometer: photons enter the interferometer through a
PBS, where the H and V polarization components are routed
in different directions. If α = 0◦ (H1) both polarization com-
ponents are coherently recombined in the PBS and exit the
interferometer in the same path. For every other angle of α
the V component is transformed into an H polarized pho-
ton with probability q = sin2(2α) and exits the interferome-
ter through path mode 1, in dashed-lines. Bob may perform
quantum state tomography on his polarization qubit before
it exits the interferometer using a combination of QWPs and
a HWP. Both paths are later coherently recombined using a
HWP oriented at 45◦ (H3) on path 1 and pass one more time
through the polarizing beam splitter. In this way, Eve’s qubit
is ultimately mapped into a polarization qubit and standard
quantum state tomography can be performed using another
set of QWP, HWP and a PBS.

B. Mirrored Device

We now describe how to obtain the action of a mirrored
PCC operation, so that the fidelity for cloning states on
the southern hemisphere is now enhanced. This trans-
formation is implemented in the following way: for the
input states {|1〉B |0〉E , |0〉B |0〉E} we first apply a bit-flip
operation on the first qubit, followed by the PCC (1),
and finally another bit-flip on the first qubit, resulting in
the following transformation

|1〉B |0〉E → |1〉B |0〉E
|0〉B |0〉E →

√
1− q|0〉B |0〉E +

√
q|1〉B |1〉E

(3)

where again 0 ≤ q ≤ 1 controls the asymmetry of the
cloning operation. It is easy to see that for states on
the equator the fidelities of the clones are once again
FB = 〈ψ|ρB |ψ〉 = 1

2 (1 +
√

1− q) and FE = 〈ψ|ρE |ψ〉 =
1
2 (1+

√
q), independent of the phase φ of the input state.

This operation shrinks the Bloch sphere of the copied
state towards the state |1〉. By applying randomly these
two mirrored operations, Eve can clone the equatorial

states with optimized fidelity, while adding no bias on
σz.

Interestingly, the mirrored operation can be easily im-
plemented with the same setup by simply rotating half-
wave plate H2 instead of H1, which in turn remains fixed
at 0◦. In this case, the horizontally polarized photons
passing through half-wave plate H2 are transformed into
cos(2α′)|H〉+ sin(2α′)|V 〉, where α′ is the physical angle
of the half-wave plate and we obtain

|V 〉|0〉 → |V 〉|0〉
|H〉|0〉 →

√
1− q|H〉|0〉+

√
q|V 〉|1〉,

(4)

which is equivalent to the mirrored-PCC operation (3)
with q = sin2(2α′). Throughout the rest of the text we
will refer to the machines described in (2) and (4) as
PCC(+) and PCC(–) respectively.

The action of these mirrored PCC machines can in-
deed be implemented in two photon experiments, where
typically both qubits are encoded on the polarization
degree of freedom of two different photons by simply
adding half-wave plates before and after the cloning op-
eration, on the signal’s qubit path. When rotated at 45◦,
these HWPs essentially perform a bit-flip operation on
the signal qubit, which allows for the mirrored PCC to
be implemented as described above. Nevertheless, these
experimental implementations require more complicated
setups, have low throughput due to multiple coincidence
requirements [20, 33], and they are less suited to serve as
testbeds for different conditions of the cloning protocol.

III. RESULTS

With this experimental setup we can prepare and mea-
sure an arbitrary qubit state, and control the asymme-
try of the cloning operation by simply rotating half-wave
plate H1 (or H2). We tested the action of the PCC
machines for different experimental conditions: we pro-
jected different polarization states on Alice’s qubit and
performed quantum state tomography on Bob and Eve’s
qubits. In this way, we obtained the density matrix
of both clones and calculated the fidelities for different
states and cloning parameters.

A. Equatorial States

Figure 2 shows the theoretical curves and the exper-
imentally measured fidelities for both Bob and Eve’s
qubits while Alice’s qubit is projected onto state |D〉〈D|,
for different values of the cloning parameter q and for
both PCC(+) and PCC(–). The shaded areas repre-
sent the experimental error. As the cloning parame-
ter increases, Bob’s fidelity decays to its minimum value
F=0.5, while Eve’s fidelity achieves its maximum when
q=1. The experimental data shows a good agreement
with the theoretical predictions. The fidelity of both
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cloning machines show the same behavior as a function
of the cloning parameter.
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FIG. 2: (Color online) Fidelity of the clones with respect to
the original state |D〉, for different cloning parameters q, for
both PCC (+) and its mirrored operation (–). Filled lines rep-
resent the theoretical prediction and the different symbols the
experimental data. The shaded area around the theoretical
curve accounts for the experimental error.

A PCC machine clones equally well all states from the
equator of the Bloch sphere: by projecting different states
on the equator on Alice’s side for a particular cloning pa-
rameter (q=0.4), we obtained the results shown on fig-
ure 3. The theoretical curves are obtained calculating
the fidelity between the ideal equatorial states and the
states resulting from projection and cloning processes,
applied to the experimentally available input state. Both
fidelities for Bob and Eve remain almost constant within
the experimental error (represented by the shaded re-
gion), as expected. That is, for states of the form
|ψ〉 = 1√

2
(|0〉 + eiφ|1〉) the fidelity of the clones is in-

dependent of the phase φ, excluding experimental limi-
tations. This particular election of the cloning parameter
produces unbalanced fidelities for the two clones.

B. Non-Equatorial States

Finally, we projected different states of the form
|ψ〉 = cos(2θ)|H〉 + sin(2θ)|V 〉 on Alice’s qubit and re-
constructed the density matrix for both Bob and Eve’s
qubits, for q=0.5. Figure 4 shows the calculated fidelities
for both clones, performing the traditional PCC (black
line) and its mirrored operation (blue line). The dif-
ferent symbols represent the experimental data for both
operations. Once again, there is a good agreement be-
tween the experimental data and the theoretical predic-
tions: PCC(+) clones the state |H〉 with maximum fi-
delity (F=1) and state |V 〉 with the minimum possi-
ble fidelity (F=0.5), while the PCC(–) operates in the
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FIG. 3: (Color online) Fidelity of the clones for different states
on the equator, characterized by the phase φ, for q=0.4. The
theoretical predictions were calculated numerically based on
the entangled input state. The experimental fidelity is shown
in black circles for Bob’s qubit and blue squares for Eve’s.
The shaded area represents the experimental error.

exact opposite way. Both pairs of curves cross at the
balanced superposition state, θ = π/8, recovering the
symmetric cloning condition with a measured fidelity of
0.852± 0.005.
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FIG. 4: (Color online) Fidelity of the clones for different states
of the form cos(2θ)|H〉 + sin(2θ)|V 〉, for q = 0.5. Theoreti-
cal curves for the PCC(+) (black line) and PCC(–) opera-
tion (blue line) are shown. The different symbols plot the
experimental data for both operations and the shaded area
represents the experimental error.
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C. Eavesdropping with PCC

The security limit for the BB84 protocol against inco-
herent attacks arises on an eavesdropping scenario where
Eve uses a PCC machine. This kind of attack can be
easily identified if Bob performs measurements on σz (or
at least he can project the qubits in one of the two states
of the basis), because a side effect of this attack is a bias
in the value of σz of the ensemble of received states with
respect to the original emitted states (σz = 0). For a
PCC attack the bias in terms of the cloning parameter q
is: 〈σz〉 = q.

Detecting this kind of attack can be used by Alice and
Bob to reduce the information gained by Eve, for example
by moving to a six-states BB84 protocol [34] every time
that a significant bias value is detected.

The track left by Eve can be erased if she uses a slightly
different strategy, that consists on alternating randomly
between PCC(+) and PCC(–). Thus sending Bob en-
sembles of cloned states with no bias in σz but with the
same individual fidelity. Figure 5 shows the effect on the
σz mean value for different cloning parameters q under
the action of PPC(+) and the strategy proposed above:
while the first protocol adds an increasing bias on the
computational basis measurement for increasing values
of q, the second strategy leaves the z component unbi-
ased, for any strength of the cloning parameter. It can
be seen that the experimental implementation of these
eavesdropping strategies clearly show the described be-
haviors.
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FIG. 5: (Color online) Mean value of the σz component of
Bob’s reconstructed density matrix for different cloning pa-
rameters q. The black line and circles correspond to PCC
(+) while the blue line and squares represent the averaged
values of σz for an unbiased sequence of PCC (+) and PCC
(–) implementations. The shaded area around the theoretical
curves accounts for the experimental error.

IV. CONCLUSIONS

We have presented the results of a photonic realiza-
tion of a protocol that fully simulates a phase-covariant
cloning machine, where Alice and Bob share a polariza-
tion entangled state, while the eavesdropper is encoded
on Bob’s path qubit. The cloning algorithm is imple-
mented by means of a displaced Sagnac interferometer
and retardation waveplates. The versatility of the ex-
perimental setup allows us to prepare and measure an
arbitrary qubit state, and easily control the asymmetry
of the cloning operation in its two mirrored designs. We
tested the action of the PCCM and its mirrored version
for different experimental conditions, by projecting differ-
ent polarization states on Alice’s qubit, and performing
quantum state tomography on Bob and Eve’s qubits.

On an eavesdropping scenario where Eve uses a PCC
machine, output states are left unbalanced in the σz ba-
sis after the cloning procedure and could therefore be
detected by Bob just by adding a single projective mea-
surement in the σz basis. We showed that by alternating
between both cloning operations PCC(+) and PCC(–),
Eve can mask her presence by sending Bob cloned states
with no bias in σz but with the same individual fidelity.
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[26] J. Fiurášek, Physical Review A 67, 052314 (2003).
[27] V. Karimipour and A. Rezakhani, Physical Review A 66,

052111 (2002).
[28] K. Lemr, K. Bartkiewicz, A. Černoch, J. Soubusta, and
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