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ABSTRACT: n1,3S (n = 1 − 4) states for atomic three-body systems are studied with the
Angular Correlated Configuration Interaction method. A recently proposed angularly
correlated basis set is used to construct, simultaneously and with a single diagonalization,
ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at
the two-body coalescence points; (ii) involve only linear parameters; (iii) show a fast
convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the
method is illustrated by the study a variety of three-body atomic systems [m−

1 m−
2 mz3+

3 ]
with two negatively charged light particles, with diverse masses m−

1 and m−
2 , and a heavy

positively charged nucleus mz3+
3 . The calculated ground 11S and excited n1,3S (n = 2 − 4)

state energies are compared with those given in the literature, when available.
© 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 4255–4265, 2011
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1. Introduction

T he three-body problem plays a fundamental
role in atomic physics. From a theoretical point

of view, it is very important because it presents most
of the properties of the many-body problem. For
two-electron systems, the ground state—and to a
lesser extent excited states—have been extensively
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studied. For exotic three-body systems, involving for
example muons and antihydrogen nuclei, the liter-
ature is on the other hand less abundant. Excited
states, in particular, have not or very little investi-
gated. The main aim of this article is to study some
of these atomic systems, providing relatively simple
but accurate wave functions for ground and excited
n1,3S (n = 2 − 4) states.

Exotic three-body systems, involving electrons,
muons, and antihydrogen nuclei, are of interest in
many branches of physics, including atomic spec-
troscopy and quantum electrodynamics (see, e.g., the
discussion and the references given in the Introduc-
tion of Refs. [1, 2]). Negatively charged hydrogen
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ions, and their isotopes, have also astrophysical
applications: their photoionization is the primary
source of the continuum opacity in stellar photo-
spheres and their relative abundance is of great
interest for predicting the thermonuclear efficiency
of our Sun [2]. Moreover exotic systems serve to
test the general theory of three-body systems and to
study interparticle correlations, going further than
two-electron atoms with infinite nuclear mass. Some
of the muonic and antihydrogen nuclei three-body
systems (atoms or ions) considered in this article
have been studied in details only recently (see ref-
erences below), the focus being set mainly on the
ground state.

For two-electron atoms, and in particular for
helium, many trial wave functions have been pro-
posed and optimized to obtain the best ground state
energy. They are not all of the same quality and
can be grouped in at least three different groups.
Highly sophisticated wave functions, built with a
large number of basis functions and involving both
linear and nonlinear parameters, lead to extremely
accurate energies (see, e.g., Refs. [1–16] and refer-
ences therein). A second, analytical, group includes
rather simple wave functions possessing some of
the correct functional (local) properties (see, e.g.,
Refs. [17–23]). A third category, deals with wave
functions (typically Hylleraas-type) and energies of
quality which are intermediate between the two
already mentioned (see, e.g., [24–31]). All these trial
wave functions have separate, and possibly comple-
mentary, purposes: obtain very accurate mean quan-
tities (including the energy), search for a solution as
formal as possible, or useful for applications such as
collision studies. For the latter, it is useful to remind
that the evaluation of differential cross sections for
processes such as double ionization by electron or
photon impact involve multi-dimensional numeri-
cal integrations; moreover, for calculations within
the second Born approximation, a complete orthog-
onal set of wave functions is necessary. The use of
bound wave functions with a very large number
of terms (first group) can be prohibitive, even with
modern computer facilities [32]. It is then not sur-
prising that only simple or intermediate trial wave
functions have been employed so far in all such
collision calculations. Another reason for this may
be related to the practical fact that simpler func-
tions can be easily tabulated and shared by a wider
community. This, for example, possibly explains the
popularity of Hylleraas-type wave functions, such
as that of Kinoshita [24] or simpler versions [25],
amongst the collision community.

The formal structure of trial wave functions for
three-body systems is also an important issue. There
is abundant literature, in particular for two-electron
atoms, on the relation between the convergence rate
and the choice of basis functions (see, e.g., Ref. [16]).
The latter may or may not present the correct behav-
ior in asymptotic regions [19, 33], close to the points
where the interaction potential present singulari-
ties (two-body coalescence [34, 35]), or close to the
three-body coalescence (Fock’s expansion, see e.g.,
Ref. [36]). As the two-body coalescence regions are
concerned, the quality of any function is tested
through the evaluation of the expectation values of
the so-called two-particle operators. An adequate
description is crucial for example for annihilation
calculations (see, e.g., Ref. [37]), for the evaluation
of hyperfine splitting (see, e.g., Refs. [8, 9, 14]), and
may even play an essential role in collisional prob-
lems such as photoionization (see, e.g., Ref. [38]).
Advanced trial wave functions (first group) usually
satisfy quite accurately but not exactly the so-called
Kato cusp conditions [34, 35] [see Eq. (12) below]. An
alternative approach is to build the trial wave func-
tions with intrinsically the correct behavior (second,
and some of the third, group), for example by choos-
ing appropriate basis functions. This is one of the
issues addressed in this report.

Motivated by collisional studies involving two-
electron atoms, Gasaneo and Ancarani [30, 31] intro-
duced a C3-like basis set which fully diagonalizes
the whole diagonal part of the kinetic energy and
all the Coulomb interactions (see Section 2 below).
The use of such a correlated basis in a Configura-
tion Interaction approach is based on a decompo-
sition of the three-body wave function in a sum of
doubly correlated configurations [31]; each config-
uration depends explicitly on the three interelec-
tronic coordinates. The efficiency of the method,
called Angular Correlated Configuration Interaction
(ACCI), has been illustrated with applications to the
helium isoelectronic sequence in the infinite mass
approximation [31]. The method presents important
advantages: (i) only linear parameters are involved;
(ii) a single diagonalization provides the energies
and the wave functions of the ground and a num-
ber of excited states, which form an orthogonal set;
(iii) the results can be systematically improved by
adding more configurations; and (iv) by construc-
tion, all constructed wave functions satisfy exactly
Kato cusp conditions [34, 35]. However, the resulting
trial wave functions do not possess all the neces-
sary correct ingredients, like the correct behavior
in asymptotic regions or close to the three-body
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coalescence. Moreover, the fact that no nonlinear
parameters are involved, reduces the variational
flexibility, which allows to obtain extremely accurate
energies.

The present contribution has two main objectives:
(i) the extension of the ACCI method with the C3-
like basis functions, to general three-body atomic
systems with two negatively singly-charged light
particles and a heavy positively charged nucleus,
with diverse finite masses; and (ii) the construction
of highly correlated wave functions, for both ground
and excited n1,3S states, for a number of Coulomb
three-body systems including muonic atoms and
antihydrogenic nuclei “quasi-atoms.” The method
generates wave functions, which (i) are sufficiently
simple and sufficiently accurate (as the traditional
Hylleraas wave functions available in the literature
for two-electron systems with infinite nuclear mass)
to be used in practical atomic collision calculation;
and (ii) by construction, satisfy exactly Kato cusp
conditions [34, 35]. Ground state wave functions
with these characteristics are not available in the lit-
erature, in particular for finite nuclear mass systems
and exotic systems. It is important to underline that
almost no results for excited states of exotic systems
have been given in the literature.

The article is organized as follows: in Section 2 we
define theACCI method with the C3 basis set in order
to apply it to atomic systems with general masses. In
Section 3, we present our results for both ground and
excited states for several Coulomb three-body sys-
tems. The energies are compared to “exact” reference
values, when available. The doubly excited state 2s2

is briefly discussed in Section 4. Finally a summary
and some perspectives are given in Section 5.

Hartree atomic units (� = me = e = 1) are used
throughout this article.

2. Method and Basis Functions

Consider atomic systems composed of three-
particles with charges z1 < 0, z2 < 0, z3 > 0, and
respective masses m1, m2, m3; we shall note these
three-body systems [mz1

1 mz2
2 mz3

3 ], with the charges zi

as superscripts. Let µij = mimj
mi+mj

(i �= j) be the reduced

masses. We shall designate as particle 3 the heaviest
particle, i.e. the nucleus of mass m3 and charge z3,
and the two lighter particles, labeled 1 and 2, with
masses m1, m2 and charges z1 = z2 = −1. The vectors
r13 and r23 will denote the two lighter particles posi-
tions with respect to the nucleus, and r12 = r2 − r1

their relative position.

As we consider here only S states (the exten-
sion to generate other L > 0 excited states will
be briefly sketched in Section 5), we may use
the interparticle (Hylleraas) coordinates (r13, r23, r12).
For the general charges z1, z2 and z3, the six-
dimensional Schrödinger equation reduces to the
following Hylleraas equation

H�(r13, r23, r12) = E�(r13, r23, r12), (1)

where the nonrelativistic Hamiltonian H is given by

H = D0 + D1. (2)

Here, D0 and D1 are the kinetic energy operators (see,
e.g., Ref. [5])

D0 =
[
− 1

2µ13

(
∂2

∂r2
13

+ 2
r13

∂

∂r13

)
+ z1z3

r13

]

+
[
− 1

2µ23

(
∂2

∂r2
23

+ 2
r23

∂

∂r23

)
+ z2z3

r23

]

+
[
− 1

2µ12

(
∂2

∂r2
12

+ 2
r12

∂

∂r12

)
+ z1z2

r12

]
, (3)

D1 = −
(

1
m1

r2
13 − r2

23 + r2
12

2r13r12

∂2

∂r13∂r12

+ 1
m2

r2
23 − r2

13 + r2
12

2r23r12

∂2

∂r23∂r12

+ 1
m3

r2
13 − r2

12 + r2
23

2r13r23

∂2

∂r23∂r13

)
. (4)

Here, no assumptions are made that some parts of
the Hamiltonian are negligible in comparison to oth-
ers. The operator D1 contains no singularities, and
is nondiagonal as it mixes the three relative coordi-
nates. When the nucleus is (virtually) considered as
infinitely heavy (m3 → ∞), the last term in D1 is
absent. Such limit is often taken as reference system.

In Ref. [31], two of us proposed a basis set that
solves exactly the diagonal D0 part of the three-body
Schrödinger Eq. (1). The basis functions read

φν(r13, r23, r12) = ϕn1,l1(r23)ϕn2,l2(r13)χC3(n3, l3, r12) (5)

where ν stands for the quantum numbers {n1, l1, n2,
l2, n3, l3}, and where for i = 1, 2

ϕni ,li(ri3) = Nni ,li eziz3µi3ri3/ni

(−2ziz3µi3

ni
ri3

)li

× 1F1

(
1 + li − ni, 2li + 2, −2

ziz3µi3

ni
ri3

)
(6)
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are normalized hydrogenic functions with principal
quantum numbers ni and angular momenta li [39];
the normalization is given by

Nni ,li = 1
(2li + 1)!

√(−2ziz3µi3

ni

)3
(ni + li)!

2ni(ni − 1 − li)! ,

and 1F1 is the confluent hypergeometric function
[40]. The distortion factor is defined by

χC3(n3, l3, r12) =
(

−2
z1z2µ12

n3
r12

)l3

× 1F1

(
l3 − n3, 2l3 + 2, −2

z1z2µ12

n3
r12

)
,

(7)

where n3 > l3 is a positive integer, and reduces
to a polynomial. In particular, for l3 = 0,
χC3(n3, 0, r12) reduces to a Laguerre polynomial
L(1)

n3
(−2z1z2µ12r12/n3). If only S states are considered,

the angular momenta are taken to be equal to zero
l1 = l2 = l3 = 0 in the above formulas. For a given
set of quantum numbers {n1, n2, n3}—one for each
coordinate—the basis functions are thus parameter-
free. They have been proposed [30, 31] following
ideas based on an approximated solution for the dou-
ble continuum wave function known as C3 [41] (also
called 3C or BBK model). We have called the basis
C3-like, and will use the label C3 for the three-body
bound wave functions constructed from it.

In the case of S states, the ACCI method constructs
an approximated solution of the Hylleraas equation
(1), as a linear combination of the basis functions (5),

�C3−M = N
∑

n1,n2,n3

cn1n2n3φn1,n2,n3(r13, r23, r12), (8)

where N is the overall normalization factor, and all
traces of angular momenta (which are set to zero)
have been removed. The functions �C3−M include
explicitly angular correlation through the introduc-
tion of the r12 coordinate in each function φn1,n2,n3 .
This ensures a rather fast convergency rate for the
energy (and other relevant physical quantities), as
will be illustrated in the next section. The overall
amount of correlation included is dictated by the
number M of linear coefficients cn1n2n3 . It should be
noted that when the two light particles are identical,
the coefficients must satisfy the following symme-
try relation cn1n2n3 = cn2n1n3 , so that the number of
coefficients is reduced.

The action of the Hamiltonian H over the basis
functions φn1n2n3(r13, r23, r12), defined by Eq. (5) for
l1 = l2 = l3 = 0, is given by

Hφn1n2n3(r13, r23, r12) = E(0)
n1,n2

φn1n2n3(r13, r23, r12)

+
(

D1 + z1z2

n3

∂

∂r12

)
φn1n2n3(r13, r23, r12) (9)

where

E(0)
n1,n2

= −µ13

2
(z1z3)

2

n2
1

− µ23

2
(z2z3)

2

n2
2

(10)

is the energy corresponding to the solved operator
D0. The Hylleraas equation can then be transformed
into a generalized eigenvalue problem [39]:

∑
n1,n2,n3

[Ĥ − EŜ]cn1n2n3 = 0, (11)

where the M coefficients cn1n2n3 are the eigenvectors
and E the eigenvalues for the three-body system. The
basis functions φn1n2n3 solve (D0 − E(0)

n1,n2
)φn1n2n3 = 0,

thus only the nondiagonal part of the kinetic energy
has to be diagonalized. Besides, the functions φn1n2n3 ,
as indeed any other containing products of power
and exponential functions, allow to express in closed
form all the elements of the overlap Ŝ and Hamil-
tonian Ĥ matrices. The results obtained with the
�C3−M wave functions, require only one diagonal-
ization process and no further optimization process
is needed. According to the number M of basis func-
tions included, a certain amount of excited states
n1,3S states is also obtained.

Mathematically, the solution �(r13, r23, r12) of
Eq. (1) satisfies the two-body Kato cusp conditions
[34, 35]

[
∂�

∂rij

]
rij→0

= zizjµij�(0, rkj, rik), (12)

for (i �= j, i �= k, j �= k), the notation � meaning
the average of � over a very small sphere of
radius rij keeping the other values fixed. Relations
(12) provide the linear behavior that �(r13, r23, r12)

must have close to the Coulomb singular points
rij = 0; they are not only a mathematical require-
ment but also an important property that any trial
wave function should have, as underlined through-
out the literature. By construction, our basis func-
tions φn1,n2,n3(r13, r23, r12) satisfy them exactly, and
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therefore so does the trial wave functions �C3−M

given by Eq. (8).
Before presenting our results, we would like to

mention that the convergence rate of the energy
and wave functions obtained can be considerably
increased [28, 29] by multiplying the basis func-
tions φn1,n2,n3(r13, r23, r12) by an additional correlation
factor �(r13, r23, r12), which adds radial and angular
correlation to each configuration. In this advanced
ACCI approach, the factor � can be represented by
a polynomial of the relative coordinates (not affect-
ing the cusps conditions) that solves the nondiagonal
terms of the kinetic energy not solved by the func-
tions φn1,n2,n3 . The efficiency of this advanced ACCI
method has been illustrated by the study of ground
states of two-electrons and electron-muon three-
body atomic systems [42]. The calculated energies,
with only a moderate number of linear parame-
ters, are of intermediate quality; they lie in between
the highly accurate ones presented for example by
Frolov (see e.g. Refs. [8, 11, 14]) and those obtained
with simple wave functions (see e.g. Refs. [22,
23]). Similarly to the method presented above, the
advanced ACCI also generates an orthogonal set of
excited states.

3. Ground 11S and Excited n1,3S
States

As we want to obtain approximate wave func-
tions - at the same time - for the ground 11S and
the excited states n1S and n3S (n = 2 to 4), we have
performed calculations with n1 and n2 up to 4, and
included the following configurations:

1s1s + (1s2s + 2s1s) + (1s3s + 3s1s) + (1s4s + 4s1s).
(13)

Satisfactory convergence was obtained with n3 = 1
to 5; this choice keeps the approximated functions
reasonably simple, and at the same time sufficiently
accurate. For symmetric three-body systems, i.e.
with m1 = m2, z1 = z2, this means M = 20 terms
while for asymmetric systems, m1 �= m2, M = 35. All
our calculated energies are presented below with 9
significant digits.

Our ACCI method is applied here to a number
of normal and exotic atomic three-body systems:
negatively charged hydrogen-like ions (z3 = 1),
neutral helium-like (z3 = 2) atoms, and positively
charged lithium-like ions (z3 = 3). In this contri-
bution, we shall focus only on the mean energies

of ground and excited states; we should remind
though that expectation values 〈A〉 of other phys-
ical operators A are also very useful to test the
trial wave functions putting a particular empha-
sis on a given portion of the configuration space.
When possible, we shall compare our energy results
with reference values, hereafter named numerically
“exact,” which are generally obtained with highly
accurate variational procedures involving very large
numbers of linear and nonlinear parameters. The
relative accuracy is then given by 〈−E〉−〈−E〉exact

〈−E〉exact
. To

allow for a direct comparison with these numer-
ically “exact” energies, it is necessary to take the
same mass values for the involved particles. Since
for most systems highly accurate results have been
provided by Frolov [7–9], we have taken the same
masses values as in these references (which are taken
from Ref. [43]). For hydrogen-like ions, they read:
the proton mass mp = 1836.152701 me, the deuteron
mass md = 3670.483014 me, the tritium nuclear
mass mt = 5496.92158 me, and the muonic mass
mµ = 206.768262 me. [More recently, Frolov [11, 14]
used a slightly different muon mass recommended
by NIST, mµ = 206.7682838 me [44]. While the use
of this modified mass value produces slight energy
shifts, this will affect digits of our calculated energy,
which are not given in the tables below.] For the
exotic three-body systems (quasi-atoms) where anti-
hydrogen nuclei are considered as particle 2, the
masses of the antiparticles m−

2 are taken as being
the same as those of the particles m+

2 (i.e. the same
choice as in Ref. [1]), i.e.: p− (m2 = mp− = mp), d−

(m2 = md− = md) or t− (m2 = mt− = mt). As the He2+

nucleus is concerned, we have taken m3 = 7294.2996
me for 4He2+ and m3 = 5495.8852 me for 3He2+. For
the Li3+ nucleus, we have taken the same values as
used by Frolov [14]: m3 = 10961.8968 me for 6Li3+

and m3 = 12786.3927 me for 7Li3+.
Let us start with the ground singlet state 11S.

Our calculated mean energies 〈−E〉 are reported
in Table I, and compared with numerically “exact”
results collected from the literature.

For negatively charged hydrogen-like three-body
systems made of two electrons and a third heav-
ier particle with charge z3 = 1 we considered
the ions ∞H−, 1H−, D−, T−, and the muonium ion
Mu−[e−e−µ+]. All these systems are similar to each
other in the main property of their spectra, i.e. they
have only one bound (ground), singlet state with
L = 0. They differ only by the nuclear mass. The
mean energies have a relative accuracy of 1.7 × 10−3

for Mu−; similar accuracies are obtained for the other
systems. These are quite good result in view of the
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TABLE I
The ground state 11S mean energies for several negatively three-body systems, obtained using the �C3−20 (for
symmetric systems) or �C3−35 (for asymmetric systems) approximated wave functions, are compared with
accurate reference values.

z3 = 1 z3 = 2 z3 = 3
[m−

1 m−
2 m+

3 ] 〈−E 〉 [m−
1 m−

2 m2+
3 ] 〈−E 〉 [m−

1 m−
2 m3+

3 ] 〈−E 〉
∞H− [e−e−∞+] 0.526860162 ∞He [e−e− ∞He2+] 2.90107544 ∞Li [e−e− ∞Li3+] 7.27657671

0.527751017a 2.90372438c 7.27991341c

1H− [e−e−p+] 0.526554804 4He [e−e− 4 He2+] 2.90065336 7Li [e−e− 7Li3+] 7.27603060
0.527445881a 2.90330456c 7.27932152c

D− [e−e−d +] 0.526707359 3He [e−e− 3He2+] 2.90051530 6Li [e−e− 6Li3+] 7.27588119
0.527598325a 2.90316721c 7.27922302c

T− [e−e−t+] 0.526860161 [e−µ− ∞He2+] 414.036395 [e−µ− ∞Li3+] 932.456800
0.527649048a 414.036537d

Mu− [e−e−µ+] 0.524161999 [e−µ− 4He2+] 402.637158 [e−µ− 7Li3+] 917.649469
0.525054806a 402.637263d 917.650220f

[µ−µ−∞+] 108.937959 [e−µ− 3He2+] 399.042262 [e−µ− 6Li3+] 915.230650
399.042337d 915.231355f

[µ−µ−p+] 97.3747607 [µ−µ− ∞He2+] 599.850338 [µ−µ− ∞Li3+] 1504.56570
97.5669834b

[µ−µ−d +] 102.803286 [µ−µ− 4He2+] 582.399626 [µ−µ− 7Li3+] 1479.62095
102.991911b

[µ−µ−t+] 104.756883 [µ−µ− 3He2+] 576.934471 [µ−µ− 6Li3+] 1475.56380
104.944115b [e−p− ∞He2+] 3672.80537 [e−p− ∞Li3+] 8445.76213

[e−p− 4He2+] 2934.29713 [e−p− 7Li3+] 7227.14146
2934.29719e

[e−p− 3He2+] 2753.15461 [e−p− 6Li3+] 7079.22839
2753.15468e

[e−d − ∞He2+] 7341.46599 [e−d − ∞Li3+] 16519.1735
[e−d − 4He2+] 4884.06275 [e−d − 7Li3+] 12836.7229

4884.06285e

[e−d − 3He2+] 4401.92755 [e−d − 6Li3+] 12375.8962
[e−t− ∞He2+] 11052.6571 [e−t− ∞Li3+] 24740.6194
[e−t− 4He2+] 6269.82985 [e−t− 7Li3+] 17301.1660

6269.82989e

[e−t− 3He2+] 5538.06345 [e−t− 6Li3+] 16555.5250

aFrolov [7, 11].
bFrolov et al. [46].
cDrake [13].
dFrolov [8].
eSmith and Frolov [1].
fFrolov [14].

relatively small number M = 20 of basis functions
used.

For these ions, intermediate quality wave func-
tions have been proposed, for example, by Flores-
Rivero and Rivas-Silva [45]. They compared their
Eckart-Gaussian wave functions with 4- and 10-
term Hylleraas functions, denoted �S4 and �S10. The
�S10 trial wave function gives a mean energy of
−0.526701 a.u. for D− and −0.526751 a.u. for T−. It
should be mentioned that, contrary to ours, these

trial wave functions do not satisfy Kato cusp condi-
tions. Moreover, the authors do not give the values
of the nonlinear parameters of the wave functions. In
fact, to the best of our knowledge, there are no reports
in the literature presenting the complete wave func-
tions (including the values of the parameters) for
all these systems; this was one of the motivations
behind the work presented in [42]. For the helium
atom and its isoelectronic series with infinite mass,
however, details of the wave functions are often
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provided. For example, in case of the ∞H− ion, Harris
and Smith [27] have recently proposed a wave func-
tion yielding an energy of −0.5277131 a.u. and pro-
vide the 12 nonlinear parameters involved. As stated
by the authors, their optimization is a demanding
numerical task. Since our method involves only lin-
ear parameters, more configurations are needed to
reach similar level of accuracy. However, two advan-
tages appear in our method: (i) the optimization of
the parameters is direct and straightforward; and (ii)
the same optimization also leads to a set of accurate
excited states (see below).

Three-body systems where the two electrons are
replaced by muons have also been considered; our
results are compared with those given (in muonic
units) in Ref. [46], and have a relative accuracy of at
most 2 × 10−4. We should also point out that the sys-
tem [e−µ− ∞+] is not stable [42], and thus is absent
from the table. Finally, negatively charged exotic
systems [e−e−(nme)

+], with a variable quasi-nuclear
mass (n integer), have also been studied [3, 47, 48];
these systems go from the negative postronium Ps−

(n = 1) to the negative hydrogen ion H− (n → ∞)

and allow for a discussion of energy interpolation
with the mass.

Let us now turn to three-body systems with z3 ≥ 2.
In this case, also excited states exist and results will
be presented below.

For z3 = 2, we have studied a variety of neutral
helium-like systems with a heavy positively charged
nucleus m2+

3 ; the cases of infinite nuclear mass, and
the two isotopes 3He and 4He are considered. The
two negatively charged light particles can be equal
or different. When both are electrons, we have the
standard helium atom; for the ground state of ∞He,
we found a relative accuracy of 9 × 10−4, and similar
values when finite nuclear masses are considered.

When one electron is replaced by a muon, we
have the so-called muonic helium [e−µ−He2+]; its
ground state has been studied in details by Frolov [8]
(and references therein). Our ground state energies
are in very good agreement with reference values,
relative accuracies not exceeding 3.5 × 10−7. Such
muonic-atoms have a particularly simple structure
(see below); their energies are essentially propor-
tional to m2 = mµ. Similar comments apply to the
exotic systems (“quasi-atoms”) in which one elec-
tron is replaced by antihydrogen nuclei p−, d−, or t−,
the found relative accuracy being even better.

Next, we consider the following positively
charged lithium-like systems with a heavy posi-
tively charged nucleus m3+

3 ; the cases of infinite
nuclear mass, and the two isotopes 7Li and 6Li are

considered. For the standard ∞Li+ ion, the mean
energies have – approximately – a relative accuracy
of 4.6 × 10−4, and similar values are found for the
two finite nuclear mass cases.

The ground state of muonic lithium ions
[e−µ−Li3+] have been studied in detail by Frolov
[14]. Our values are very accurate when compared
to “exact” reference values (relative accuracy of, at
most, 8.2 × 10−7). For systems involving antihydro-
gen nuclei we have not found in the literature any
calculated energies to compare with.

From the detailed study of mean radial quanti-
ties (see, e.g., Refs. [9, 14] and references therein), it
appears that the muonic helium atoms (and muonic
lithium ions) have a two–shell cluster structure. This
means that the actual structure is represented as a
one-electron motion in the field of a quasi-nucleus,
which is a hydrogen-like ion of charge z3 − 1: singly
charged [He2+µ−] or doubly charged [Li3+µ−]. The
bound spectrum of these muonic three-body systems
should thus be similar to that of the one–electron
ions. Due to the ratio mµ/me, the muon shell radius
is much times smaller than the outside electron
shell radius. For muonic helium atoms (respectively,
muonic lithium ions) this ratio is about 413 [8]
(respectively, 465 [14]). This implies that, compared
with the two-electron He atom (respectively Li+

ion), the overall correlation is much smaller for the
electron-muon case. Similarly, for systems involving
antinuclei (p−, d−, or t−), the electron moves in the
field of a positive charged quasi-nucleus. In all these
systems, the complex structure of the pseudonu-
cleus is practically insignificant. This essentially one-
electron structure explains the very good accuracies
presented in Table I.

When solving the generalized eigenvalue prob-
lem (11), the single diagonalization provides also
bound energies and wave functions for a number of
n1,3S excited states. All constructed wave functions
form an orthogonal set. Their number and their qual-
ity depend on the configurations included in the trial
wave function (8).

The results of our calculations are displayed in
Table II, for the same systems as in Table I for z3 = 2
and z3 = 3. This is one of the main objectives of
this work since only very few results are available in
the literature for exotic systems. For the two-electron
systems, the accuracy varies from about 1.3 × 10−4

(23S) to 3.4 × 10−3 (41S), the results for the lithium
ion being slightly better. For the muonic helium, the
energy of the first excited state (the so-called elec-
tron excited state [1sµ2se]) has been calculated quite
accurately by Frolov [9]. Our accuracy is of the order
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TABLE II
Mean energies of the excited states n1S and n3S for several negatively three-body systems, obtained using the
�C3−20 (for symmetric systems) or �C3−35 (for asymmetric systems) approximated wave functions, are compared
with accurate reference values.

〈−E 〉23S 〈−E 〉21S 〈−E 〉33S 〈−E 〉31S 〈−E 〉43S 〈−E 〉41S

e−e− ∞He2+ 2.17493965 2.14541020 2.06858102 2.06107284 2.03193872 2.02660791
2.17522938a 2.14597405a 2.06868907a 2.06127199a 2.03651208a 2.03358672a

e−e− 4He2+ 2.17464057 2.14511445 2.06829724 2.06078978 2.03165943 2.02633010
2.17493019a 2.14567859a 2.06840524a 2.06098908a 2.03623283a 2.03330782a

e−e− 3He2+ 2.17454273 2.14501773 2.06820440 2.06069722 2.03156807 2.02623837
2.17483231a 2.14558192a 2.06831238a 2.06089652a 2.03614146a 2.03321657a

e−µ− ∞He2+ 413.661509 413.592074 413.567502 413.550045 413.519711 413.466971
413.661526b

e−µ− 4He2+ 402.262291 402.192862 402.168313 402.151997 402.124186 402.076234
402.262302b

e−µ− 3He2+ 398.667389 398.597957 398.573482 398.558098 398.531748 398.488673
398.667391b

µ−µ− ∞He2+ 449.708491 443.602738 427.716903 426.164448 420.140441 419.038311
µ−µ− 4He2+ 437.282598 431.329114 415.923494 414.406552 408.536567 407.457197
µ−µ− 3He2+ 433.367758 427.467280 412.206764 410.702258 404.879938 403.808994
e−p− ∞He2+ 3672.43040 3672.36096 3672.33635 3672.31794 3672.28551 3672.22673
e−p− 4He2+ 2933.92222 2933.85279 2933.82845 2933.81429 2933.78990 2933.74337
e−p− 3He2+ 2752.77972 2752.71029 2752.68579 2752.66729 2752.63585 2752.58384
e−d − ∞He2+ 7341.09102 7341.02158 7340.99683 7340.97617 7340.93684 7340.86131
e−d − 4He2+ 4883.68787 4883.61844 4883.59504 4883.58792 4883.56467 4883.51851
e−d − 3He2+ 4401.55263 4401.48320 4401.45880 4401.44316 4401.41603 4401.36417
e−t− ∞He2+ 10994.3431 10993.9682 10993.8987 10993.8742 10993.8577 10993.8290
e−t− 4He2+ 6269.45491 6269.38548 6269.36106 6269.34497 6269.31719 6269.26585
e−t− 3He2+ 5496.90325 5496.52832 5496.45889 5496.43417 5496.41420 5496.37711
e−e− ∞Li3+ 5.11015939 5.03941025 4.75173831 4.73309441 4.63433035 4.62515508

5.11072731c 5.04087674c 4.75207644c 4.73375186c 4.63713654c 4.62977459c

e−e− 7Li3+ 5.10975862 5.03913196 4.75136656 4.73315062 4.63396662 4.62641756
e−e− 6Li3+ 5.10969189 5.03894691 4.75130451 4.73266048 4.63390581 4.62472771
e−µ− ∞Li3+ 930.957127 930.679386 930.582187 930.545785 930.512877 930.429896
e−µ− 7Li3+ 916.150116 915.872416 915.775327 915.728570 915.693136 915.595106
e−µ− 6Li3+ 913.731280 913.453578 913.356344 913.308876 913.256344 913.155126
µ−µ− ∞Li3+ 1056.61881 1041.99032 982.508707 978.653675 958.232493 956.335166
µ−µ− 7Li3+ 1039.75829 1025.32989 966.866304 963.060874 942.961199 941.079444
µ−µ− 6Li3+ 1037.00586 1022.61597 964.312364 960.519661 940.467046 938.591610
e−p− ∞Li3+ 8293.02191 8264.68708 8263.18714 8262.90937 8262.81215 8262.76518
e−p− 7Li3+ 7225.64170 7225.36393 7225.26669 7225.21819 7225.16651 7225.04622
e−p− 6Li3+ 7077.73086 7077.67822 7077.45109 7077.35367 7077.30009 7077.22961
e−d − ∞Li3+ 16517.6736 16517.3958 16517.2985 16517.2489 16517.1824 16517.0418
e−d − 7Li3+ 12835.2417 12833.7419 12833.4641 12833.3669 12833.3186 12833.2597
e−d − 6Li3+ 12374.3964 12374.1186 12374.0214 12373.9725 12373.9107 12373.7814
e−t− ∞Li3+ 24738.1471 24736.6471 24736.3693 24736.2721 24736.2242 24736.1721
e−t− 7Li3+ 17299.6661 17299.3883 17299.2911 17299.2440 17299.1817 17299.0050
e−t− 6Li3+ 16476.7604 16475.2605 16474.9828 16474.8855 16474.8387 16474.7871

a Drake [13].
b Frolov [9].
c Accad et al. [49].
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of 10−8 whether for finite or infinite nuclear masses.
To the best of our knowledge, for the other systems,
no data have been published to compare with.

Other three-body systems with larger values of
z3 can be equally considered. The relatively less
important role played by the electron-electron or
electron-muon correlation gives then even better rel-
ative energy agreement with “exact” values (not
shown).

Finally, for all the systems considered, more accu-
rate wave functions can be easily constructed by
including more configurations (n1n2) and increasing
the number of correlation terms (n3) (as discussed
in Ref. [31]). However, as mentioned in the Intro-
duction, the aim is to provide relatively simple, yet
accurate, wave functions and have therefore kept
the number of coefficients reasonably moderate. The
linear coefficients and normalization constants for
the wave functions presented here are available in
tabular form upon request [50].

4. Doubly Excited States 2s2

Before concluding, let us make some comments
on the first doubly excited state. We have performed
calculations by including also the 2s2s configura-
tion in the trial wave function (13). By doing so, for
example for ∞He, the first excited states energies are
only slightly improved (by 10−5 a.u. at best), while
the ground state energy is −2.90147948 a.u., thus
4 × 10−4 better than the value given in Table I (this,
incidentally, illustrates that improved values can be
obtained by systematically adding more configura-
tions in the trial wave function). More interestingly,
the doubly excited state 2s2 1S appears through the
diagonalization of the eigenvalue problem (11); its
energy −0.7698 a.u. is in good agreement with the
value −0.7685 a.u. reported by the Lipsky et al. [51]
and the −0.7776 a.u. reported by Dulieu and Le
Sech [52].

Next, we have considered the three-body system
[µ−µ−p+] because recently an excited state energy
of −84.891397 a.u. for 21S was published [53] (note
that, in Table II of [53], the energy is given in muonic
mass units). We were surprised by this result since
this three-body system does not possess proper sim-
ply excited states. This level energy is above the
two-body [µ−p+] threshold, so that it must corre-
spond to a doubly - and not a simply - excited state.
To check this, we performed a calculation includ-
ing the 2s2s configuration in the trial wave function.
We found a ground state energy of −97.418009 a.u.,

thus improving the value −97.374760 a.u. given in
Table I. A doubly excited state 2s2 1S appears,
with a value of −92.621499 a.u., which is much
lower than that given in Ref. [53]. Similar con-
clusions apply: for [µ−µ−d+] for which we found
−97.506661 a.u. instead of −89.499228 a.u. [53]; for
[µ−µ−t+] −99.268382 a.u. instead of −91.168261 a.u.
[53]); and for Mu− [e−e−µ+] −0.495784 a.u. instead
of −0.455748 a.u. [53].

5. Summary and Perspectives

We have generalized the C3-like basis set [31] to
three-body atomic systems with general masses, and
have used the basis functions to extend the Angular
Correlated Configuration-Interaction method pre-
sented in [28, 29]. The C3-like basis functions are
defined as being exact solution of a general three-
body Coulomb problem where the nondiagonal
terms of the kinetic energy are neglected; hence, the
functions naturally satisfy the cusp conditions at the
two-body singularities. They are defined as a prod-
uct of two-body Coulomb wave function multiplied
by a Coulomb distortion factor, being in that way the
counterpart of the C3 approach used for scattering
problems. This distortion factor, which depends on
the distance between the two light particles, already
includes angular correlation in the configuration
basis functions [30, 31]. A configuration interaction
scheme can then be constructed with these correlated
basis elements as done in Ref. [31]. Two techni-
cal advantages of the C3-like basis set should be
mentioned: all the parameters included in the wave
functions are linear, thus a single diagonalization
gives both energies and eigenvectors. Second, the
basis set diagonalizes all the Coulomb interaction
and part of the kinetic energy, leading to analytic
closed form expressions for the non-diagonalized
terms.

The efficiency of the method has been illustrated
by considering S states of several standard and exotic
hydrogen-, helium-, and lithium-like three-body sys-
tems in which the nuclear mass can be finite and
the two light particles can be equal or different.
Ground and excited states n1,3S energies have been
compared, when possible, to highly accurate values,
obtained with large variational calculations; good
agreement is found for all cases. For most exotic sys-
tems, the energy of excited sates has not been given
before in the literature. Accurate wave functions, sat-
isfying exactly two-body Kato cusp conditions, and
with a moderate number of linear coefficients were
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used (the results can be systematically improved by
including more terms in the expansion). This has
been done with the purpose to provide, e.g., to the
collisional community, wave functions as accurate as
the traditional Hylleraas wave function available in
the literature for two-electron systems with infinite
nuclear mass. To the best of our knowledge, for all
other three-body systems investigated here, no func-
tions as accurate and simple as those presented here,
have been given in the literature.

The extension of the present method to L > 0
states is part of our current investigations. There exist
a significative number of publications on this topic
starting from the first article of Breit [54] to, e.g.,
Ref. [55]. Without going here into details, we briefly
sketch the line of work we are following and refer
only to one closely associated article. For general
L > 0, linear combinations of radial basis functions
φn1n2n3(r13, r23, r12) and rotation matrices DM,K

L (α, β, γ )

can be used to expand the different states [56]. The
rotation matrices are simultaneously eigenfunctions
of L̂2 and the projections, L̂z and L̂′

z along space-
fixed and body-fixed axes, with eigenvalues L(L+1),
M, and K, respectively. Following [56], the rota-
tion matrices can be expressed in terms of the polar
and azimuthal angles (θik, φik) of rik and the angu-
lar momentum lowering operator L̂−. The general
L states �L

C3−M can be written in terms of the radial
basis functions together with the angular functions
as follows:

�L
C3−M = N

∑
l1+l2=L

[(L̂−)L (r13ξ13)
l2(r23ξ23)

l1 ]

×
∑

n1,n2,n3

cL
n1n2n3,l1l2

φn1n2n3(r13, r23, r12)

where N is the overall normalization factor and
ξj = sin(θj)e

ıφj where the subscript j stands for 13
or 23. The advantage of expanding with the radial
basis functions φn1n2n3 is that they fully diagonalize
the Coulomb interactions and remove the diagonal
part of the kinetic energy. More details and numerical
applications will be presented elsewhere.
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