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a b s t r a c t

Good robust estimators can be tuned to combine a high breakdown point and a specified
asymptotic efficiency at a central model. This happens in regression with MM- and
τ -estimators among others. However, the finite-sample efficiency of these estimators can
be much lower than the asymptotic one. To overcome this drawback, an approach is
proposed for parametric models, which is based on a distance between parameters. Given
a robust estimator, the proposed one is obtained by maximizing the likelihood under the
constraint that the distance is less than a given threshold. For the linearmodel with normal
errors, simulations show that the proposed estimator attains a finite-sample efficiency
close to one while improving the robustness of the initial estimator. The same approach
also shows good results in the estimation of multivariate location and scatter.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Huber (1964) and Hampel (1971), one of the main concerns of the research in robust statistics
has been to derive statistical procedures that are simultaneously highly robust andhighly efficient under the assumedmodel.
The efficiency of an estimator is usually measured by the asymptotic efficiency, that is, by the ratio between the asymptotic
variances of the maximum likelihood estimator (henceforth MLE) and of the robust estimator. However if the sample size
n is not very large, this asymptotic efficiency may be quite different from the finite sample size one, defined as the ratio
between themean squared errors (MSE) of the MLE and of the robust estimator, for samples of size n. However, it is obvious
that for practical purposes only the finite sample size efficiency matters.

Consider for example the case of a linearmodelwith normal errors. In this case theMLEof the regression coefficients is the
least squares estimator (LSE). It is well known that this estimator is very sensitive to outliers, and in particular its breakdown
point is zero. To overcome this problem, several estimators combining high asymptotic breakdown point and high efficiency
have been proposed. Yohai (1987) proposed MM-estimators, which have 50% breakdown point and asymptotic efficiency
as close to one as desired. Yohai and Zamar (1988) proposed τ -estimates, which combine the same two properties as
MM-estimators. Gervini and Yohai (2002) proposed regression estimators which simultaneously have 50% breakdown point
and asymptotic efficiency equal to one.

However, as will be seen in Section 2.1, when n is not very large the finite sample efficiency of these estimators may be
much smaller than the asymptotic one. On the other hand, a 50% breakdown point does not guarantee that the estimator is

∗ Correspondence to: Departamento de Matemática, Facultad de Ciencias Exactas, C.C. 172, La Plata 1900, Argentina.
E-mail address: rmaronna@retina.ar (R.A. Maronna).

http://dx.doi.org/10.1016/j.csda.2014.10.015
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.10.015
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.10.015&domain=pdf
mailto:rmaronna@retina.ar
http://dx.doi.org/10.1016/j.csda.2014.10.015


R.A. Maronna, V.J. Yohai / Computational Statistics and Data Analysis 83 (2015) 262–274 263

highly robust. In fact, this only guarantees that given ε < 0.5 there exists K(ε) such that if the data are contaminated with a
fraction of outliers smaller than ε, the norm of the difference between the estimator and the true value is smaller than K(ε).
However K(ε)may be very large, which makes the estimator unstable under outlier contamination of size ε.

Bondell and Stefanski (2013) proposed a regression estimator with maximum breakdown point and high finite-sample
efficiency. However, as it will be seen in Section 2.1, the price for this efficiency is a serious loss of robustness.

An alternative approach to robust estimation is proposed by Olive andHawkins (2010, 2011); see also Zhang et al. (2012).
Their estimators are consistent and have high breakdown point, but since they are not equivariant, comparisons with them
are difficult.

The purpose of this paper is to present estimators which have a high finite sample size efficiency and robustness even for
small n. Besides, these estimators are highly robust using a robustness criterion better than the breakdown point, namely,
the maximumMSE for a given contamination rate ε.

The procedure to define the proposed estimators is very general andmay be applied to any parametric or semiparametric
model. However in this paper the details are given only to estimate the regression coefficients in a linear model and the
multivariate location and scatter of a random vector.

To define the proposed estimators we need an initial robust estimator, not necessarily with high finite sample efficiency.
Then the estimators are defined by maximizing the likelihood function subject to the estimate being sufficiently close
to the initial one. Doing so we can expect that the resulting estimator will have the maximum possible finite sample
efficiency under the assumed model compatible with proximity to the initial robust estimator. This proximity guarantees
the robustness of the new estimator.

The formulation of our proposal is as follows. Let D be a distance or discrepancy measure between densities. As a
general notation, given a family of distributions with observation vector z, parameter vector θ and density f (z, θ), put
d (θ1, θ2) = D(f (z, θ1) , f (z, θ2)). Let zi, i = 1, . . . , n be i.i.d. observations with distribution f (z, θ), and letθ0 be an initial
robust estimator. Call L (z1, . . . , zn; θ) the likelihood function. Then our proposal is to define an estimatorθ as

θ = argmax
θ

L (z1, . . . , zn; θ) with d
θ0, θ


≤ δ (1)

where δ is an adequately chosen constant thatmay depend on n.We shall call this proposal ‘‘distance-constrainedmaximum
likelihood’ (DCML for short).

Several dissimilarity measures, such as the Hellinger distance, may be employed for this purpose. We shall employ as D
the Kullback–Leibler (KL) divergence, because, as it will be seen, it yields easily manageable results. Therefore the d in (1)
will be

dKL (θ1, θ2) =


∞

−∞

log

f (z, θ1)

f (z, θ2)


f (z, θ1) dz.

In Sections 2 and 3we apply this procedure to the linearmodel and to the estimation ofmultivariate location and scatter,
respectively. In Section 4 the proposed estimators are applied to two data sets. Finally Section 5 summarizes the results.

2. Regression

Consider the family of distributions with z = (x, y), with x ∈ Rp and y ∈ R, satisfying the model y = x′β + σu, where
u ∼ N (0, 1) is independent of x ∈ Rp. Here θ = (β, σ ). Letθ0 =

β0,σ0 be an initial robust estimator of regression and
scale. We will actually consider σ as a nuisance parameter, and therefore we have

dKL

β0,β


=

1
σ 2


β − β0

′ C β − β0


(2)

with C = Exx′.
Here we replace σ with its estimatorσ0. The natural estimator of C would beC = n−1X′X, where X is the n × p matrix

with rows x′

i . Since it is not robust, we will employ a robust version thereof. Put for β ∈ Rp, ri (β) = yi − x′β, the residuals
from β. All ‘‘smooth’’ robust regression estimators, like S-estimators (Rousseeuw and Yohai, 1984), MM- and τ -estimators
satisfy the estimating equations of an M-estimator, which can be written as weighted normal equations, namely

n
i=1

W

ri(β)σ0


xiri (β) = 0, (3)

whereW is a ‘‘weight function’’. Then we define, as in Yohai et al. (1991)

Cw =
1

n
i=1
wi

n
i=1

wixix′

i, (4)



264 R.A. Maronna, V.J. Yohai / Computational Statistics and Data Analysis 83 (2015) 262–274

withwi = W

ri(β0)/σ0. Put for any positive definite matrix V

dKL,V β0,β


=
1σ 2
0


β − β0

′ V β − β0

. (5)

It is immediate that (1) with d =dKL,Cw is equivalent to minimizing
n

i=1 ri (β)
2 subject todKL,Cw β0,β


≤ δ. CallβLS

the LSE. Put for a general matrix V:

∆V =dKL,V β0,
βLS


.

Then using Lagrange multipliers, a straightforward calculation shows that in this case we have

β =

βLS if∆Cw ≤ δ
X′X + λCw

−1

X′XβLS + λCwβ0


else,

(6)

where λ is determined from the equation dKL,Cw
β0,β


= δ and Cw is defined in (4). We thus see that β is a linear

combination ofβ0 andβLS.

Another approach is as follows. Defineβ as theminimizer of
n

i=1 ri (β)
2 subject todKL,C β0,β


≤ δ, whereC = n−1X′X.

In this case the solution is explicit:β = tβLS + (1 − t)β0, (7)

where t = min

1,

δ/∆C . Since∆C is not robust, we now replace it with∆Cw , and therefore we choose

t = min


1,


δ

∆Cw

. (8)

The difference between both versions (6) and (7) showed to be negligible for all practical purposes.
It is easy to show that ifβ0 is regression- and affine-equivariant, so isβ.

2.1. Simulations

We now consider the model

yi = x′

iβ + σui, i = 1, . . . , n, (9)

with β ∈ Rp and ui ∼ N (0, 1) independent of xi. The performance of each estimatorβ will be measured by its prediction

squared error, which is equivalent to
β − β

′

Cx

β − β

, where Cx = Exx′. Since all estimators considered are regression-

equivariant, there is no loss of generality in taking β = 0. In all cases, the distributions are normalized so that Cx = I, and

therefore the criterion will be simply
β2 where ∥·∥ stands for the Euclidean norm.

As initial estimatorβ0 for the DCMLwe chose theMMestimatorwith 85% asymptotic efficiency and bisquare ρ-function:

ρbis (d) = 1 − I (d ≤ 1) (1 − d)3 , (10)

where I (·) denotes the indicator function. The reason for choosing 85% efficiency is that the maximum bias of the estimator
is the same as that of the regression S-estimator, as explained in Section 5.9 of Maronna et al. (2006).

An S-estimator was also considered as an initial estimator. However, the asymptotic efficiency of these estimators is
known to be less than 33%, and the finite-sample efficiency is still lower. Therefore to attain acceptable efficiencies for
DCML the values δ should have to be substantially larger than the ones we employed (given in (12) below), which would
entail a serious loss in robustness. These assertions were confirmed by the simulations and therefore MMwas the estimator
of choice.

The S estimator was computed by subsampling followed by the iteratively reweighted least squares (IRWLS) algorithm.
Weemployed amodification suggested byHawkins andOlive (2002), namely to add the LS and L1 estimates to the candidates
obtained by subsampling. The resulting estimator is a local (not necessarily global) minimum of the goal function defining
the S-estimator. However, the resulting estimator is also strongly consistent under the model due to the following facts:
(i) the LS and L1 estimators are strongly consistent under general conditions, (ii) the M-scale of this S estimator is smaller
than those of the LS and L1 estimators, and (iii) the M-scale is a particular case of a τ -scale. Then the consistency of the S
estimator follows from Theorem 4.1 of Yohai and Zamar (1988),

Using an approach similar to that in Section 5.2 ofMaronna andYohai (1993), it is possible to show that – roughly speaking
– by taking a large enough number of subsamples, its breakdown point can be made as close as desired to the one of the
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global minimum, with arbitrarily high probability. It follows from Yohai (1987) that these properties concerning the strong
consistency and breakdown point are inherited by the MM estimator computed by IRWLS starting from the S estimator. It
follows from Theorem 4.1 of Yohai (1987) that the MM estimator so computed (which is a local minimum of the respective
objective function) has the same asymptotic distribution as the global minimum. Finally, the DCML estimator based on the
subsampling-based MM estimator will also inherit these properties.

The initial scaleσ0 is a scale M estimator of the residuals, defined as the solution of

1
n

n
i=1

ρ


yi − x′

i
β0σ0


= γ , (11)

where ρ is the bisquare (10) function and γ = 0.5 (1 − p/n) to attain the maximal breakdown point.
The constant δ in (1) is chosen as

δp,n = 0.3
p
n
. (12)

To justify (12) note that under the model, the distribution of ndKL
β0,

βLS


is approximately that of vz where z ∼ χ2

p

and v is some constant, which implies that EdKL
β0,

βLS


≈ vp/n. Therefore in order to control the efficiency ofβ it seems

reasonable to take δ of the form Cp/n for some C . The value C = 0.3 was arrived at after exploratory simulations aimed at
striking a balance between efficiency and robustness. The behavior of the estimator is not very sensitive to the choice of the
constant C; in fact, one may choose C between, say, 0.25 and 0.35 without serious effects.

2.1.1. Scenarios
Since the results may depend on the distribution of the predictors, we considered five cases, all of them including an

intercept. Here each predictor vector has the form x =

1, x1, . . . , xp

′
, where the xjs are i.i.d. random variables with

distribution F . Note that here the number of parameters is p + 1. In the first three cases F is standard normal, uniform in
[0, 1] (short-tailed) and Student with four degrees of freedom (moderately heavy-tailed). In the other two, the xjs are the
squares of standard normal and uniform variables. The Student distribution was excluded for in this case Cx = Exx′ does not
exist since it involves the fourthmoments of the t4 distribution.We took p = 5, 10 and20, andn = KpwithK = 5, 10 and20.

For each n and p we first computed the finite sample efficiency. Then to assess the estimators’ robustness we
contaminated the data as follows. For a contamination rate ε ∈ (0, 1) letm = [nε]where [·] stands for the integer part. Then
for i ≤ n−m, (xi, yi)were generated according to model (9), and for i > n−mwe put xi = (1, x0, 0, . . . , 0)′ and yi = x0K ,
where the parameter K which regulates the slope of the contamination took on a range of values in order to determine the
worst possible situations. The effect of the contamination would be to drag the first slope towards K . We took x0 = 5 and K
ranging between 0.5 and 2with intervals of 0.1.We employed ε = 0.1 and 0.2. The number of replications wasNrep = 1000.

For a given scenario and estimatorβ callβk, k = 1, . . . ,Nrep the Monte Carlo values. As a measure of performance we

employed the mean squared error: MSE = avek

βk

2where ‘‘ave’’ stands for the average.

2.1.2. Estimators
The estimators considered were: the Least Squares estimator, the regression S-estimator with bisquare scale (S–E), the

MM estimator with bisquare loss function and 85% asymptotic efficiency, the Gervini and Yohai (2002) estimator (G–Y), the
Bondell and Stefanski (2013) estimator (B–S), and the proposed estimator (DCML). Both versions (6) and (7)were considered,
but since the latter yielded in general slightly better results, this is the one that is reported here. The code for B–S was kindly
supplied by the authors.

2.1.3. Efficiency
We deal first with the efficiencies. In order to synthesize the results, for each combination (p, n) we took for each

estimator the minimum efficiencies under normal errors over the five distributions, with respect to the MLE. The results
are displayed in Table 1.

We note the following:
• The efficiency of S–E is low, as can be expected.
• When n/p is ‘‘small’’, the worst finite-sample efficiency of MM can be much lower than its nominal asymptotic one of

85%. The worst cases with n/p = 5 corresponded to normal xi with a quadratic term.
• The worst efficiency of G–Y is also low for small n/p.
• DCML outperforms both its initial estimator MM and G–Y.
• B–S shows the highest efficiencies in all cases.

Table 2 shows the efficiencies of the estimators with respect to the MLE for model (9) with the Student errors ui with 3
and 5 degrees of freedom (’’ d.f.’’).

Here MM, G–Y, B–S and DCML exhibit high efficiencies, and none clearly dominates the others.
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Table 1
Minimum efficiencies of estimators for normal errors over all x distributions.

p n S–E MM G–Y B–S DCML

5 25 0.315 0.666 0.668 0.959 0.857
50 0.282 0.786 0.816 0.993 0.948

100 0.279 0.822 0.875 0.997 0.983
10 50 0.290 0.699 0.718 0.991 0.922

100 0.293 0.785 0.838 0.998 0.981
200 0.266 0.821 0.904 0.999 0.992

20 100 0.305 0.716 0.784 0.997 0.951
200 0.267 0.789 0.859 0.999 0.987
400 0.260 0.837 0.928 0.999 0.998

Table 2
Efficiencies of estimators for the Student errors with 3 and 5 degrees of freedom, and normal
predictors.

df p n S–E MM G–Y B–S DCML

3 5 25 0.469 0.837 0.806 0.886 0.899
50 0.458 0.929 0.876 0.890 0.924

100 0.491 0.958 0.883 0.886 0.918
10 50 0.421 0.860 0.842 0.893 0.903

100 0.437 0.939 0.878 0.905 0.926
200 0.463 0.954 0.880 0.895 0.911

20 100 0.432 0.891 0.870 0.911 0.957
200 0.434 0.942 0.893 0.899 0.912
400 0.469 0.952 0.881 0.878 0.894

5 5 25 0.380 0.766 0.750 0.943 0.901
50 0.417 0.933 0.899 0.923 0.955

100 0.421 0.936 0.891 0.933 0.955
10 50 0.376 0.822 0.797 0.952 0.960

100 0.378 0.913 0.904 0.951 0.952
200 0.396 0.942 0.924 0.943 0.949

20 100 0.393 0.848 0.839 0.953 0.979
200 0.349 0.900 0.883 0.927 0.947
400 0.371 0.923 0.898 0.936 0.935

Fig. 1. MSEs of regression estimators as a function of outlier size K for normal x, p = 10, n = 200 and ε = 0.1.

2.1.4. Robustness
We begin with the results of a typical case, Fig. 1 displays the MSEs of the estimators for p = 10, n = 200, normal x, and

ε = 0.1, for different values of the outlier size K .
In the upper panel it is seen that G–Y and DCML have similar behaviors, and that their maximumMSEs are smaller than

that of MM. The lower panel shows that the MSEs of S–E and B–S are generally larger than that of DCML, the one of B–S
being remarkably high.

Since all cases show approximately this same pattern, we display only the maximum MSEs over K for normal x. Table 3
shows the results.
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Table 3
Maximummean squared errors of estimators with normal predictors for contaminated data.

ε p n S–E MM G–Y B–S DCML

0.1 5 25 1.80 1.11 1.08 2.09 0.97
50 1.25 0.77 0.79 1.71 0.66

100 0.93 0.56 0.48 1.61 0.45
10 50 3.04 1.79 1.68 2.89 1.40

100 1.59 0.78 0.70 1.83 0.69
200 1.16 0.62 0.56 1.69 0.51

20 100 2.28 1.35 1.32 3.37 1.12
200 1.36 0.70 0.73 2.28 0.57
400 0.94 0.50 0.44 1.92 0.44

0.2 5 25 13.26 9.53 9.43 28.49 8.20
50 5.83 4.27 4.09 11.37 3.70

100 3.51 2.57 2.42 7.94 2.23
10 50 15.12 13.54 13.27 26.57 10.19

100 6.75 4.57 4.51 13.03 4.14
200 3.96 2.81 2.63 9.67 2.50

20 100 7.14 5.86 5.91 31.23 4.86
200 3.92 3.11 2.99 13.45 2.67
400 3.03 2.29 2.08 10.85 2.17

Some comments are in order:

• The MSEs of G–Y and DCML are similar, the latter being lower in most cases. Both outperform MM, which in turn
outperforms S–E.

• The price for the high efficiency of B–S is a high contamination bias.
• When ε = 0.2 and n/p = 5 all estimators have a remarkably high MSE.

As a closing comment, the joint consideration of Tables 1–3 suggests that DCML shows the best balance between effi-
ciency and robustness.

2.2. Asymptotic results

Assume y = x′β+u, where u is independent of x and has distribution F . Call σ0 to be the limit value of theM-scale applied
to u and C = E(xx′). It is well known that under general conditions the following expansions hold for the MM-estimatorβ0
and the LS estimatorβLS.

n1/2(β0 − β) =
σ0

n1/2Eψ ′(ui/σ0)

n
i=1

C−1ψ


ui

σ0


xi + o


1

n1/2


,

and

n1/2(βLS − β) =
1

n1/2

n
i=1

C−1uixi + o


1
n1/2


It then follows from the Central Limit Theorem that the joint asymptotic distribution JC,V of n1/2(βLS − β,β − β0) is

JC,V = N2p (0,V ⊗ C−1)where V = [Vij] is a symmetric 2 × 2 matrix with elements

V11 = E(u2), V12 = V21 = σ0
E (uψ (u/σ0))
E

ψ/ (u/σ0)

 , V22 = σ 2
0
E

ψ2 (u/σ0)


E

ψ/ (u/σ0)

 . (13)

Let (z1, z2)′ ∈ R2p be a random vector with distribution JC,V and define

z3 = tz1 + (1 − t)z2 with t = min


1,


0.3p

(z2 − z1)′C(z2 − z1)


. (14)

Then the distribution HC,V of z3 is the same as the asymptotic distribution of n1/2(β − β). Note that since z3 is a nonlinear
function of (z1, z2) ,H is not necessarily normal. The following theorem will be useful to determine the distribution of
n1/2b′(β−β) for any b ∈ Rp

Theorem 1. If C = I, then the distribution of v = d′z3 is the same for any d ∈ Rp with ∥d∥ = 1.
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Table 4
Asymptotic efficiency of the proposed estimator for four error distributions.

Efficiency of DCML with respect to
LS MM MLE-Student
p = 5 10 20 5 10 20 5 10 20

Normal 0.998 0.9997 0.9999 1.18 1.18 1.18
t3 1.84 1.84 1.84 0.97 0.97 0.97 0.92 0.92 0.92
t5 1.19 1.19 1.19 1.01 1.01 1.01 0.95 0.95 0.95
Uniform 1.00 1.00 1.00 1.07 1.07 1.07

Table 5
Probability of equality of DCML and LS estimators.

p = 5 10 20

Normal 0.85 0.91 0.96
t3 0.02 0.001 0.00
t5 0.14 0.05 0.01
uniform 1.00 1.00 1.00

Proof. Let D be an orthogonal matrix with first row equal to d′ and let vj = Dzj, 1 ≤ j ≤ 3, where the zjs are defined above.
It is easy to check that (v1, v2) has the same distribution as (z1, z2), and that v3 satisfies

v3 = tv1 + (1 − t)v2.

Besides, we have

(z2 − z1)′C(z2 − z1) = (v2 − v1)′C(v2 − v1)

and therefore

t = min

1,

0.3p
(v2 − v1)′C(v2 − v1)


.

Then v3 has the same distribution as z3, and therefore v3,1 = d′z3 has the same distribution as z3,1 independently of d. �

Call GV (z) the distribution function of v3,1. Suppose now that we want the distribution ofw = b′z3 for an arbitrary C. It
is easy to see that z∗

3 = C−1/2z3 has distribution HI,V and therefore

w = b′C1/2z∗

3 = ∥C1/2b∥d′z∗

3

where ∥d∥ = 1. Then the distribution function ofw is GV(w/∥C1/2b∥).

To obtain the distribution GV we can generate a very large sample of (z1, z2) (say of size 106) from HI,V and use the
transformation (14) to generate a sample of z3 with distribution GV. In this way we can obtain estimates of the quantiles of
GV that can be used for asymptotic inference on any linear combination of the proposed estimatorβ. To this end, the matrix
V can be estimated through (13), replacing F by the residual empirical distribution.

This large-sample Monte Carlo can also be used to compute the asymptotic efficiencies of β for different error
distributions F .We compute those ofβwith respect to the LS estimator (effLS) andwith respect to theMM-estimator (effMM),
defined by

effLS =
E(z′

1Cz1)
E(z′

3Cz3)
, effMM =

E(z′

2Cz2)
E(z′

3Cz3)
.

Since z1, z2 and z3 are spheric when C = I, these efficiencies do not depend on C. We compute these efficiencies when F is
normal, uniform, and Student’s t with 3 and 5 degrees of freedom. For the latter we also compute the efficiency with respect
to the MLE for the Student distribution with the respective degrees of freedom. For pwe chose the values 5, 10 and 20 The
results are shown in Table 4.

Also, using the same sample we also computed the probabilities that β coincides with βLS. The results are shown in
Table 5.

Combining both tables we see that:

• For normal F , DCML has almost full efficiency with respect to LS. The fact that its efficiency with respect to MM is
1.18 ≈ 1/0.85 (which is the efficiency of MM) indicates that DCML behaves almost like LS.

• For uniform F DCML always coincides with LS.
• For the Student F the behavior of DCML is more similar to that of MM. It also has a high efficiency with respect to the

MLE.
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Table 6
Mean interval lengths and covering probabilities for asymptotic intervals with level 0.95, averaged over the
six parameters.

n Normal t3
Length Coverage Length Coverage

20 0.930 86.0% 1.204 86.1%
50 0.562 92.6% 0.743 92.7%

100 0.392 93.3% 0.518 93.7%
200 0.280 94.6% 0.364 94.3%
500 0.176 94.8% 0.228 95.2%

Finally, to assess the behavior of the asymptotic approximation for finite n, we computed the average length and covering
probabilities for the asymptotic intervalswith nominal 0.95 confidence level, for amodelwith p = 5 variables plus intercept,
and errors with the normal and Student distributions with 3 degrees of freedom. The values were averaged over the six
parameters, andwere computed through a simulationwith 3000 replicates. To determine the confidence interval for a given
data sample we took m = 1000 samples from the asymptotic distribution of the DCML estimator, where each element of
the sample covariance matrix was replaced by an estimate. These estimators were obtained by replacing each theoretical
expectation by the empirical one with the errors replaced by residuals, and the scales replaced by their estimators. Then
for each coordinate j, 1 ≤ j ≤ p we computed the α and 1 − α quantiles, sayQα andQ1−α , of the 1000 generated samples.
Then the confidence interval for the regression coefficient βj is [βi −Qα,βi +Qα], whereβj is the DCML estimator of βj.

Table 6 shows the results. It is seen that the approximation is reasonably good for n ≥ 50. The results are similar to those
obtained by Bondell and Stefanski (2013, Table 7).

2.3. Breakdown point

It will be shown that for the estimators employed in this paper, the finite-sample replacement breakdown point of the
DCML estimatorβ is that of the initial estimatorβ0.

Consider a data set Z = {zi, i = 1, . . . , n} with zi = (xi, yi). Letm be such that ε = m/n is less than the breakdown point
ε∗ ofβ0. Let S (the ‘‘outlier set’’) be any set of size m contained in {1, . . . , n}. Let Z∗

= {z∗

i , i = 1, . . . , n} where z∗

i = zi for
i ∉ S and is arbitrary for i ∈ S. We have to prove thatβ is bounded as a function of Z∗. The following assumptions will be
needed.

(A) The initial scaleσ0 is a scale M estimator given by (11) where ρ is a ‘‘bounded ρ-function’’ in the sense of Maronna et al.
(2006, p. 31), i.e., ρ ∈ [0, 1], ρ (0) = 0, and ρ (t) it is a nondecreasing function of |t|, which is strictly increasing for
t > 0 such that ρ (t) < 1.

(B) The breakdown point ofσ0 is ≥ ε∗.
(C) Theweight functionW (t) in (3) is a nondecreasing function of |t|which is ‘‘matched’’ to ρ in the sense thatW (t) = 0 iff

ρ (t) = 1. This is the case in the situations considered here, where ρ is the bisquare (10) function andW (t) = ρ ′ (t) /t.
(D) Finally we assume

n

1 − ε∗

− γ


≥ p (15)

with γ in (11).

Call h the maximum number of xis in a subspace. The maximal breakdown point for β0 and σ0 is: ε∗
max = 0.5(n −

h − 1)/n. Here we have γ = 0.5(n − p)/n ≤ ε∗
max since h ≥ p − 1, which implies (15) since ε ≤ ε∗

max.

We now proceed to the proof. Recall thatβ satisfies
1σ 2
0

β −β0

′

Cw
β −β0


≤ δ,

where Cw is defined in (4). Recall thatβ0,σ0 and Cw depend on Z∗. Since ε < ε∗ there exist constants a, b, c such that for
all S and Z∗:

0 < a ≤ σ0 ≤ b,
β0

 ≤ c.

Also, since ε < ε∗ there exists η ∈ (0, 1) such that

n

1 − ε −

γ

1 − η


≥ p. (16)

Let t0 > 0 be such that ρ (t0) = 1 − η, and putw0 = W (t0). Then by (C) |t| ≤ t0 impliesW (t) ≥ w0 > 0. Let

N = N

Z∗


= #


i ∉ S : ρ


yi − x′

i
β0σ0


≤ 1 − η


.
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Then it follows from (11) that

nδ ≥


i∉S

ρ


yi − x′

i
β0σ0


≥ (n − m − N) (1 − η) ,

and therefore by (16), since ε < ε∗

N

Z∗


≥ n − nε −
nγ

1 − η
≥ p ∀ Z∗.

Call A the set of all subsets of {1, . . . , n} of size h + 1. Put

λ0 = min
A∈A

λmin


i∈A

xix′

i


,

where λmin denotes the smallest eigenvalue of a matrix. Then λ0 > 0. For any vector a and all Z∗ we have

a′Cwa ≥ a′


i∉S

W


yi − x′

i
β0σ0

xix′

i


a ≥ w0λ0 ∥a∥2 ,

and therefore we have for all Z∗

δσ 2
0 ≥

β −β0

′

Cw
β −β0


≥ w0λ0

β −β0

2 ,
which, in view of the boundedness ofβ0 andσ0, implies thatβ is bounded.

3. Multivariate estimation

Consider observations xi, i = 1, . . . , nwith a normal p-variate distribution Np (µ,6). Let
µ0,60


be a robust estimator

of multivariate location and scatter. We shall treat µ and 6 separately.
For the estimation of 6 we have, considering µ as a nuisance parameter:

dKL (60,6) = log |6| − log |60| + trace

6−160


− p, (17)

where | · | denotes the determinant. Our procedure amounts to

6 = argmin
6


n log |6| +

n
i=1

(xi − µ)6−1 (xi − µ)


(18)

with dKL
60,6


≤ δ.

Call 6ML the MLE of 6, i.e. the sample covariance matrix. Put d0 = dKL
60,6ML


. Then using Lagrange multipliers, a

straightforward calculation shows that6 = (1 − t)6ML + t60, (19)
where t = 0 if d0 ≤ δ, and is otherwise determined from the equation dKL

60,6


= δ, which is easily derived from
(17)–(19).

We now turn to µ. We have

dKL

µ0,µ


=

µ − µ0

′
Σ−1 µ − µ0


.

The estimator is then defined by
n

i=1

(xi − µ)6−1 (xi − µ) = min (20)

with dKL

µ0,µ


≤ δ. Let x be the sample mean, and define

d0 =

x −µ0

′ Σ−1
0


x −µ0


.

Then a straightforward calculation shows thatµ = tx + (1 − t)µ0 (21)
with

t = min


1,


δ

d0


.

It is easy to show that if the initial estimators are affine-equivariant, so are the resulting ones.

Remark. Unlike the regression and location cases, dKL (60,6) is not symmetric in its arguments. Here we have chosen the
form (17) because it yields the simple intuitive result (19), while the alternative order yields a more complicated result.
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Table 7
Constants for the approximate computation of δ.

a b c

6 1.02 0.82 0.18
µ 0.55 0.88 −0.30

3.1. Simulations

As initial estimator we employ an S estimator (Davies, 1987) with bisquare scale, computed as described at the end of
page 199 of Maronna et al. (2006). For the reasons given in Section 2.1, in order to ensure consistency the sample mean and
covariance matrix were included as candidates for location and scale respectively.

This study includes p = 2, 5 and 10. The reason larger values of p are not included is the following. Rocke (1996) found
out that the efficiency of S estimators with a monotone weight function increases with p, and therefore there is little to be
gained with DCML when p is large.

We now define the S estimator. For (µ,6) denote the (squared) Mahalanobis distance of x as

d (x,µ,6) = (x − µ)′ 6−1 (x − µ) .

Define a scale M estimatorσ = σ (µ,6) as the solution of

1
n

n
i=1

ρ


d (x,µ,6)1/2

σ


= γ ,

where ρ is the bisquare ρ-function (10), and γ = 0.5 (1 − p/n)which ensures maximal breakdown point. The S estimator
is defined byµ0,6 = argmin

σ (t,V) : t ∈ Rp, |V| = 1


Since |6| = 1, we have to scale 6 to make it a consistent estimator of the covariance matrix under normality. Put
di = d


xi,µ0,6 and call χ2

p the chi-squared distribution with p degrees of freedom. Then define

60 =
mediani{di}
median(χ2

p )
6.

The constants δ in (18) and (20) were chosen as

δ = an−bpl, (22)

with (a, b, c) given in Table 7.
Themotivation for this choice is as follows. Itwas considered as reasonable to choose for each (p, n) , δ as someα-quantile

of dKL under the nominal model, i.e. the multivariate normal distribution. Exploratory simulations suggested α between 0.4
and 0.6. The quantiles were computed by simulation for p between 2 and 10 and n between 5p and 500. Then for each α the
α-quantile was fitted by regression as a function of n and p of the form (22). Finally, after the simulation was completed, it
was decided that α = 0.4 yielded the best results. As was the case in regression, the results are not overly sensitive to the
choice of α.

The values of c indicate that when p increases, the quantiles for 6 increase very slowly, and those for µ decrease. This
fact may seem counter-intuitive, but it is a consequence of the increasing efficiency of the S estimator: when p increases,
the S estimator becomes ‘‘closer’’ to the classical one, which makes dKL smaller.

For each n and pwe generate Nrep = 1000 samples of size n from Np (0, I). For a contamination rate ε, the firstm = [nε]
elements (rows) of X are replaced by (K , 0, . . . , 0) where K ranges between 1 and 10. For each sample three estimators
were computed: the sample mean and covariance matrix, the S estimator, and the DCML estimator given by (19)–(21).

For each scenario, each estimator is evaluated by its ‘‘loss’’ defined as ∥µ∥
2 for location and as dKL

6, I = trace
6 −

log |6|−p for scatter, and the resultswere summarized by the respectivemean losses. Table 8 shows the efficiencies, defined
as the ratio of the mean losses of the classical and the robust estimator.

It is seen that DCML is able to substantially increase the efficiency of S–E, especially for p = 2. The efficiency for location
is much higher than for scatter. The fact that the efficiency of S–E increases with p is also clear. Actually, for p = 15 the
efficiency of S–E is ≥ 0.96.

Table 9 shows the maximum mean losses for contamination rate ε = 0.1. It is seen that in general the price for the
increase in efficiency is at worst a small increase of the maximum loss and at best a decrease thereof. Fig. 2 compares the
losses of S–E and DCML as a function of the outlier size K for ε = 0.1.
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Table 8
Efficiencies of estimators.

p n 6 µ

S–E DCML S–E DCML

2 10 0.417 0.645 0.714 0.893
20 0.428 0.703 0.682 0.904
40 0.426 0.779 0.608 0.881

5 25 0.783 0.933 0.903 0.980
50 0.794 0.972 0.890 0.985

100 0.791 0.995 0.871 0.983
10 50 0.947 0.996 0.961 0.997

100 0.939 0.997 0.964 0.996
200 0.932 0.998 0.960 0.999

Table 9
Simulation: maximummean losses of estimators.

ε p n 6 µ

S–E DCML S–E DCML

0.1 2 10 1.02 1.15 0.37 0.39
20 0.59 0.62 0.23 0.24
40 0.31 0.34 0.12 0.14

5 25 1.15 1.17 0.29 0.31
50 0.73 0.84 0.22 0.25

100 0.46 0.52 0.13 0.15
10 50 3.26 3.57 0.49 0.58

100 2.04 2.25 0.33 0.35
200 1.56 1.92 0.24 0.31

0.2 2 10 1.59 1.66 0.57 0.58
20 1.03 0.80 0.37 0.41
40 0.77 0.57 0.32 0.34

5 25 4.01 3.78 1.08 1.33
50 2.76 3.70 0.76 0.98

100 2.43 2.30 0.66 0.81
10 50 12.51 12.32 2.74 3.19

100 7.15 7.17 1.80 2.16
200 6.29 6.26 1.60 1.93

Fig. 2. Losses of scatter matrices for p = 10, n = 100 and 10% contamination, as a function of outlier size.

3.2. Breakdown point

It is easy to show that the replacement breakdown point of the DCML estimators is that of the initial ones. We give the
details for6, the case ofµ being similar. Consider a data set X = {xi i = 1, . . . , n}. Let m be such that ε = m/n is less than
the breakdown point ε∗ of the initial estimator60. Let X∗ be a data set that coincides with X except for m elements which
are arbitrary. We have to prove that, as a function of X∗, the largest eigenvalue λmax of6 is bounded, and the smallest one
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Table 10
Stack loss data: prediction RMSEs of estimators for ‘‘good’’ data.

Computed with LS S–E MM G–Y B–S DCML

Good data 1.095 1.416 1.126 1.095 1.095 1.095
Whole data 1.921 1.143 1.100 1.322 1.484 1.164

Table 11
Philips data: Kullback–Leibler distances between estimators and ‘‘true values’’.

Computed with MLE S–E DCML

Scatter Good data 0.381 0.286
Whole data 6.282 0.381 0.322

Location Good data 0.051 0.039
Whole data 1.067 0.051 0.044

λmin is bounded away from zero. We know that this property holds for60. Since by (17)

log |6| − log |60| + trace
6−160


− p ≤ δ,

it follows from the ‘‘trace’’ term that λmin cannot tend to zero, and then it follows from the ‘‘log’’ term that λmax cannot tend
to infinity. �

4. Real data

In this section we apply the proposed estimators to two published data sets. In both cases, the tuning parameters for
DCML were chosen in the same way as in the simulations.

4.1. Regression

We consider the well-known stack loss data set with n = 21 and p = 3 plus intercept. Lacking a ‘‘true model’’ we have
to employ alternative criteria for robustness and efficiency.

There seems to be a general agreement to consider observations 1, 3, 4 and 21 as atypical; see Rousseeuw and Leroy
(1987). Call ‘‘good data’’ the data set without {1, 3, 4, 21}. The estimators were first computed using the good data, and the
root mean squared prediction errors (RMSE: square root of the mean of the squared residuals) were computed for the same
data. The comparison with LS was employed as a surrogate criterion for efficiency. For a surrogate criterion for robustness,
the estimators were then computed for the whole data set, and the RMSE again computed only for the good data. Table 10
shows the results.

The first row shows that G–Y, B–S and DCML are here ‘‘fully efficient’’, S–E is rather inefficient, and MM has a high
efficiency. The second row shows S–E, MM and DCML as most robust, followed by G–Y, and B–S as the less robust one.

The behavior of S–E is puzzling. It gives zeroweights to some ‘‘good’’ observations. The estimatorwas recomputed several
times to rule out the effect of the subsampling, but the results remained the same.

4.2. Multivariate estimation

Here we choose the Philips Mecoma data, employed in Problem 1 in Rousseeuw and Van Driessen (1999), with n = 677
and p = 9. Plotting the Mahalanobis distances from the S estimator shows a number of clear outliers, the sequence with
indexes between 491 and 565 being themost outstanding ones.Wedefined as ‘‘bad data’’ the observationswithMahalanobis
distances larger than 60, which yielded 80 observations. Lacking a criterion similar to prediction error like in the former
example, we defined as the ‘‘true parameters’’ the MLE (mean and covariance matrix) applied to the ‘‘good’’ data, which will
be called µgood and 6good, respectively.

We then computed, as above, the estimators based on the ‘‘good’’ data and their Kullback–Leibler distances to the ‘‘truth’’;
and then did the same for the estimators based on the whole data. Namely, we computed

d = trace

6−1

goodV

− p − log |6−1

goodV|

for each scatter estimator V, and

d =

t − µgood

′ C−1
good


t − µgood


for each location estimator t. DCML was computed as in (12). Table 11 shows the results.

It is seen that here DCML outperforms S–E in all cases.
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5. Conclusions

We propose an approach to improve on the finite-sample efficiency of robust estimators with a very small damage to
their robustness. The approach is developed for linear regression and for the estimation of multivariate location and scatter.
In both cases our proposal clearly outperforms its competitors. In the regression case, an asymptotic theory is developed,
which can be employed for approximate inference.
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