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Abstract

For Poisson processes taking values in any general metric space, we tackle the
problem of supervised classification in two different ways: via the classical k-
nearest neighbor rule, by introducing suitable distances between patterns of
points and via the Bayes rule, by estimating nonparametricaly the intensity
function of the process. In the first approach we prove that, under the
separability of the space the rule turns out to be consistent. In the former,
we prove the consistency of rule by proving the consistency of the estimated
intensities. Both classifiers have shown to have a good behaviour under
departures from the Poisson distribution.

Key words: point process, Poisson process, nonparametric estimation,
classification

1. Introduction

Spatial point processes are commonly used to model the spatial structure
of points formed by the location of individuals in space. The growing interest
in this kind of process is related to the wide range of areas where they can be
applied. For instance, in ecology, they can be used to model the distribution
of herds of animals, the spreading of nests of birds, speckles of trees or
plants or the eroded areas in rivers or seas. In geography, the position of
earthquakes or volcanoes can by modelled by this kind of processes. They
can be also used to model the distribution of galaxies in astronomy, the
locations of subscribers in telecommunications, among others. There exists
a vast literature on this area, just to name a few, we refer to the recent
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book Spatial Data analysis in ecology and agriculture using R ([18]), which
contains many other possible applications and techniques, as well as real
data examples. In [10], the authors propose a hierarchical modelling of the
interaction structure in the plant community. The current interest on this
kind of process also appears in connection with the new developments in
Functional Neuroimaging techniques (for example fMRI), where it is possible
to record in real time the location of the activation zones of the brain (see for
instance [11, 12], and [23]). In this context, in order to perform classification
between healthy and unhealthy people, the differences between the neurons
that fire under some stimuli can be measured by modelling them as spatial
Poisson processes with different intensities. In [16], the authors do a review of
several distances used to measure the differences between two spatial patterns
in order to perform clustering or classification (see also [22]). In a different
application area, crime modelling and mapping using geospatial technologies
(which include the use of spatial point process) is, quoting [15], “a topic of
much interest mostly to academia, but also to the private sector and the
government”, see also [7] and [9]. On this topic in Section 7 we study the
spatial distribution of three different crimes which took place in Chicago
between 2014 and 2016, by using an open access database containing, among
other variables, the spatial location of the crimes.

The aim of this manuscript is to tackle the supervised classification pro-
blem for Poisson point processes by framing it in the functional data setting.
In particular, we prove the consistency of the k-nearest neighbors classifier
in a more general context by proving the separability of the space and the
Besicovitch condition (see [1] and [5] for a deepest reading on this topic). Via
some simulation studies, we show how different choices of distances lead to
different results on the classification. In addition, following the ideas in [4],
we also propose a nonparametric estimator of the intensity function, prove its
consistency and plug it into the Bayes rule to get a consistent classifier. This
last approach is similar to the one proposed in [11] but we do not assume that
the intensities vary in a parametric family. Through some simulation studies
we show the good performance of the k-NN rule so that it can be considered
as an easier to implement alternative to the classical Bayes. More precisely,
the k-NN classifier does not require the estimation of the intensity function
(which is computationally expensive) and it can be employed in more general
settings. With regard to the last statement, it is important to highlight that,
although most of the classical applications of spatial point processes are for
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recorded locations in R2 or R3, we do not restrict our approach to that case,
allowing the realizations of the processes to live in a general metric space (as
functional metric spaces, Riemannian manifolds, among others).

The manuscript is outlined as follows: in Section 2 we present definitions
and preliminary results that we will use throughout the work. Section 3.1 is
devoted to introduce an estimator of the intensity of the process in order to
plug it in the Bayes rule an prove its consistency. In Section 3.2 we handle
the problem of choosing a suitable distance to guarantee the separability of
the space and the Besicovitch condition, in order to get the consistency of the
k-NN estimator. Section 4 is devoted to the study of the metric dimension of
the space introduced in the Section 3.2. In Section 5 we extend the results to a
more general class of processes: the Gibss processes. In Section 6 we perform
some simulation studies in order to asses the performance of the classification
rules for different scenarios as well as to see the effect of changing some
parameters in the estimation and robustness when the model is not Poisson.
Finally in Section 7 we perform classification in a real data scenario. All the
proofs are given in the Appendix.

2. Definitions and preliminary results

This section is devoted to introduce some definitions and tools we will use
throughout the paper. We will start with the definition of the main object of
this paper, the Poisson point process and then we will turn to classification
rules in our context. For a deeper read on Poisson processes we refer to [6],
[13] and [17].

2.1. Poisson process

Let (S, ρ) be a separable and bounded set metric space, endowed with a
Borel measure ν, let us denote by B(S) the Borel σ-algebra on S and by S∞

the set of elements (subsets) x of S whose cardinal, #x, is finite. This is,

S∞
.
= {x ⊂ S : #x <∞}.

Let λ : S → R+ be an integrable function. Given a probability space
(Ω,A,P), we will say that a function X : Ω→ S∞ is a Poisson process on
S with intensity λ (we will denote X ∼ P(S, λ)) if:

• the functions NA : Ω→ {0, . . . ,∞} defined as NA(ω) = #{ω : X(ω) ∩
A} are random variables for all A ∈ B(S);
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• given n disjoint Borel subsets A1, . . . , An of S, the random variables
NA1 , . . . , NAn are independent;

• NA follows a Poisson process with mean µ(A) (we will denote NA ∼
P(µ(A)), being

µ(A) =

∫
A

λ(ζ)dν(ζ).

Let S∞ = 2S
∞

be the σ-algebra of part of S∞. If X is a Poisson process,
the distribution PX of X on S∞ is defined as PX(B) = Pr(X ∈ B) for
B ∈ S∞.

A well-known result (see [17]) on point processes states that, if X1 and X2

are Poisson processes with intensity λ1 and λ2, respectively, with values on
a non-empty bounded metric space (S, ρ) such that µi(S) <∞, i = 1, 2, the
distribution of X1 is absolutely continuous with respect to the distribution
of X2 (PX1 � PX2) with Radon Nikodym derivative

fX1(x) = exp
{
µ2(S)− µ1(S)

}∏
ξ∈x

λ1(ξ)

λ2(ξ)
,

with 0/0 = 0. As a consequence observe that if X2 ∼ P(S, 1) then, for all
X ∼ P(S, λ), PX � PX2 and

fX(x) = exp
{
ν(S)− µ(S)

}∏
ξ∈x

λ(ξ), (1)

where µ(S) =
∫
S
λdν.

2.2. Classification

Given a set {(Xi, Yi)}ni=1 ∈ S∞ × {0, . . . ,M} of iid pares with the same
distribution as (X, Y ), the aim of classification is, given a new observation X,
to predict the class Y to which X belongs. In this context, a classification rule
is a measurable function g : S∞ → {0, . . . ,M} which, for a new observation
X, returns a label Y ∈ {0, . . . ,M}. It was shown (see, e.g., [3]) that the
optimal classifier is the Bayes rule g∗ which minimizes the probability of
error or, equivalentely, which maximizes the posterior probabilities:

g∗(x) = arg max
g:S∞→{0,...,M}

Pr{g(X) 6= Y }.
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The mimimun probability of error L∗ = Pr{g∗(X) 6= Y } is known as Bayes
error. If Ln = Pr{gn(X) 6= Y |Dn} is the probability of error of a sequence
gn of classifiers built up from a training sample, it is said that the sequence
is weakly consistent if Ln converges in probability to L∗ as n→∞.

In our context, we assume that X conditioned to Y has Poisson distri-
bution therefore, following (1), in Lemma 1 we obtain an expression for the
Bayes rule as a function of the intensities of the processes.

Lemma 1. Let (X, Y ) ∈ S∞ × {0, . . . ,M}. Let Xj
.
= X|Y = j be Poisson

processes on S∞ with intensities λj, j = 1, . . . ,M , respectively. Therefore,
the Bayes rule classifies a point x ∈ S∞ in class j if

exp
{
µi(S)− µj(S)

}∏
ξ∈x

λj(ξ)

λi(ξ)
>
pi
pj
, ∀ i 6= j, (2)

where pi = Pr(Y = i), i = 1, . . . ,M and as before, µi(S) =
∫
S
λi(ζ)dν(ζ),

i = 1, . . . ,M .

Observe that, in order to apply the Bayes rule we will need to estimate
the intensities λj of the processes which will be done in Section 3.1.

Another well known classification rule is the k-nearest neighbor rule
which, in our context will classify a point x ∈ S∞ in class j if, for all i 6= j,

n∑
k=1

wnk1(Yk = j) >
n∑
k=1

wnk1(Yk = i),

where the weights wnk are 1/k for the k-nearest neighbors of x and 0 else-
where. We say that Xi is the k-nearest neighbor X among {X1, . . . , Xn} if
the distance d(Xi, X) is the k-th smallest among d(X1, X), . . . , d(Xn, X).

For random variables taking values in a finite dimensional space (for in-
stance Rd), it is well-known (see [20]) that the k-NN rule is L2-universally
consistent provided that k → ∞ and k/n → 0. However, when they take
values in infinite dimensional spaces (as in this case), the consistency is not
necessarily true (even weakly than L2) as it was studied by [1]. Nevertheless,
[5] gave sufficient conditions to ensure L2-consistency of the classical estima-
tors of the regression function η(x) = E(Y |X = x). That conditions are the
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separability of the metric space (S∞, d) for a given metric d and Besicovitch
condition, which can be stated as:

lim
ε→0

PX

{
x : lim

δ→0

1

PX

{
Bd(x, δ)

} ∫
Bd(x,δ)

|η(x)− η(y)|dPX(y) > ε

}
= 0, (3)

It is immediate that PX-a.s. continuity of η is a sufficient condition for
(3). In order to get the consistency of the k-NN rule in the context of
Poisson processes, we will study in Section 3.2 the problem of choosing a
suitable distance d which leads the separability of the space (S∞, d) and the
Besicovitch condition for η(x).

3. Main Results

Throughout all this section we will assume that (S, ρ) is a separable com-
pact metric space.

3.1. Bayes rule in the context of Poisson processes: consistency and the es-
timation of the intensity

In this section we propose to estimate nonparametrically the intensity
functions λj j = 1, . . . ,M in order to plug in them in Equation (2) to get the
Bayes rule for Poisson processes. Following [4], given a realization {ξ1, . . . , ξn}
of the process X with values in S∞, we estimate the intensity λ(ζ) of X in
the point ζ ∈ S as

λ̂(ζ) =
1

Kσ(ζ)

n∑
i=1

1

σd
k
{ρ(ζ, ξi)

σ

}
, (4)

with k : R → R+ a symmetric, no negative kernel, σ > 0 a smoothing
parameter and

Kσ(ζ) =

∫
S

1

σd
k

{
ρ(ζ, ξ)

σ

}
dν(ξ).

Given a random sample of Poisson processes X1, . . . , Xm, each with realiza-
tion Xj = {ξ1, . . . , ξn(j)}, j = 1, . . . ,m, we define an estimator of the intensity
λ(ζ) by

λ̌m(ζ) =
1

m

m∑
j=1

λ̂j(ζ), (5)
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where λ̂j(ζ) is an estimation of λ(ζ) as given in (4) for the realization Xj =
{ξ1, . . . , ξn(j)}, j = 1, . . . ,m.

Via simulation study (see Section 6.3), we observed that when performing
classification by using the Bayes rule as in (2) with estimated intensities (5)
the best choice is σ1 = σ2.

In the following theorem we show the consistency of the estimator given
in (5).

Theorem 1. Let us assume that the intensity function λ is continuous and
that, for all ζ ∈ S, there exists λ0 > 0 such that λ(ζ) ≥ λ0. Let k : R→ R+ be
a symmetric, no negative continuous kernel such that supp(k) ⊂ [0, diam(S)]
and k(x) > k0 > 0 ∀x ∈ [0, diam(S)]. Then, for almost all ζ ∈ S (w.r.t. ν),
there exists σm(ζ)→ 0, such that

lim
m→∞

∣∣∣λ̌m(ζ)− λ(ζ)
∣∣∣ = 0 a.s. (6)

Remark 1. It is easy to see that if S ⊂ Rd, ν is absolutely continuous
w.r.t. the Lebesgue measure, the density is bounded away from 0 and S is
standard (see Definition 1 in [2]), then {ln(m)/m}1/(2d)/σm → 0 and σm → 0
is enough to get (6).

For a recent review on the estimation of the intensity function for general
point process see [21].

3.2. k-NN rule in the context of Poisson process: consistency

As we said in Section 2.2, in order to get the separability of S∞ as well
as the Besicovitch condition, we need to chose a suitable distance. Since the
elements of S∞ are subsets of (S, ρ), a quite natural choice is the Hausdorff
distance, which measure how far two subsets of a metric space are from each
other. It is defined as follows.

Definition 1. Given two non-empty compact sets A,C ⊂ S, the Hausdorff
distance between them is defined by

dH(A,C) = max
{

sup
a∈A

d(a, C), sup
c∈C

d(c, A)
}
,

where d(a, C) = inf{ρ(a, c) : c ∈ C}.

Remark 2. Observe that, when S is bounded the metric dH on S∞ is well
defined since in this case #x <∞ for all x ∈ S∞.
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In the following two propositions we state the sufficient conditions to get
the L2-consistency of the k-nearest neighbor rule in (S∞, dH).

Proposition 1. The space (S∞, dH) is separable.

Remark 3. Moreover if S is complete, the metric space of compact non-
empty subsets of S endowed with dH turns out to be a complete and locally
compact metric space (see Chapter 4 in [19]).

Proposition 2. Let us consider (X, Y ) ∈ S∞ × {0, . . . ,M}. Suppose that
Xj

.
= X|Y = j is a Poisson process on S∞ with intensity function λj, for

j = 1, . . . ,M , respectively. Let us assume that λj, are continuous functions
of ρ and that the measure ν does not have atoms (i.e., ν{ζ} = 0 for all
ζ ∈ S). Then, for all x ∈ S∞ condition (3) holds for η(x) = E(Y |X = x)
with d = dH .

From Propositions 1 and 2 and Theorems 4.1 and 5.1 in [5] it follows the
consistency of the k-NN estimator of the regression function E(Y |X = x)
which in turn gives the consistency of the classification rule built up from
such estimator.

Although we stated the consistency of the k-NN rule for the Hausdorff
distance, we could have two points very close in Hausdorff distance but with
very dissimilar cardinal. Via some simulation studies we noted that adding
to the Hausdorff distance a term that forces points close enough in Hausdorff
distance to have the same cardinality, the performance of the classification
rule improves considerably. Basically this is due to the fact that in point
processes analysis the cardinality of the points is an important characteristic
to distinguish between populations. Moreover, we performed a simulation
study (see Section 6.1.3) to show that, for two populations with the same
expected number of points but different intensity, the Haussdorf distance is
still a good choice, without the necessity of adding a new term. With all
this in mind, we define new metrics in S∞ which have shown to outperform
Hausdorff distance, and give the consistency of the k-NN rule for them.

Definition 2. Given x, y ∈ S∞, we define a new distance d on S∞ as:

d(x, y) =
1

diam(S)
dH(x, y) + d0(x, y), (7)
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where diam(S) denotes the diameter of S (i.e., diam(S) = supx,y∈S ρ(x, y))
and d0 : S∞ × S∞ → [0, 1] is a function (not necessarily a distance) which
verifies:

1. #x = #y implies d0(x, y) = 0;

2. d0(x, y) = d0(y, x);

3. for all z ∈ S∞, d0(x, z) ≤ d0(x, y) + d0(y, z);

4. ∀x ∈ S∞ there exists ε0 = ε0(x) > 0 such that, if d0(x, y) < ε0 then #x =
#y.

In what follows we list a set of functions verifying conditions 1–4 in Def-
inition 2:

• d0(x, y) = |#x−#y|/(1 + |#x−#y|);

• Hellinger: d0(x, y)2 = 1− exp
{
−
(√

#x−
√

#y
)2
/2
}

;

• Kulback–Leibel: d0(x, y) = 1− exp
{

(#y −#x) ln (#x/#y)
}

.

As before, in the following two propositions we state sufficient conditions
to get the L2-consistency (see Theorem 4.1 and 5.1 in [5])) of the k-nearest
neighbor rule in (S∞, d) with d as in (7), which in turn gives the consistency
of the classification rule built up from such estimator.

Proposition 3. The space (S∞, d) with d as defined in (7) is separable.

Proposition 4. Let (S, ρ) be a bounded metric space. If the intensity λ of
a Poisson process X defined on S∞ is continuous on S (with respect to the
distance ρ) then the regression function η is continuous with respect to the
metric d defined in (7) and then it fulfils condition (3).

As we will see in Section 6.4, for all the distances d0 before defined,
higher number of neighbor gives better classification (although seven neigh-
bors could be the right choice since for seven or more neighbors the results
are the same).
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4. Why do we need to prove the Besicovitch condition?

The Besicovitch condition would be trivial if the space S∞ were finite
dimensional. However, this space is not even a vector space therefore, first
we need to define what “infinite dimensional” means.

Definition 3. A metric space (H, d) is finite dimensional (in the Nagata
sense) if there exists n0 > 0 such that for all a ∈ X, r > 0, and n > n0

points yi ∈ Bd(a, r), there exists i 6= j such that d(yi, yj) ≤ r. A metric space
is said to be σ-finite dimensional if it is equal to the numerable union of finite
dimensional sets.

The following result ensures that (S∞, d) where d is as in (7) is not finite
dimensional.

Proposition 5. Let us assume that there exists r0 > 0 such that for all ζ ∈ S,
and all r < r0, ∂B(ζ, r) contains two points π1, π2 such that ρ(π1, π2) = 2r.
Then the space (S∞, d

)
is not finite dimensional.

5. Extensions of the results to Gibbs process

Gibbs processes appear as a natural generalization of Poisson processes
since they allow a spatial dependency between the numbers of points in two
disjoints subsets of S (compare with the definition of Poisson process intro-
duced in Section 2.1). We prove that Proposition 2 can be extended to this
class of processes which, for instance, are being used in telecommunications
to model the position of base stations for improving the performance of a
wireless network, see [8], [14], and [24].

Recall that a process is Gibbs if its density with respect to P(S, 1) has
the form f(x) = c exp(−U) being c constant, where the energy U(x) is ad-
missible, in the sense that satisfy:

∞∑
n=0

e−ν(S)

n!
qn <∞ and qn =

∫
Sn

exp{−U(x)}dν(x1) . . . dν(xn) <∞.

Since we will assume that S is compact, ν(S) < ∞ and U is a bounded
function, the admissibility condition will be fulfilled. We will assume that
the energy is of the form (see pg. 95 in [6])

U(x) =
n∑
i=1

ϕ(xi) +
n∑
i=1

n∑
j>i

ψ(‖xi − xj‖). (8)
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This includes as a particular case P(S, λ), taking −ϕ(x) = ln(λ(x)) and
ψ = 0, and Strauss processes, for which f(x) = cβn(x)γsr(x) with sr(x) =∑

i<j 1(‖xi − xj‖ < r) and n(x) = #x. The following proposition extends
Proposition 2 to this kind of process.

Proposition 6. Let us consider (X, Y ) ∈ S∞ × {0, . . . ,M} being (S, ρ)
compact. Suppose that for all j = 1, . . . ,M , Xj

.
= X|Y = j is a Gibbs

process with energy Uj given by (8), with ϕj and ψj continuous functions.
Let us assume that the measure ν does not have atoms (i.e., ν{ζ} = 0 for all
ζ ∈ S). Then, for all x ∈ S∞ the Besicovitch condition holds for E(Y |X = x)
with d = dH .

6. Simulations

In order to assess the performance of the proposed classification rules for
two populations and see how the nature of the density function affect the
methods we have implemented some simulation studies. First we show the
behaviour in three different scenarios, one in which the densities are smooth
and decrease to zero exponentially fast, another for very wiggly densities,
and a last one where the expected number of points is the same, but the
distribution of points is different. We also carry out three simulation studies
to show the robustness under departure from the Poisson assumption, the
effect of σ in the estimation of the intensities (4) and the effect of k in the
k-nearest neighbor distances (7).

In what follows, we will use the following notation for the different dis-
tances:

• KNN Hausdorff: k-NN in (S∞, dH);

• KNN Hausdorff d1: k-NN in (S∞, d) with d given in (7) and d0(x, y) =
|#x−#y|/(1 + |#x−#y|);

• KNN Hausdorff Hellinger: k-NN in (S∞, d) with d given in (7) and

d0(x, y)2 = 1− exp
{
−
(√

#x−
√

#y
)2
/2
}

;

• KNN Hausdorff KL: k-NN in (S∞, d) with d given in (7) and d0(x, y) =
1− exp

{
(#y −#x) ln (#x/#y)

}
.
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In all the simulations we generated training and testing samples of size
100 (50 for each class), used 100 replications. We chose k in the k-NN rule
via cross validation. For the Bayes rule we used cross validation to get the
optimal σ in Sections 6.1.1 and 6.1.2 but we fixed σ = 0.1 in Sections 6.1.3
and 6.2.

6.1. Behaviour of our proposed methods in three different scenarios

6.1.1. Smooth case.

In this case, for the class 0 we generate the processes in the square [0, 1]2

with intensity

λ0(x, y) = c2 exp[−20{(x− 1/2)2 + (y − 1/2)2}],

and for class 1,

λ1(x, y, c1, d1) = c1 exp[−d1{(x− 1/2)2 + (y − 1/2)2}].

In Figure 1 we report the misclassification rate for different values of the
parameters c1 and d1, with c2 = 500. For a better understanding, in Figure
2 we plot different level sets of both of the estimated intensities. Let us
observe that the intensities in this case overlap considerably, which difficulties
the classification. As expected, the misclassification rate decreases when the
difference between c1 − 50 and d1 − 20 increase.

6.1.2. Wiggly case.

In this case, for class 0 we generate the processes in the square [0, 1]2 with
intensity

λ0(x, y) = 80 + 80xy sin{1/(xy)},

and for class 1,
λ1(x, y, c2) = c2 + 30xy sin{1/(xy)},

where c2 is a positive constant. In Figure 3 we report the boxplot of the
misclassification rate for different values of the parameter c2 and in Figure 4
we plot different level sets of both of the estimated intensities.

Again, as expected, the misclassification rate decreases when the differ-
ence between c2 and 80 increases.
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Figure 1: Misclassification rates distribution for simulation from Section 6.1.1.

6.1.3. Different intensities but same expected number of points.

In this case we generate two processes in the square [−1, 1] × [−1, 1].
Both of them have intensity with the same height but one of them centered
at [−1/4, 0] and the other one centered at [0, 1/4] as shown in Figure 6. In
Figure 5 we report the misclassification rate where we can see that, in this
case, Bayes rules performs much better than the k-NN rule.

As we can see in the previous simulations, in the case of densities with
the same expected number of points (Section 6.1.3), the estimated Bayes
rules outperforms the k-NN based rules whereas in the wiggly case (6.1.2)
k-NN achieves a better performance. This could be due to the fact that
smooth intensities can be better estimated. For smooth functions (section
6.1.1) sometimes k-NN outperforms the Bayes rules (specially when adding
an extra term to the distance).
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Figure 2: Intensities for simulation from Section 6.1.1.
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Figure 3: Misclassification rates distribution for simulation from Section 6.1.2.

6.2. Robustness under non Poisson distributions

In this simulation we generate two Strauss processes (see Section 5) in
the same region W = [0, 10] × [0, 10], one with parameters β1 = 0.5, γ1 =
1, r1 = 0.3 and the other with parameters β2 = 1.5, γ2 = 0.5, r1 = 0.6. In
this case, the mean of the misclassification rates are: 0.083% for the Bayes
rule, 0.401% for KNN Hausdorff, 0.072% for KNN Hausdorff d0, 0.073% for
KNN Hausdorff Hellinger and 0.071% for KNN Hausdorff KL.

This shows, togheter with the boxplot of the misclassification rates (Fig-
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Figure 4: Intensities for simulation from Section 6.1.2.
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Figure 7: Misclassification rates of simulation from Section 6.2.

ure 7) the robustness of our methods and a better performance for the k-NN
base rules.

6.3. Effect of the smoothing parameter used in the estimation of the intensi-
ties (4)

To show the effect of the smoothing parameter in the estimation of the
intensity function (4), we run it in the setting described in subsection (6.1.1)
with c1 = 500, d1 = 20 and σ1 for one of the intensities and c2 = 700, σ2 for
the other. We took different combinations of (σ1, σ2). The misclassification
rates are plotted in Figure 8 where in the epigraph of each graphic we put
σ2 and in the x-axis σ1. In the boxplots it can be seen that, in general, the
best combination is σ1 = σ2.

6.4. Effect of k in the k-NN rule using different distances (7)

To asses the effect k in the k-NN rule we run it in the setting described in
subsection (6.1.1) with c1 = 500, d1 = 20, c2 = 700. The results are given in
Figure 9. It can be seen that for all distances the k-NN rule performs better
choosing higher values of k. However, it can be also seen that choosing a
value greater than 7 does not improve the performance considerably.

7. Real data example

The study of the geographic distribution of crimes gave rise to the well
known “social disorganization theory”, developed by the Chicago School (also
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Figure 9: Misclassification rates distribution for the effect of k in the k-NN rule (simulation
from Section 6.4).

called the Ecological School) which, since 1920, specializes in urban socio-
logy and urban environment research. It proposes that the neighborhood of
a subject is as significant as the person’s characteristics (like gender, race,
etc). See Chapter 33 in [9] for a survey on this topic. The School collected
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the location as well as a description of many crimes including prostitution,
assault, narcotics, battery, among others, reported between 2001 and 2016
in the city of Chicago and joint them in an open source database of more
than 6 million entries. This database was recently employed in [7] to fit
a model for the intensity function of replicated point processes. In order
to asses if there exists statistical differences between the spatial pattern of
points of crimes, we performed classification among the different crimes. To
get different samples of the same process we have split the data in periods
of one week, comprehended between the first of January of 2014 and the
first of January of 2016. As a result, for every type of crime we have 105
samples, 84 of them were used as training sample and the remaining 21 for
the testing sample. Since there exists a wide range of intensities between the
different crimes, we have considered only three of them: assault and robber
(joined in one class, denoted as AR), narcotics (N), and criminal damage
(CD). The mean value of locations registered in one week, for every sample is
502, 482 and 532 for AR, N, and CD respectively. The classification errors
obtained using k-NN rule for k = 20 (this value minimize the misclassification
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−87.8 −87.7 −87.6 −87.5

lon

la
t

type
CRIMINAL DAMAGE
NARCOTICS
ROBBERY and ASSAULT

Figure 10: Location of the reported assaults and robberies (green), narcotics (blue), and
criminal damage (red) in one week in the city of Chicago.
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error) were the following: between N and CD 7%, CD and AR 6%, and
finally between AR and N we get 15%. This result suggests that there is a
stronger geographic similarity between the crimes typified as narcotics and
those typified as assault and robbery. This can be also seen in Figure 10,
were we represented the points for this 3 kind of crimes, reported in one
week. There we can see that points in blue (N) and in green (AR) are very
closed each other whereas the red ones are spread throughout all the city.

8. Conclusions

We have proposed two consistent classification techniques for point Poi-
sson processes: the k-NN and Bayes rule. The k-NN rule has shown better
performance in cases in which the intensity function of the process is wiggly
and for non Poisson processes whereas the Bayes rule did it when the intensity
functions have the same expected number of points. From a theoretical point
of view, we proved that the k-NN rule is consistent not only for the case of
spatial process in Rd, but also for processes taking values in any metric
space. The rule has also shown to be robust against departures from Poisson
distribution.

Appendix

Proof of Lemma 1. For j = 1, . . . ,M , let fXj be the density of Xj with
respect to the Poisson process with intensity 1. That is, fXj is the Radon-
Nykodim derivative dPXj/dP (x) of PXj with respect to the distribution P of
the Poisson process with intensity λ = 1. Then,

Pr(Y = j|X = x) =
fXj(x) Pr(Y = j)

fX(x)
, j = 1, . . . ,M (9)

with fX(x) =
∑M

j=1 fXj(x) Pr(Y = j) the total probability. Let pj = Pr(Y =
j), then we have

Pr(Y = j|X = x) > Pr(Y = i|X = x)⇔
fXj(x)

fXi(x)
>
pi
pj
. (10)
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Now, since µj(S) =
∫
S
λj(ζ)dν(ζ) for j = 0, . . . , i, . . . ,M , from equation (1)

we get,

fXj(x)

fXi(x)
=

exp
{
ν(S)− µj(S)

}∏
ξ∈x λj(ξ)

exp
{
ν(S)− µi(S)

}∏
ξ∈x λi(ξ)

= exp
{
µi(S)− µj(S)

}∏
ξ∈x

λj(ξ)

λi(ξ)
.

And with this equality in (10), it turns out that

Pr(Y = j|X = x) > Pr(Y = i|X = x)
⇔

exp
{
µi(S)− µj(S)

}∏
ξ∈x

λj(ξ)

λi(ξ)
>
pi
pj
.

Therefore, the Bayes rule classifies a point x ∈ S∞ in class j if

exp
{
µi(S)− µj(S)

}∏
ξ∈x

λj(ξ)

λi(ξ)
>
pi
pj
, for all i 6= j.

Proof of Theorem 1. Let us fix ζ ∈ supp(ν), and write,∣∣∣λ̌m(ζ)− λ(ζ)
∣∣∣ ≤ ∣∣∣λ̌m(ζ)− E

{
λ̌m(ζ)

}∣∣∣+
∣∣∣E{λ̌m(ζ)

}
− λ(ζ)

∣∣∣. (11)

First observe that, conditioned to #Xj = n(j), the random variables ξ1, . . . , ξn(l)
are an iid sample of ξ with density λ(ζ)/µ(S) (see Definition 3.2 in [17]),
where µ(S) =

∫
S
λ(ξ)dν(ξ). In addition, since X is a Poisson process,

#Xj ∼ P{µ(S)}, so that E(#Xj) = µ(S). Let us denote #X(m) = n(m),
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where #X(m) = (#X1, . . . ,#Xm) and n(m) = (n(1), . . . , n(m)). Then,

E
{
λ̌m(ζ)

}
= E

[
E
{
λ̌m(ζ)

∣∣∣#X(m) = n(m)
}]

= E
[
E
{ 1

m

m∑
j=1

1

Kσm(ζ)

n(j)∑
i=1

kσm
{
ρ(ζ, ξi)

}∣∣∣#X(m) = n(m)
}]

= E

[
1

m

m∑
j=1

1

Kσm(ζ)

#Xj∑
i=1

E
[
kσm
{
ρ(ζ, ξi)

}∣∣∣#X(m) = n(m)
]]

= E

[
1

Kσm(ζ)

1

m

m∑
j=1

#Xj∑
i=1

1

µ(S)

∫
S

kσm{ρ(ζ, ξ)}λ(ξ)dν(ξ)

]

=
1

Kσm(ζ)µ(S)

∫
S

kσm{ρ(ζ, ξ)}λ(ξ)dν(ξ)E

[
1

m

m∑
j=1

#Xj

]

=
1

Kσm(ζ)

∫
S

kσm{ρ(ζ, ξ)}λ(ξ)dν(ξ))

= E{λ̂1(ζ)}.

With this in (11) we have,∣∣∣λ̌m(ζ)− λ(ζ)
∣∣∣ ≤ ∣∣∣λ̌m(ζ)− E{λ̂1(ζ)}

∣∣∣+
∣∣∣E{λ̂1(ζ)} − λ(x)

∣∣∣ .= I + II. (12)

To prove that I → 0 observe that,

Pr

(∣∣∣∣∣ 1

m

m∑
j=1

λ̂j(ζ)− E{λ̂1(ζ)}

∣∣∣∣∣ > ε

)
(13)

= E

[
Pr

(∣∣∣∣∣ 1

m

m∑
j=1

λ̂j(ζ)− E{λ̂1(ζ)}

∣∣∣∣∣ > ε

∣∣∣∣∣#X(m) = n(m)

)]
.

In order to apply Hoeffding inequality to λ̂j(ζ) observe that, conditioned to

#Xj = n(j), if we denote γm(ζ) = ν{Bρ(ζ, σm)}, 0 ≤ λ̂j(ζ) ≤ K1n(j)/γm(ζ),
∀x ∈ S and j = 1, . . . ,m, with K1 = max k(ζ)/k0. Therefore, applying
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Hoeffding inequality we get

E

Pr

[∣∣∣∣∣ 1

m

m∑
j=1

λ̂j(ζ)− E{λ̂1(ζ)}

∣∣∣∣∣ > ε
∣∣∣#X(m) = n(m)

]
≤ E

[
2 exp

{
− 2ε2m2γ2m(ζ)

K2
1

∑m
j=1(#Xj)2

}]

= E

[
E

[
2 exp

{
− 2ε2m2γ2m(ζ)

K2
1{
∑m−1

j=1 (#Xj)2 + (#Xm)2}

}∣∣∣#X(m− 1) = n(m− 1)

]]

≤ E

[
2 exp

{
− 2ε2m2γ2m(ζ)

K2
1

[
E
{∑m−1

j=1 (#Xj)2 + (#Xm)2
∣∣#X(m− 1) = n(m− 1)

}]}]

= E

[
2 exp

{
− 2ε2m2γ2m(ζ)

K2
1

[∑m−1
j=1 (#Xj)2 + E{(#Xm)2}

]}]

= E

[
2 exp

{
− 2ε2m2γ2m(ζ)

K2
1

[∑m−1
j=1 (#Xj)2 + E{(#Xm)2}

]}]
...

≤ 2 exp

{
− 2ε2m2γ2m(ζ)

K2
1

∑m
j=1 E{(#Xj)2}

}

= 2 exp

{
− 2ε2mγm(ζ)2

K2
1µ(S)

(
1 + µ(S)

)} , (14)

where we used the same conditioning trick m times and, in the last equality,
we used that #Xj ∼ P(µ(S)) so that var(#Xj) = µ(S). Now, by Lemma A2
in [5] (with km = ln(m)2), there exists σm(ζ) such that γm(ζ) ≥ ln(m)/

√
m.

Therefore,

∞∑
m=1

2 exp

{
− 2ε2mγm(ζ)2

K2
1µ(S)

(
1 + µ(S)

)} ≤ ∞∑
m=1

2 exp

{
− 2ε2 ln(m)2

K2
1µ(S)

(
1 + µ(S)

)}

= 2
∞∑
m=1

m
− 2ε2 ln(m)

K2
1µ(S){1+µ(S)} <∞, (15)

then, from (13), (14) and (15) it follows that,

∞∑
m=1

Pr

(∣∣∣∣∣ 1

m

m∑
j=1

λ̂j(ζ)− E{λ̂1(ζ)}

∣∣∣∣∣ > ε

)
<∞,
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and finally, by Borel-Cantelli’s Lemma,

I =
∣∣∣ 1

m

m∑
j=1

λ̂j(ζ)− E{λ̂1(ζ)}
∣∣∣→ 0, a.s.

In order to prove that II → 0 in (12) observe that, since λ is a con-
tinuous function and S is compact, for ε > 0 there exists m0, such that
for all x ∈ S, supξ∈B(ζ,σm) |λ(ξ) − λ(ζ)| < ε if m > m0. In addition,

Kσm(x)−1
∫
B(ζ,σm)

kσm{ρ(ζ, ξ)}dν(ξ) = 1 then we get,

II = |E{λ̂1(ζ)} − λ(ζ)| =
∣∣∣ 1

Kσm(ζ)

∫
B(ζ,σm)

kσm{ρ(ζ, ξ)}λ(ξ)dν(ξ)−

λ(x)
1

Kσm(ζ)

∫
B(ζ,σm)

kσm{ρ(ζ, ξ)}dν(ξ)
∣∣∣

≤ 1

Kσm(ζ)

∫
B(ζ,σm)

kσm{ρ(ζ, ξ)}|λ(ξ)− λ(ζ)|dν(ξ)

< ε,

which completes the proof.

Proof of Proposition 1. It follows directly from the separability of the space
of compact subsets of S, endowed with the distance dH .

Proof of Proposition 2. We will make use of the following Lemma:

Lemma 2. Under the hypothesis of Proposition 2, for x ∈ S∞ and ε > 0
there exists δ = δ(x, ε) such that

|η(x)− η(y)| < ε/2 (16)

whenever #y = #x and y ∈ BdH (x, r), for all r ≤ δ.

Proof. Observe that, from equality (9), to prove (16) is enough to prove
that for every x = {ξ1, . . . , ξk} ∈ S∞ there exists δ = δ(x) such that for
all y = {θ1, . . . , θk} ∈ BdH (x, δ), |fXi(x) − fXi(y)| < ε for i = 0, 1 (where
BdH (x, δ) denotes the closed ball of radii δ in S∞, with the distance dH).
From identity (1) we have,

|fXi(x)− fXi(y)| = exp
{
ν(S)− µi(S)

}∣∣∣ k∏
i=1

λi(ξi)−
k∏
i=1

λi(θi)
∣∣∣.
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Therefore, since λi is continuous, for all ε > 0 there exists δ = δ(k, ε) such
that |fXi(x)− fXi(y)| < ε and the Lemma is proved.

Now let us prove the Proposition. Since |η| ≤ 1, for r < δ from Lemma
2,∫
BdH (x,r)

|η(y)− η(x)|dPX(y) ≤ ε

2
PX{BdH (x, r)}

+

∫
BdH (x,r)

|η(y)− η(x)|1(#y 6= #x)dPX(y)

≤ ε

2
PX(BdH (x, r))

+ 2

∫
BdH (x,r)

1(#y 6= #x)dPX(y).

Now, if x = (ξ1, . . . , ξsx), taking r < r1(x, sx) = mini 6=j ρ(ξi, ξj)/2 the balls
Bρ(ξi, r) are disjoint. Let us take y ∈ BdH (x, r) with y = {θ1, . . . , θsy},
sy 6= sx. Suppose there exists j = 1, . . . , sy such that for all i = 1, . . . , sx,
dρ(ξi, θj) ≥ r, then dH(x, y) ≥ r that is a contradiction. Therefore for
each j = 1, . . . , sy there exists i = 1, . . . , sx with dρ(ξi, θj) < r and as a
consequence #{y ∩ Bρ(ξi, r)} ≥ 1 for all i = 1, . . . , sx. Since Bρ(ξi, r) are
disjoint we get #y ≥ #x. As a consequence,∫

BdH (x,r)

|η(y)− η(x)|dPX(y) ≤ ε

2
PX{BdH (x, r)}

+ 2PX{BdH (x, r) ∩ {#y > #x}}.

Observe that,

BdH (x, r) ∩ {y : #y > #x} =
{
y : ∃i = 1, . . . , sx with #{Bρ(ξi, r) ∩ y} > 1

}
⊂ ∪sxi=1

{
y : #{Bρ(ξi, r) ∩ y} > 1

}
.

Using that NBρ(xi,r) is a real valued random variable with Poisson distribution
with parameter µ(Bρ(xi, r)) we have

PX [y : #{Bρ(ξi, r) ∩ y} > 1] = PX{NBρ(ξi,r) > 1}

≤ 1

2
µ2{Bρ(ξi, r)}.
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Then, since the balls {Bρ(ξi, r)}i=1,...,sx are mutually disjoint, we get

PX [BdH (x, r) ∩ {#y > #x}] ≤ 1

2

sx∑
i=1

µ2{Bρ(ξi, r)}. (17)

Finally, since ν does not have atoms and λ is locally integrable, by Radon-
Nikodym’s theorem, we have that for all ε > 0 there exists r2 = r2(x, sx)
such that, if r ≤ r2(x, sx),

1

2

sx∑
i=1

µ2{Bρ(ξi, r)} < ε/2.

Taking r ≤ min{r1, r2} we get using (17) that∫
BdH (x,r)

|η(y)− η(x)|dPX(y) ≤ εPX{BdH (x, r)}.

Proof of Proposition 3. The fact that (S∞, d) is separable is a direct conse-
quence of Proposition 1.

Proof of Proposition 4. Let us take a point x ∈ S∞, since S is bounded we
know that #x = k < ∞. Let us denote x = {ξ1, . . . , ξk}, if y ∈ Bd(x, ε0),
(being ε0 as in Definition 7 4.), then d0(x, y) < ε0 and then #y = #x. As a
consequence, for all y ∈ Bd(x, ε0), if we denote y = {θ1, . . . , θk} (where θi is
the nearest point to ξi with respect to ρ),

|f(x)− f(y)| = exp
{
ν(S)− µ1(S)

}∣∣∣ k∏
i=1

λ(ξi)−
k∏
i=1

λ(θi)
∣∣∣.

Since λ is continuous for all ε > 0 there exists δ = δ(k, ε) such that for all
y ∈ Bd(x, δ), |f(x) − f(y)| < ε. Now the continuity of η follows from the
continuity of f and equation (9).

Proof of Proposition 5. We will prove that, if there exists r0 > 0 such that
for all ζ ∈ S, and all r < r0, ∂B(ζ, r) contains two points π1, π2 such that
ρ(π1, π2) = 2r and therefore the space (S∞, d

)
is not finite dimensional.

Without lost of generality let us assume that diam(S) = 1. It is enough to
find, for all n > 0 a point x ∈ S∞ and a positive number t such that Bd(x, t)
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contains n points {y1, . . . , yn} in S∞ fulfilling the condition d(yi, yj) > t
for all i 6= j. Let us take n different points {ξ1, . . . , ξn} ∈ S. We define
x = {ξ1, . . . , ξn} and t = min

{
mini 6=j ρ(ξi, ξj), r0

}
. For all i = 1, . . . , n, there

exists π1
i , π

2
i different points in ∂B(ξi, 2t/3) such that ρ(π1

i , π
2
i ) = 4t/3. We

define

y1 ={π1
1, . . . , π

1
n},

yi ={π1
1, . . . , π

1
i−1, π

2
i , π

1
i+1, . . . , π

1
n} i = 2, . . . , n.

Then d(yi, yj) = ρ(π2
i , π

1
i ) = 4t/3 > t for all i 6= j and yi ∈ Bd(x, t) for

i = 1, . . . , n.

Sketch of proof of Proposition 6. Since U is a continuous function, it is easy
to see that the result in Lemma 2 still holds, and then

|η(x)− η(y)| < ε/2,

whenever #y = #x and y ∈ BdH (x, r), for all r ≤ δ. Now proceeding as in
the proof of Proposition 2, we can write,∫

BdH (x,r)

|η(y)− η(x)|dPX(y) ≤ ε

2
PX{BdH (x, r)}

+ 2PX [BdH (x, r) ∩ {#y > #x}].

Let us recall first that the probability of a configuration of n points in B ⊂ S
is,

Pr[#{X ∩B} = n] =
e−ν(S)

n!

∫
Bn
f(x)dν(x1) . . . dν(xn).

From where it follows that

PX(NBρ(ξi,r) > 1) ≤ f1
2
ν2(Bρ(ξi, r)),

being f1 = maxx∈S f(x). Then the rest of the proofs follows bye using the
same ideas as in Proposition 2.
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