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Abstract

This paper considers the problem of multivariate location and scatter matrix estima-
tion when the data contain cellwise and casewise outliers. A two-step approach was
proposed to deal with this problem: first, apply a univariate filter to remove cellwise
outliers and second, apply a generalized S-estimator to downweight casewise outliers.
This paper improves this proposal in three main directions. First, a consistent bi-
variate filter is introduced to be used in combination with the univariate filter in the
first step. Second, a new fast subsampling procedure is proposed to generate starting
points for the generalized S-estimator in the second step. Third, a non-monotonic
weight function for the generalized S-estimator is proposed to better deal with case-
wise outliers in high dimension. A simulation study and real data example show that,
unlike the original two-step procedure, the modified two-step approach performs and
scales well for high dimension. Moreover, the modified procedure outperforms the
original one and other state-of-the-art robust procedures under cellwise and casewise
data contamination.
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1. Introduction1

In this paper, we address the problem of robust estimation of multivariate location2

and scatter matrix under cellwise and casewise contamination.3
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Traditional robust estimators assume a casewise contamination model for the data4

where the majority of the cases are assumed to be free of contamination. Any case that5

deviates from the model distribution is then flagged as an outlier. In situations where6

only a small number of cases are contaminated this approach works well. However,7

if a small fraction of cells in a data table are contaminated but in such a way that a8

large fraction of cases are affected, then traditional robust estimators may fail. This9

problem, referred to as propagation of cellwise outliers, has been discussed by Alqallaf10

et al. (2009). Moreover, as pointed out by Agostinelli et al. (2015b) both types of11

data contamination, casewise and cellwise, may occur together.12

Naturally, when data contain both cellwise and casewise outliers, the problem13

becomes more difficult. To address this problem, Agostinelli et al. (2015b) proposed14

a two-step procedure: first, apply a univariate filter (UF) to the data matrix X and15

set the flagged cells to missing values, NA’s; and second, apply the generalized S-16

estimator (GSE) of Danilov et al. (2012) to the incomplete data set. Here, we call17

this two-step procedure UF-GSE. It was shown in Agostinelli et al. (2015b) that UF-18

GSE is simultaneously robust against cellwise and casewise outliers. However, this19

procedure has three limitations, which are addressed in this paper:20

• The univariate filter does not handle well moderate-size cellwise outliers.21

• The GSE procedure used in the second step loses robustness against casewise22

outliers for p > 10.23

• The initial estimator EMVE used in the second step does not scale well to higher24

dimensions (p > 10).25

Rousseeuw and Van den Bossche (2015) pointed out that to filter the variables26

based solely on their value may be too limiting as no correlation with other variables is27

taken into account. A not-so-large contaminated cell that passes the univariate filter28

could be flagged when viewed together with other correlated components, especially29

for highly correlated data. To overcome this deficiency, we introduce a consistent30

bivariate filter and use it in combination with UF and a new filter developed by31

Rousseeuw and Van den Bossche (2016) in the first step of the two-step procedure.32

Maronna (2015) made a remark that UF-GSE, which uses a fixed loss function ρ in33

the second step, cannot handle well high-dimensional casewise outliers. S-estimators34

with a fixed loss function exhibit an increased Gaussian efficiency when p increases,35

but at the same time lose their robustness (see Rocke, 1996). Such curse of dimen-36

sionality has also been observed for UF-GSE in our simulation study. To overcome37

this deficiency, we constructed a new robust estimator called Generalized Rocke S-38

estimator or GRE to replace GSE in the second step.39

The first step of filtering is generally fast, but the second step is slow due to40

the computation of the extended minimum volume ellipsoid (EMVE), used as initial41

estimate by the generalized S-estimator. The standard way to compute EMVE is by42

subsampling, which requires an impractically large number of subsamples when p is43
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large, making the computation extremely slow. To reduce the high computational44

cost of the two-step approach in high dimension, we introduce a new subsampling45

procedure based on clustering. The initial estimator computed in this way is called46

EMVE-C.47

The rest of the paper is organized as follows. In Section 2, we describe some48

existing filters and introduce a new consistent bivariate filter. By consistency, we49

mean that, when n tend to infinity and the data do not contain outliers, the proportion50

of data points flagged by the filter tends to zero. We also show in Section 2 how the51

bivariate filter can be used in combination with the other filters in the first step. In52

Section 3, we introduce the GRE to be used in place of GSE in the second step. In53

Section 4, we discuss the computational issues faced by the initial estimator, EMVE,54

and introduce a new cluster-based-subsampling procedure called EMVE-C. In Section55

5 and 6, we compare the original and modified two-step approaches with several state-56

of-the-art robust procedures in an extensive simulation study. We also give there a57

real data example. Finally, we conclude in Section 7. The Appendix contains all the58

proofs. We also give a separate document called “Supplementary Material”, which59

contains further details, simulation results, and other related material.60

2. Univariate and Bivariate Filters61

Consider a random sample of X = (XXX1, . . . ,XXXn)t, whereXXX i are first generated from62

a central parametric distribution, H0, and then some cells, that is, some entries in63

XXX i = (Xi1, . . . , Xip)
t , may be independently contaminated. A filter F is a procedure64

that flags cells in a data table and replaces them by NA’s. Let fn be the fraction of65

cells in the data table flagged by the filter. A consistent filter for a given distribution66

H0 is one that asymptotically will not flag any cell if the data come from H0. That67

is, limn→∞fn = 0 a.s. [H0].68

Remark 1. Given a collection of filters F1, ...,Fk they can be combined in several69

ways: (i) they can be united to form a new filter, FU = F1 ∪ · · · ∪ Fk, so that the70

resulting filter, FU , will flag all the cells flagged by at least one of them; (ii) they can71

be intersected, so that the resulting filter, FI = F1 ∩ · · · ∩ Fk, will only flag the cells72

identified by all of them; and (iii) a filter, F , can be conditioned to yield a new filter,73

FC, so that FC will only filter the cells filtered by F which satisfy a given condition74

C.75

Remark 2. It is clear that FU is a consistent filter provided all the filters Fi, i =76

1, . . . , k are consistent filters. On the other hand, FI is a consistent filter provided at77

least one of the filters Fi, i = 1, . . . , k is a consistent filter. Finally, it is also clear78

that if F is a consistent filter, so is FC.79

We describe now three basic filters, which will be later combined to obtain a80

powerful consistent filter for use in the first step of our two-step procedure.81
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2.1. A Consistent Univariate Filter (UF)82

This is the initial filter introduced in Agostinelli et al. (2015b). Let X1, . . . , Xn83

be a random (univariate) sample of observations. Consider a pair of initial location84

and dispersion estimators, T0n and S0n, such as the median and median absolute85

deviation (MAD) as adopted in this paper. Denote the standardized sample by Zi =86

(Xi − T0n)/S0n. Let F be a chosen reference distribution for Zi. Here, we use the87

standard normal distribution, F = Φ.88

Let F+
n be the empirical distribution function for the absolute standardized value,89

that is,90

F+
n (t) =

1

n

n∑
i=1

I(|Zi| ≤ t).91

The proportion of flagged outliers is defined by92

dn = sup
t≥η

{
F+(t)− F+

n (t)
}+

, (1)93

where {a}+ represents the positive part of a, F+ is the distribution of |Z| when94

Z ∼ F , and η = (F+)−1(α) is a large quantile of F+. We use α = 0.95 for univariate95

filtering as the aim is to detect large outliers, but other choices could be considered.96

Then, we flag bndnc observations with the largest absolute standardized value, |Zi|,97

as cellwise outliers and replace them by NA’s.98

The following proposition states this is a consistent filter. That is, even when99

the actual distribution is unknown, asymptotically, the univariate filter will not flag100

outliers when the tail of the chosen reference distribution is heavier than (or equal101

to) the tail of the actual distribution.102

Proposition 1 (Agostinelli et al., 2015b). Consider a random variable X ∼ F0 with103

F0 continuous. Also, consider a pair of location and dispersion estimators T0n and S0n104

such that T0n → µ0 ∈ R and S0n → σ0 > 0 a.s. [F0]. Let F+
0 (t) = PF0(|X−µ0σ0

| ≤ t).105

If the reference distribution F+ satisfies the inequality106

max
t≥η

{
F+(t)− F+

0 (t)
}
≤ 0, (2)107

then108
n0

n
→ 0 a.s.,109

where110

n0 = bndnc.111

We define the global univariate filter, UF, as the union of all the consistent filters112

described above, applied to each variable in X. By Remarks 1 and 2, it is clear that113

UF is a consistent filter.114
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2.2. A Consistent Bivariate Filter (BF)115

Let (XXX1, . . . ,XXXn), with XXX i = (Xi1, Xi2)t, be a random sample of bivariate obser-116

vations. Consider also a pair of initial location and scatter estimators,117

TTT 0n =

(
T0n,1

T0n,2

)
and CCC0n =

(
C0n,11 C0n,12

C0n,21 C0n,22

)
.118

Similar to the univariate case we use the coordinate-wise median and the bivariate119

Gnanadesikan-Kettenring estimator with MAD scale (Gnanadesikan and Kettenring,120

1972) for TTT 0n and CCC0n, respectively. More precisely, the initial scatter estimators are121

defined by122

C0n,jk =
1

4

(
MAD({Xij +Xik})2 −MAD({Xij −Xik})2

)
,123

where MAD({Yi}) denotes the MAD of Y1, . . . , Yn. Note that C0n,jj = MAD({Xj})2,124

which agrees with our choice of the coordinate-wise dispersion estimators. Now,125

denote the pairwise (squared) Mahalanobis distances by Di = (XXX i − TTT 0n)tCCC−1
0n (XXX i −126

TTT 0n). Let Gn be the empirical distribution for pairwise Mahalanobis distances,127

Gn(t) =
1

n

n∑
i=1

I(Di ≤ t).128

Finally, we filter outlying points XXX i by comparing Gn(t) with G(t), where G is a129

chosen reference distribution. In this paper, we use the chi-squared distribution with130

two degrees of freedom, G = χ2
2. The proportion of flagged bivariate outliers is defined131

by132

dn = sup
t≥η
{G(t)−Gn(t)}+ . (3)133

Here, η = G−1(α), and we use α = 0.85 for bivariate filtering since we now aim for134

moderate outliers, but other choices of α can be considered. Then, we flag bndnc135

observations with the largest pairwise Mahalanobis distances as outlying bivariate136

points. Finally, the following proposition states the consistency property of the bi-137

variate filter.138

Proposition 2. Consider a random vector XXX = (X1, X2)t ∼ H0. Also, consider a139

pair of bivariate location and scatter estimators TTT 0n and CCC0n such that TTT 0n → µµµ0 ∈ R2
140

and CCC0n → ΣΣΣ0 ∈ PDS(2) a.s. [H0] (PDS(q) is the set of all positive definite symmetric141

matrices of size q). Let G0(t) = PH0((XXX −µµµ0)tΣΣΣ−1
0 (XXX −µµµ0) ≤ t) and suppose that G0142

is continuous. If the reference distribution G satisfies:143

max
t≥η
{G(t)−G0(t)} ≤ 0, (4)144

then145
n0

n
→ 0 a.s.,146
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where147

n0 = bndnc.148

In the next section, we will define the global univariate-and-bivariate filter, UBF,149

using UF and BF as building blocks.150

2.3. A Consistent Univariate and Bivariate Filter (UBF)151

We first apply the univariate filter from Agostinelli et al. (2015b) to each vari-152

able in X separately using the initial location and dispersion estimators, TTT 0n =153

(T0n,1, . . . , T0n,p) and SSS0n = (S0n,1, . . . , S0n,p). Let U be the resulting auxiliary matrix154

of zeros and ones with zeros indicating the filtered entries in X. We next iterate over155

all pairs of variables in X to identify outlying bivariate points which helps filtering156

the moderately contaminated cells.157

Fix a pair of variables, (Xij, Xik) and set XXX
(jk)
i = (Xij, Xik). Let CCC

(jk)
0n be an158

initial pairwise scatter matrix estimator for this pair of variables, for example, the159

Gnanadesikan-Kettenring estimator. Note that pairwise scatter matrices do not en-160

sure positive definiteness of CCC0n, but this is not necessary in this case because only161

bivariate scatter matrix, CCC
(jk)
0n , is required in each bivariate filtering. We calculate the162

pairwise Mahalanobis distances D
(jk)
i = (XXX

(jk)
i − TTT (jk)

0n )t(CCC
(jk)
0n )−1(XXX

(jk)
i − TTT (jk)

0n ) and163

perform the bivariate filtering on the pairwise distances with no flagged components164

from the univariate filtering: {D(jk)
i : Uij = 1, Uik = 1}. We apply this procedure to165

all pairs of variables 1 ≤ j < k ≤ p. Let166

J =
{

(i, j, k) : D
(jk)
i is flagged as bivariate outlier

}
,167

be the set of triplets which identify the pairs of cells flagged by the bivariate filter in168

rows i = 1, ..., n. It remains to determine which cells (i, j) in row i are to be flagged169

as cellwise outliers. For each cell (i, j) in the data table, i = 1, . . . , n and j = 1, . . . , p,170

we count the number of flagged pairs in the i-th row where cell (i, j) is involved:171

mij = # {k : (i, j, k) ∈ J} .172

Cells with large mij are likely to correspond to univariate outliers. Suppose that173

observation Xij is not contaminated by cellwise contamination. Then mij approx-174

imately follows the binomial distribution, Bin(
∑

k 6=j Uik, δ), under ICM, where δ is175

the overall proportion of cellwise outliers that were not detected by the univariate176

filter. We flag observation Xij if177

mij > cij, (5)178

where cij is the 0.99-quantile ofBin(
∑

k 6=j Uik, δ). In practice we obtained good results179

(in both simulation and real data example) using the conservative choice δ = 0.10,180

which is adopted in this paper.181

The filter obtained as the combination of all the univariate and the bivariate182

filters described above is called UBF. The following argument shows that UBF is a183

consistent filter.184
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By Remarks 1 and 2, the union of all the bivariate consistent filters (from Propo-185

sition 2) is a consistent filter. Next, applying the condition described in (5) to the186

union of these bivariate consistent filters yields another consistent filter. Finally, the187

union of this with UF results in the consistent filter, UBF.188

2.4. The DDC Filter189

Recently, Rousseeuw and Van den Bossche (2016) proposed a new procedure to fil-190

ter and impute cellwise outliers, called DetectDeviatingCells (DDC). DDC is a sophis-191

ticated procedure that uses correlations between variables to estimate the expected192

value for each cell, and then flags those with an observed value that greatly deviates193

from this expected value. The DDC filter exhibited a very good performance when194

used in the first step in our two-step procedure in our simulation. However, the DDC195

filter is not shown to be consistent, as needed to ensure the overall consistency of our196

two-step estimation procedure.197

In view of that, we propose a new filter made by intersecting UBF and DDC (de-198

noted here as UBF-DDC). By Remarks 1 and 2, UBF-DDC is consistent. Moreover,199

we will show in Section 5 and in Appendix B that UBF-DDC is very effective, yielding200

the best overall performances when used as the first step in our two-step estimation201

procedure.202

3. Generalized Rocke S-estimators203

The second step of the procedure introduces robustness against casewise outliers204

that went undetected in the first step. Data that emerged from the first step has205

missing values that correspond to potentially contaminated cells. To estimate the206

multivariate location and scatter matrix from that data, we use a recently developed207

estimator called GSE, briefly reviewed below.208

3.1. Review of Generalized S-estimators209

Related to X denote U the auxiliary matrix of zeros and ones, with zeros indicating210

the corresponding missing entries. Let pi = p(UUU i) =
∑p

j=1 Uij be the actual dimension211

of the observed part of XXX i. Given a p-dimensional vector of zeros and ones uuu, a p-212

dimensional vectormmm and a p×p matrixAAA, we denote bymmm(uuu) andAAA(uuu) the sub-vector213

of mmm and the sub-matrix of AAA, respectively, with columns and rows corresponding to214

the positive entries in uuu.215

Define216

D(xxx,mmm,CCC) = (xxx−mmm)tCCC−1(xxx−mmm)217

the squared Mahalanobis distance and218

D∗(xxx,mmm,CCC) = D(xxx,mmm,CCC∗)219

the normalized squared Mahalanobis distances, where CCC∗ = CCC/|CCC|1/p, so |CCC∗| = 1,220

and where |A| is the determinant of A.221
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Let ΩΩΩ0n be a p × p positive definite initial estimator. Given the location vector222

µµµ ∈ Rp and a p × p positive definite matrix ΣΣΣ, we define the generalized M-scale,223

sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U), as the solution in s to the following equation:224

n∑
i=1

cp(UUU i)ρ

D∗
(
XXX

(UUU i)
i ,µµµ(UUU i),ΣΣΣ(UUU i)

)
s cp(UUU i)

∣∣∣ΩΩΩ(UUU i)
0n

∣∣∣1/p(UUU i)

 = b

n∑
i=1

cp(UUU i) (6)225

where ρ(t) is an even, non-decreasing in |t| and bounded loss function. The tuning226

constants ck, 1 ≤ k ≤ p, are chosen such that227

EΦ

(
ρ

(
||XXX||2

ck

))
= b, XXX ∼ Nk(000, III), (7)228

to ensure consistency under the multivariate normal. A common choice of ρ is the229

Tukey’s bisquare rho function, ρ(u) = min(1, 1− (1− u)3), and b = 0.5, as also used230

in this paper.231

A generalized S-estimator is then defined by232

(TTTGS,CCCGS) = arg min
µµµ,ΣΣΣ

sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U) (8)233

subject to the constraint234

sGS(µµµ,ΣΣΣ,ΣΣΣ,X,U) = 1. (9)235

3.2. Generalized Rocke S-estimators236

Rocke (1996) showed that if the weight function W (x) = ρ′(x)/x in S-estimators237

is non-increasing, the efficiency of the estimators tends to one when p → ∞. How-238

ever, this gain in efficiency is paid for by a decrease in robustness. Not surprisingly,239

the same phenomenon has been observed for generalized S-estimators in simulation240

studies. Therefore, there is a need for new generalized S-estimators with controllable241

efficiency/robustness trade off.242

Rocke (1996) proposed that the ρ function used to compute S-estimators should243

change with the dimension to prevent loss of robustness in higher dimensions. The244

Rocke-ρ function is constructed based on the fact that for large p the scaled squared245

Mahalanobis distances for normal data246

D(XXX,µµµ,ΣΣΣ)

σ
≈ Z

p
with Z ∼ χ2

p,247

and hence that D/σ are increasingly concentrated around one. So, to have a high248

enough, but not too high, efficiency, we should give a high weight to the values of249

D/σ near one and downweight the cases where D/σ is far from one.250

Let251

γ = min

(
χ2(1− α)

p
− 1, 1

)
, (10)252
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Figure 1: Weight functions of the Tukey-bisquare and the Rocke for p = 40. Chi-square density
functions are also plotted in blue for comparison. All the functions are scaled so that their maximum
is 1 to facilitate comparison.

where χ2(β) is the β-quantile of χ2
p. In this paper, we use a conventional choice of253

α = 0.05 that gives an acceptable efficiency of the estimator. We have also explored254

smaller values of α according to Maronna and Yohai (2015), but we have seen some255

degree of trade-offs between efficiency and casewise robustness (see the supplementary256

material). Maronna et al. (2006) proposed a modification of the Rocke-ρ function,257

namely258

ρ(u) =


0 for 0 ≤ u ≤ 1− γ(
u−1
4γ

)[
3−

(
u−1
γ

)2
]

+ 1
2

for 1− γ < u < 1 + γ

1 for u ≥ 1 + γ

(11)259

which has as derivative the desired weight function that vanishes for u 6∈ [1−γ, 1+γ]260

W (u) =
3

4γ

[
1−

(
u− 1

γ

)2
]
I(1− γ ≤ u ≤ 1 + γ).261

Figure 1 compares the Rocke-weight function, WRocke(z/cp), and the Tukey-bisquare262

weight function, WTukey(z/cp), for p = 40, where cp as defined in (7). The chi-square263

density function is also plotted in blue for comparison. When p is large the tail of the264

Tukey-bisquare weight function greatly deviates from the tail of the chi-square density265

function and inappropriately assigns high weights to large distances. On the other266

hand, the Rocke-weight function can resemble the shape of the chi-square density267

function and is capable of assigning low weights to large distances.268
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Finally, we define the generalized Rocke S-estimators or GRE by (8) and (9)269

with the ρ-function in (6) replaced by the modified Rocke-ρ function in (11). We270

compared GRE with GSE via simulation and found that GRE has a substantial271

better performance in dealing with casewise outliers when p is large (e.g., p > 10).272

Results from this simulation study are provided in the supplementary material.273

4. Computational Issues274

The generalized S-estimators described above are computed via iterative re-weighted275

means and covariances, starting from an initial estimate. We now discuss some com-276

puting issues associated with this iterative procedure.277

4.1. Computation of the Initial Estimator278

For the initial estimate, the extended minimum volume ellipsoid (EMVE) has279

been used, as suggested by Danilov et al. (2012). The EMVE is computed with a280

large number of subsamples (> 500) to increase the chance that at least one clean281

subsample is obtained. Let ε be the proportion of contamination in the data and m282

be the subsample size. The probability of having at least one clean subsample of size283

m out of M subsamples is284

q = 1−
[
1−

(
n · (1− ε)

m

)
/

(
n
m

)]M
. (12)285

For large p, the number of subsamples M required for a large q, say q = 0.99, can286

be impractically large, dramatically slowing down the computation. For example,287

suppose m = p, n = 10p, and ε = 0.50. If p = 10, then M = 7758; if p = 30, then288

M = 2.48× 1010; and if p = 50, then M = 4.15× 1016. Therefore, there is a need for289

a faster and more reliable starting point for large p.290

Alternatively, pairwise scatter estimators could be used as fast initial estimator291

(e.g., Alqallaf et al., 2002). Previous simulation studies have shown that pairwise292

scatter estimators are robust against cellwise outliers, but they perform not as well in293

the presence of casewise outliers and finely shaped multivariate data (Danilov et al.,294

2012; Agostinelli et al., 2015b).295

4.1.1. Cluster-Based Subsampling296

Next, we introduce a cluster-based algorithm for faster and more reliable subsam-297

pling for the computation of EMVE. The EMVE computed with the cluster-based298

subsampling is called called EMVE-C throughout the paper.299

High-dimensional data have several interesting geometrical properties as described300

in Hall et al. (2005). One such property that motivated the Rocke-ρ function, as301

well as the following algorithm, is that for large p the p-variate standard normal302

distribution Np(000, III) is concentrated “near” the spherical shell with radius
√
p. So,303

if outliers have a slightly different covariance structure from clean data, they would304
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appear geometrically different. Therefore, we could apply a clustering algorithm to305

first separate the outliers from the clean data. Subsampling from a big cluster, which306

in principle is composed of mostly clean cases, should be more reliable and require307

fewer number of subsamples.308

Given X and U. The following steps describe our clustering-based subsampling:309

1. Standardize the data X with some initial location and dispersion estimator T0j310

and S0j. Common choices for T0j and S0j that are also adopted in this paper311

are the coordinate-wise median and MAD. Denote the standardized data by312

Z = (ZZZ1, . . . ,ZZZn)t, where ZZZi = (Zi1, . . . , Zip)
t and Zij = (Xij − T0j)/S0j.313

2. Compute a simple robust correlation matrix estimate RRR = (Rjk). Here, we use314

the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kettenring, 1972),315

where316

Rij =
1

4
(S2

0jk+ − S2
0jk−),317

and where S0jk+ is the dispersion estimate for {Zij + Zik|Uij = 1, Uik = 1} and318

S0jk− the estimate for {Zij −Zik|Uij = 1, Uik = 1}. We use Qn (Rousseeuw and319

Croux, 1993) for the dispersion estimate.320

3. Compute the eigenvalues λ1 ≥ · · · ≥ λp and eigenvectors eee1, . . . , eeep of the cor-321

relation matrix estimate322

RRR = EEEΛΛΛEEEt,323

where ΛΛΛ = diag(λ1, . . . , λp) and EEE = (eee1, . . . , eeep). Let p+ be the largest di-324

mension such that λj > 0 for j = 1, . . . , p+. Retain only the eigenvectors325

EEE0 = (eee1, . . . , eeep+) with a positive eigenvalue.326

4. Complete the standardized data Z by replacing each missing entry, as indicated327

by U, by zero. Then, project the data onto the basis eigenvectors Z̃ZZ = ZZZEEE0,328

and then standardize the columns of Z̃ZZ, or so called principal components, using329

coordinate-wise median and MAD of Z̃ZZ.330

5. Search for a “clean” cluster C in the standardized Z̃ZZ using a hierarchical cluster-331

ing framework by doing the following. First, compute the dissimilarity matrix332

for the principal components using the Euclidean metric. Then, apply classi-333

cal hierarchical clustering (with any linkage of choice). A common choice is334

the Ward’s linkage, which is adopted in this paper. Finally, define the “clean”335

cluster by the smallest sub-cluster C with a size at least n/2. This can be336

obtained by cutting the clustering tree at various heights from the top until all337

the clusters have size less than n/2.338

6. Take a subsample of size n0 from C.339

With good clustering results, we can draw fewer subsamples, and equally im-340

portant, we can use a larger subsample size. The current default choices in GSE341

are M = 500 subsamples of size n0 = (p + 1)/(1 − αmis) as suggested in Danilov342
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et al. (2012), where αmis is the fraction of missing data (αmis = number of missing343

entries /(np)). For the new clustering-based subsampling, we choose M = 50 and344

n0 = 2(p+ 1)/(1− αmis) in view of their overall good performance in our simulation345

study. However, using equation (12), a more formal procedure for the choice of M346

and n0 could be considered. M and n0 could be chosen as a function of the cluster347

size C, the expected remaining fraction of contamination δ, and a desired level of348

confidence. In such case, n and ε in equation (12) should be replaced by to the size of349

the cluster C and the value of δ, respectively. Without clustering, ε would be chosen350

fairly large (e.g. ε = 0.50) for conservative reasons. However, with clustering, ε can351

be made smaller (e.g., ε ≤ 0.10).352

In general, p is the primary driver of computational time, but the procedure353

could also be time-consuming for large n because the number of operations required354

by hierarchical clustering is of order n3. As an alternative, one may bypass the355

hierarchical clustering step and sample directly from the data points with the smallest356

Euclidean distances to the origin calculated from Z̃ZZ. This is because the Euclidean357

distances, in principle, should approximate the Mahalanobis distances to the mean of358

the original data. However, our simulations show that the hierarchical clustering step359

is essential for the excellent performance of the estimates, and that this step entails360

only a small increase in real computational time, even for large n.361

A recent simulation study (Maronna and Yohai, 2015) has shown that Rocke esti-362

mator starting from the the “kurtosis plus specific direction” (KSD) estimator (Peña363

and Prieto, 2001) estimator can attain high efficiency and high robustness for large p.364

The KSD estimator uses a multivariate outlier detection procedure based on finding365

directions that maximize or minimize the kurtosis coefficient of the respective projec-366

tions. The “clean” cases that were not flagged as outliers are then used for estimating367

multivariate location and scatter matrix. Unfortunately, KSD is not implemented for368

incomplete data. The study of the adaption of KSD for incomplete data would be of369

interest and worth of future research.370

4.2. Other Computational Issues371

There is no formal proof that the recursive algorithm decreases the objective372

function at each iteration for the case of generalized S-estimators with a monotonic373

weight function (Danilov et al., 2012). This also the case for generalized S-estimators374

with a non-monotonic weight function. For Rocke estimators with complete data,375

Maronna et al. (2006, see Section 9.6.3) described an algorithm that ensures attaining376

a local minimum. We have adapted this algorithm for the generalized counterparts.377

Although we cannot provide a formal proof, we have seen so far in our experiments378

that the descending property of the recursive algorithms always holds.379

5. Two-Step Estimation and Simulation Results380

The original two-step approach for global–robust estimation under cellwise and381

casewise contamination is to first flag outlying cells in the data table and to replace382
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them by NA’s using a univariate filter only (shortened to UF). In the second step,383

the generalized S-estimator is then applied to this incomplete data. Our new version384

of this is to replace UF in the first step by the proposed combination of univariate-385

and-bivariate filter and DDC (shortened to UBF-DDC) and to replace GSE in the386

second step by GRE-C (i.e., GRE starting from EMVE-C). We call the new two-step387

procedure UBF-DDC-GRE-C. The new procedure will be made available in the TSGS388

function in the R package GSE (Leung et al., 2015).389

We now conduct a simulation study similar to that in Agostinelli et al. (2015b) to390

compare the two-step procedures, UF-GSE as introduced in Agostinelli et al. (2015b)391

and UBF-DDC-GRE-C, as well as the classical correlation estimator (MLE) and392

several other robust estimators that showed a competitive performance under393

• Cellwise contamination: SnipEM (shortened to Snip) introduced in Farcomeni394

(2014)395

• Casewise contamination: Rocke S-estimator as recently revisited by Maronna396

and Yohai (2015) and HSD introduced by Van Aelst et al. (2012)397

• Cellwise and casewise contamination: DetMCDScore (shortened to DMCDSc)398

introduced by Rousseeuw and Van den Bossche (2015)399

We also considered the different variations of the two-step procedures using different400

first steps, including UBF-GRE-C and DDC-GRE-C. However, UBF-DDC-GRE-C401

generally performs better in simulations than UBF-GRE-C and DDC-GRE-C. There-402

fore, we present only the results of UBF-DDC-GRE-C here. The complete results of403

UBF-GRE-C and DDC-GRE-C can be found in Appendix B.404

We consider clean and contaminated samples from a Np(µ0µ0µ0,Σ0Σ0Σ0) distribution with405

dimension p = 10, 20, 30, 40, 50 and sample size n = 10p. The simulation mechanisms406

are briefly described below.407

Since the contamination models and the estimators considered in our simulation408

study are location and scale equivariant, we can assume without loss of generality409

that the mean, µµµ0, is equal to 000 and the variances in diag(ΣΣΣ0) are all equal to 111. That410

is, ΣΣΣ0 is a correlation matrix.411

Since the cellwise contamination model and the estimators are not affine-equivariant,412

we consider the two different approaches to introduce correlation structures:413

• Random correlation as described in Agostinelli et al. (2015b) and414

• First order autoregressive correlation.415

The random correlation structure generally has small correlations, especially with416

increasing p. For example, for p = 10, the maximum correlation values have an417

average of 0.49, and for p = 50, the average maximum is 0.28. So, we consider the418

first order autoregressive correlation (AR1) with higher correlations, in which the419

correlation matrix has entries420

Σ0,jk = ρ|j−k|,421
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with ρ = 0.9.422

We then consider the following scenarios:423

• Clean data: No further changes are done to the data.424

• Cellwise contamination: We randomly replace a ε of the cells in the data matrix425

by Xcont
ij ∼ N(k, 0.12), where k = 1, 2, . . . , 10.426

• Casewise contamination: We randomly replace a ε of the cases in the data ma-427

trix by XXXcont
i ∼ 0.5N(cvvv, 0.12III) + 0.5N(−cvvv, 0.12III), where c =

√
k(χ2)−1

p (0.99)428

and k = 1, 2, . . . , 20 and vvv is the eigenvector corresponding to the smallest429

eigenvalue of ΣΣΣ0 with length such that (vvv − µµµ0)tΣΣΣ−1
0 (vvv − µµµ0) = 1. Experiments430

show that the placement of outliers in this way is the least favorable for the431

proposed estimator.432

We consider ε = 0.02, 0.05 for cellwise contamination, and ε = 0.10, 0.20 for casewise433

contamination. The number of replicates in our simulation study is N = 500.434

The performance of a given scatter estimator ΣΣΣn is measured by the Kulback–435

Leibler divergence between two Gaussian distribution with the same mean and co-436

variances ΣΣΣ and ΣΣΣ0:437

D(ΣΣΣ,ΣΣΣ0) = trace(ΣΣΣΣΣΣ−1
0 )− log(|ΣΣΣΣΣΣ−1

0 |)− p.438

This divergence also appears in the likelihood ratio test statistics for testing the null439

hypothesis that a multivariate normal distribution has covariance matrix ΣΣΣ = ΣΣΣ0.440

We call this divergence measure the likelihood ratio test distance (LRT). Then, the441

performance of an estimator ΣΣΣn is summarized by442

D(ΣΣΣn,ΣΣΣ0) =
1

N

N∑
i=1

D(Σ̂ΣΣn,i,ΣΣΣ0)443

where Σ̂ΣΣn,i is the estimate at the i-th replication. Finally, the maximum average LRT444

distances over all considered contamination values, k, is also calculated.445

Table 1 shows the maximum average LRT distances under cellwise contamination.446

UBF-DDC-GRE-C and UF-GSE perform similarly under random correlation, but447

UBF-DDC-GRE-C outperforms UF-GSE under AR1(0.9). When correlations are448

small, like in random correlation, the bivariate filter fails to filter moderate cellwise449

outliers (e.g., k = 2) because there is not enough information about the bivariate450

correlation structure in the data. Therefore, the bivariate filter gives similar results451

as the univariate filter. However, when correlations are large, like in AR1(0.9), the452

bivariate filter can filter moderate cellwise outliers and therefore, outperforms the453

univariate filter. This is demonstrated, for example, in Figure 2 which shows the454

average LRT distance behaviors for various cellwise contamination values, k.455
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Table 1: Maximum average LRT distances under cellwise contamination. The sample size is n = 10p.

Corr. p ε MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

Random 10 0 0.6 1.2 0.8 5.0 1.5 0.8 1.0
0.02 114.8 1.2 2.3 6.9 1.6 1.2 1.1
0.05 285.4 3.6 11.2 7.5 3.2 4.5 2.5

20 0 1.1 2.0 1.2 11.5 2.0 1.3 1.8
0.02 146.1 2.7 10.6 13.9 2.6 4.0 2.5
0.05 375.9 187.2 57.1 15.5 9.3 11.0 7.3

30 0 1.6 2.8 1.7 16.7 2.6 1.9 3.3
0.02 179.0 23.1 22.6 18.5 4.4 5.8 5.0
0.05 475 380.5 123.1 20.8 13.7 14.2 13.3

40 0 2.1 3.6 2.3 20.7 3.2 2.4 5.8
0.02 215.1 121.3 38.9 22.6 6.0 7.3 8.8
0.05 >500 >500 212.4 25.8 17.9 16.6 18.6

50 0 2.7 4.4 2.8 25.4 3.8 2.9 4.9
0.02 249.0 192.8 58.7 27.1 8.1 9.1 12.1
0.05 >500 >500 298.7 29.7 20.7 19.6 23.8

AR1(0.9) 10 0 0.6 1.1 0.8 4.3 1.4 0.7 1.0
0.02 149.8 1.2 0.9 4.9 1.5 0.9 1.0
0.05 383.8 2.6 2.8 7.0 3.1 2.1 1.3

20 0 1.1 1.9 1.2 7.8 2.1 1.2 1.7
0.02 311.3 2.5 3.9 10.5 2.6 2.1 1.9
0.05 >500 >500 31.3 14.3 12.3 9.3 2.5

30 0 1.6 2.8 1.8 9.4 2.7 1.7 3.2
0.02 475.9 71.1 10.7 13.9 5.4 4.0 3.3
0.05 >500 >500 103.3 19.8 22.6 20.3 3.6

40 0 2.1 3.6 2.2 10.9 3.4 2.3 5.5
0.02 >500 222.1 22.7 16.2 8.9 6.7 5.6
0.05 >500 >500 259.9 23.7 34.8 31.4 5.9

50 0 2.7 4.4 2.8 13.0 4.0 2.8 5.0
0.02 >500 >500 43.3 18.9 12.8 9.7 7.8
0.05 >500 >500 >500 28.9 46.5 42.8 8.9

Table 2 shows the maximum average LRT distances under casewise contamina-456

tion. Overall, UBF-DDC-GRE-C outperforms UF-GSE. This is because the Rocke457

ρ function in GRE in UBF-DDC-GRE-C is more capable of downweighting mod-458

erate casewise outliers (e.g., 10 < k < 20) than the Tukey-bisquare ρ function in459

GSE in UF-GSE. Therefore, UBF-DDC-GRE-C outperforms UF-GSE under moder-460

ate casewise contamination and gives overall better results. This is demonstrated,461

for example, in Figure 3 which shows the average LRT distance behaviors for various462

casewise contamination values, k.463

Table 3 shows the finite sample relative efficiency under clean samples with ran-464

dom correlation for the considered robust estimates, taking the MLE average LRT465

distances as the baseline. The results for the AR1(0.9) correlation are very similar and466

not shown here. As expected, UF-GSE show an increasing efficiency as p increases467

while UBF-DDC-GRE-C have lower efficiency. Improvements can be achieved by us-468
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Figure 2: Average LRT distance behaviors for various contamination values, k, of UF-GSE and UBF-
DDC-GSE for random and AR1(0.9) correlations under 5% cellwise contamination. The dimension
is p = 30 and the sample size is n = 10p. The results remain the same for larger values of k; thus,
they are not included in the figure.
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Figure 3: Average LRT distance behaviors for various contamination values, k, of UF-GSE and
UBF-DDC-GRE-C for random correlations under 10% casewise contamination. The dimension is
p = 30 and the sample size is n = 10p.

ing smaller α in the Rocke ρ function with some trade-off in robustness. Results from469

this experiment are provided in the supplementary material.470

Finally, we compare the computing times of the two-step procedures. Table 4471

shows the average computing times over all contamination settings for various di-472

mensions and for n = 10p. The computing times for the two-step procedure have473

been substantially improved with the implementation of the faster initial estimator,474

EMVE-C.475
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Table 2: Maximum average LRT distances under casewise contamination. The sample size is n =
10p.

Corr. p ε MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

Random 10 0 0.6 1.2 0.8 5.0 1.5 0.8 1.0
0.10 43.1 2.8 3.9 44.4 4.9 9.7 7.7
0.20 89.0 4.7 21.8 110.3 123.6 91.8 23.7

20 0 1.1 2.0 1.2 11.5 2.0 1.3 1.8
0.10 77.0 3.4 13.4 76.9 37.8 29.7 9.1
0.20 146.7 5.6 95.9 166.5 187.6 291.8 17.4

30 0 1.6 2.8 1.7 16.7 2.6 1.9 3.3
0.10 100.0 4.3 26.1 82.3 118.6 75.3 9.9
0.20 200.7 7.4 297.7 220.9 268.4 415.5 16.9

40 0 2.1 3.6 2.3 20.7 3.2 2.4 5.8
0.10 125.9 5.2 46.3 101.6 130.6 140.2 16.2
0.20 252.4 9.1 >500 186.2 340.1 >500 19.5

50 0 2.7 4.4 2.8 25.4 3.8 2.9 4.9
0.10 150.3 5.9 80.0 121.9 139.5 258.1 17.6
0.20 303.1 10.0 >500 224.3 407.7 >500 23.0

AR1(0.9) 10 0 0.6 1.1 0.8 4.3 1.4 0.7 1.0
0.10 43.1 2.8 1.7 20.2 2.9 3.7 2.9
0.20 88.9 4.8 8.7 49.7 29.7 50.8 6.9

20 0 1.1 1.9 1.2 7.8 2.1 1.2 1.7
0.10 77.0 2.8 4.7 43.8 14.8 12.9 3.3
0.20 146.6 5.3 35.3 113.0 87.6 260.5 6.0

30 0 1.6 2.8 1.8 9.4 2.7 1.7 3.2
0.10 98.9 3.4 8.9 66.1 32.2 31.3 4.1
0.20 200.5 8.2 155.5 144.8 122.9 372.7 6.8

40 0 2.1 3.6 2.2 10.9 3.4 2.3 5.5
0.10 124.9 4.3 15.6 83.7 49.2 69.1 6.4
0.20 253.0 9.2 430.3 151.9 209.3 477.6 8.7

50 0 2.7 4.4 2.8 13.0 4.0 2.8 5.0
0.10 150.2 5.1 26.5 103.3 64.4 148.2 7.9
0.20 302.6 10.1 >500 188.5 276.0 >500 8.8

Table 3: Finite sample efficiency for random correlations. The sample size is n = 10p.

p MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

10 1.00 0.50 0.73 0.12 0.41 0.75 0.57
20 1.00 0.57 0.92 0.09 0.56 0.83 0.61
30 1.00 0.58 0.93 0.10 0.63 0.87 0.50
40 1.00 0.60 0.94 0.10 0.68 0.89 0.40
50 1.00 0.60 0.94 0.11 0.70 0.91 0.58

6. Real data example: small-cap stock returns data476

In this section, we consider the weekly returns from 01/08/2008 to 12/28/2010477

for a portfolio of 20 small-cap stocks from Martin (2013).478
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Table 4: Average “CPU time” – in seconds of a 2.8 GHz Intel Xeon – evaluated using the R command,
system.time. The sample size is n = 10p.

p UF- UBF-DDC-
GSE GRE-C

10 0.7 0.2
20 7.7 1.7
30 34.5 6.4
40 120.5 17.1
50 278.4 37.8

The purpose of this example is fourfold: first, to show that the classical MLE479

and traditional robust procedures perform poorly on data affected by propagation480

of cellwise outliers; second, to show that the two-step procedures (e.g., UF-GSE)481

can provide better estimates by filtering large outliers; third, that the bivariate-filter482

version of the two-step procedure (e.g., UBF-GSE) provides even better estimates483

by flagging additional moderate cellwise outliers; and fourth, that the two-step pro-484

cedures that use GRE-C (e.g., UBF-GRE-C) can more effectively downweight some485

high-dimensional casewise outliers than those that use GSE (e.g., UBF-GSE), for486

this 20-dimensional dataset. Therefore, UBF-GRE-C provides the best results for487

this dataset.488
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Figure 4: Normal quantile–quantile plots of weekly returns. Weekly returns that are three MAD’s
away from the coordinatewise-median are shown in green.

Figure 4 shows the normal QQ-plots of the 20 small-cap stocks returns in the489

portfolio. The bulk of the returns in all stocks seem roughly normal, but large outliers490

are clearly present for most of these stocks. Stocks with returns lying more than three491
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Figure 5: Squared Mahalanobis distances of the weekly observations in the small-cap asset returns
data based on the MLE, the Rocke, the UF-GSE, and the UBF-GSE estimates. Weeks that contain
one or more asset returns with values three MAD’s away from the coordinatewise-median are in
green. Large distances are truncated for better visualization.

MAD’s away from the coordinatewise-median (i.e., the large outliers) are shown in492

green in the figure. There is a total of 4.8% large cellwise outliers that propagate to493

40.1% of the cases. Over 75% of these weeks correspond to the 2008 financial crisis.494

Figure 5 shows the squared Mahalanobis distances of the 157 weekly observations495

based on four estimates: the MLE, the Rocke-S estimates, the UF-GSE, and the496

UBF-GSE. Weeks that contain large cellwise outliers (asset returns with values three497

MAD’s away from the coordinatewise-median) are in green. From the figure, we see498

that the MLE and the Rocke-S estimates have failed to identify many of those weeks499

as MD outliers (i.e., failed to flag these weeks as having estimated full Mahalanobis500

distance exceeding the 99.99% quantile chi-squared distribution with 20 degrees of501

freedom). The MLE misses all but seven of the 59 green cases. The Rocke-S estimate502

does slightly better but still misses one third of the green cases. This is because503

it is severely affected by the large cellwise outliers that propagate to 40.1% of the504

cases. The UF-GSE estimate also does a relatively poor job. This may be due to the505
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Figure 6: Pairwise scatterplots of the asset returns data for WTS versus HTLD, HTLD versus
WSBC, and WSBC versus SUR. Points with components flagged by the univariate filter are in blue.
Points with components additionally flagged by the bivariate filter are in orange.

presence of several moderate cellwise outliers. In fact, Figure 6 shows the pairwise506

scatterplots for WTS versus HTLD, HTLD versus WSBC, and WSBC versus SUR507

with the results from the univariate and the bivariate filter. The points flagged by508

the univariate filter are in blue, and those flagged by the bivariate filter are in orange.509

We see that the bivariate filter has identified some additional cellwise outliers that510

are not-so-large marginally but become more visible when viewed together with other511

correlated components. These moderate cellwise outliers account for 6.9% of the cells512

in the data and propagate to 56.7% of the cases. The final median weight assigned513

to these cases by UF-GSE and UBF-GSE are 0.50 and 0.65, respectively. By filtering514

the moderate cellwise outliers, UBF-GSE makes a more effective use of the clean part515

of these partly contaminated data points (i.e., the 56.7% of the cases). As a result,516

UBF-GSE successfully flags all but five of the 59 green cases.517

Figure 7 shows the squared Mahalanobis distances produced by UBF-GRE-C and518

UBF-GSE, for comparison. Here, we see that UBF-GRE-C has missed only 3 of the519

59 green cases, while UBF-GSE has missed 6 of the 59. UBF-GRE-C has also clearly520

flagged weeks 36, 59, and 66 (with final weights 0.6, 0.0, and 0.0, respectively) as521

casewise outliers. In contrast, UBF-GSE gives final weights 0.8, 0.5, and 0.5 to these522

cases. Consistent with our simulation results, UBF-GSE has difficulty downweighting523

some high-dimensional outlying cases on datasets of high dimension.524

In this example, UBF-GRE-C makes the most effective use of the clean part of the525

data and has the best outlier detecting performance among the considered estimates.526

7. Conclusions527

In this paper, we overcome three serious limitations of UF-GSE. First, the esti-528

mator cannot deal with moderate cellwise outliers. Second, the estimator shows an529

incontrollable increase in Gaussian efficiency, which is paid off by a serious decrease530

in robustness, for larger p. Third, the initial estimator (extended minimum volume531
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Figure 7: Squared Mahalanobis distances of the weekly observations in the small-cap asset returns
data based on the UBF-GSE and the UBF-GRE-C estimates. Weeks that contain one or more asset
returns with values three MAD’s away from the coordinatewise-median are in green.

ellipsoids, EMVE) used by GSE and UF-GSE does not scale well in higher dimen-532

sions because it requires an impractically large number of subsamples to achieve a533

high breakdown point in larger dimensions.534

To deal with also moderate cellwise outliers, we complement the univariate filter535

with a combination of bivariate filters (UBF-DDC). To achieve a controllable effi-536

ciency/robustness trade off in higher dimensions, we replace the GSE in the second537

step with the Rocke-type GSE which we called it GRE. Finally, to overcome the538

high computational cost of the EMVE, we introduce a clustering-based subsampling539

procedure. The proposed procedure is called UBF-DDC-GRE-C.540

As shown by our simulation, UBF-DDC-GRE-C provides reliable results for cell-541

wise contamination when ε ≤ 0.05 and p ≤ 50. For larger dimensions (p > 50), in our542

experience, the proposed estimator still performs well unless there is a large fraction543

of small size cellwise outliers that evade the filter and propagate. Furthermore, UBF-544

DDC-GRE-C exhibits high robustness against moderate and large cellwise outliers, as545

well as casewise outliers in higher dimensions (e.g., p > 10). We also show via simu-546

lation studies that, in higher dimensions, estimators using the proposed subsampling547

with only 50 subsamples can achieve equivalent performance than the usual uniform548

subsampling with 500 subsamples.549

The proposed two-step procedure still has some limitation. As pointed out in the550

rejoinder in Agostinelli et al. (2015a), the GSE in the second step does not handle551

well flat data sets, i.e., n ≈ 2p. In fact, when n ≤ 2p, these estimators fail to exist552

(cannot be computed). This is also the case for GRE-C, and for all the casewise553

robust estimators with breakdown point 1/2. Our numerical experiments show that554
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the proposed two-step procedure works well when n ≥ 5p but not as well when555

2p < n < 5p, depending on the amount of data filtered in the first step. In this556

situation, if much data are filtered leaving a small fraction of complete data cases,557

GSE and GRE may fail to converge (Danilov et al., 2012; Agostinelli et al., 2015a).558

This problem could be remedied by using graphical lasso (GLASSO, Friedman et al.,559

2008) to improve the conditioning of the estimates.560

Appendix A. Proofs of Propositions561

Appendix A.1. Proof of Proposition 1562

The proof was available in Agostinelli et al. (2015b), but we provide a more563

detailed proof in the supplementary material for completeness.564

Appendix A.2. Proof of Proposition 2565

We need the following lemma for the proof.566

Lemma 1. Consider a sample of p-dimensional random vectors XXX1, . . . ,XXXn. Also,567

consider a pair of multivariate location and scatter estimators TTT 0n and CCC0n. Suppose568

that TTT 0n → µµµ0 and CCC0n → ΣΣΣ0 a.s.. Let Di = (XXX i − TTT 0n)tCCC−1
0n (XXX i − TTT 0n) and Di =569

(XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0). Given K <∞. For all i = 1, . . . , n, if D0i ≤ K , then:570

Di → D0i a.s..571

Proof of Lemma 1. Note that572

|Di −D0i| = |(XXX i − TTT 0n)tCCC−1
0n (XXX i − TTT 0n)− (XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0)|573

= |((XXX i − µµµ0) + (µµµ0 − TTT 0n))t(ΣΣΣ−1
0 + (CCC−1

0n −ΣΣΣ−1
0 ))((XXX i − µµµ0) + (µµµ0 − TTT 0n))

− (XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0)|

574

≤ |(µµµ0 − TTT 0n)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |(µµµ0 − TTT 0n)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |2(XXX i − µµµ0)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|

575

= An +Bn + Cn +Dn + En.576577

By assumption, there exists n1 such that for n ≥ n1 implies An ≤ ε/5 and578

Bn ≤ ε/5.579

Next, note that580

|(XXX i − µµµ0)tΣΣΣ
−1/2
0 yyy| = |yyytΣΣΣ−1/2

0 (XXX i − µµµ0)|

≤ ||yyy||||ΣΣΣ−1/2
0 (XXX i − µµµ0)|| = ||yyy||

√
(XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0) ≤ ||yyy||
√
K.

581

22



So, there exists n2 such that n ≥ n2 implies582

Cn = |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|583

= |2(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

−1/2
0 (µµµ0 − TTT 0n)|584

≤ 2||ΣΣΣ−1/2
0 (µµµ0 − TTT 0n)||

√
K585

≤ ε/5.586
587

Similarly, there exists n3 such that n ≥ n3 implies588

Dn = |2(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(µµµ0 − TTT 0n)|589

= |2(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|590

≤ 2||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)||

√
K591

≤ ε/5.592
593

Also, there exists n4 such that n ≥ n4 implies594

En = |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|595

= |(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)|596

≤ ||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)||

√
K597

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )|| ||ΣΣΣ1/2
0 (XXX i − µµµ0)||

√
K598

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )||K599

≤ ε/5.600
601

Finally, let n5 = max{n1, n2, n3, n4}, then for all i, n ≥ n5 implies602

|Di −D0i| ≤ ε/5 + ε/5 + ε/5 + ε/5 + ε/5 = ε.603

604

Proof of Proposition 2. LetD0i = (XXX i−µµµ0)tΣΣΣ−1
0 (XXX i−µµµ0) andDi = (XXX i−TTT 0n)tCCC−1

0n (XXX i−605

TTT 0n). Denote the empirical distributions of D01, . . . , D0n and D1, . . . , Dn by606

G0n(t) =
1

n

n∑
i=1

I (D0i ≤ t) and Gn(t) =
1

n

n∑
i=1

I (Di ≤ t) .607
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Note that608

|Gn(t)−G0n(t)| =

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t)− 1

n

n∑
i=1

I (D0i ≤ t)

∣∣∣∣∣609

=

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i > K) +
1

n

n∑
i=1

I (Di ≤ t) I(D0i ≤ K)

− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i > K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣
610

≤

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i > K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i > K)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

I (Di ≤ t) I(D0i ≤ K)− 1

n

n∑
i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣
611

= |An|+ |Bn|.612613

We will show that |An| → 0 and |Bn| → 0 a.s..614

Choose a large K such that PG0(D0 > K) ≤ ε/8. By law of large numbers, there615

exists n1 such that for n ≥ n1 implies | 1
n

∑n
i=1 I(D0i > K) − PG0(D0 > K)| ≤ ε/8616

and617

|An| =

∣∣∣∣∣ 1n
n∑
i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i > K)

∣∣∣∣∣618

≤ 1

n

n∑
i=1

|I (Di ≤ t)− I (D0i ≤ t) |I(D0i > K)619

≤ 1

n

n∑
i=1

I(D0i > K)620

≤ PG0(D0 > K) + ε/8621

≤ ε/8 + ε/8 = ε/4.622
623

By assumption, we have from Lemma 1 thatDi → D0i a.s. for all i whereD0i ≤ K.624

Let Ei = Di −D0i. So, with probability 1, there exists n2 such that n ≥ n2 implies625
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that −δ ≤ Ei ≤ δ for all i. Then,626

Bn =
1

n

n∑
i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i ≤ K)627

=
1

n

∑
i:D0i≤K

[I (Di ≤ t)− I (D0i ≤ t)]628

=
1

n

∑
i:D0i≤K

[I (D0i ≤ t− Ei)− I (D0i ≤ t)]629

≤ 1

n

∑
i:D0i≤K

[I (D0i ≤ t+ δ)− I (D0i ≤ t)]630

≤ 1

n

n∑
i=1

[I (D0i ≤ t+ δ)− I (D0i ≤ t)].631

632

Also,633

Bn =
1

n

∑
i:D0i≤K

[I (D0i ≤ t− Ei)− I (D0i ≤ t)]634

≥ 1

n

∑
i:D0i≤K

[I (D0i ≤ t− δ)− I (D0i ≤ t)]635

≥ 1

n

n∑
i=1

[I (D0i ≤ t− δ)− I (D0i ≤ t)]636

637

Now, by the Gilvenko–Cantelli Theorem, with probability one there exists n3 such638

that n ≥ n3 implies that supt | 1n
∑n

i=1 I (D0i ≤ t+ δ)−G0(t+ δ)| ≤ ε/16,639

supt | 1n
∑n

i=1 I (D0i ≤ t− δ)−G0(t−δ)| ≤ ε/16, and supt | 1n
∑n

i=1 I (D0i ≤ t)−G0(t)| ≤640

ε/16. Also, by the uniform continuity of G0, there exists δ > 0 such that |G0(t+ δ)−641

G0(t)| ≤ ε/8 and |G0(t− δ)−G0(t)| ≤ ε/8. Together,642

1

n

n∑
i=1

I (D0i ≤ t− δ)− I (D0i ≤ t) ≤ Bn ≤
1

n

n∑
i=1

I (D0i ≤ t+ δ)− I (D0i ≤ t)643

G0(t− δ)− ε/16−G0(t)− ε/16 ≤ Bn ≤ G0(t+ δ) + ε/16−G0(t) + ε/16644

(G0(t− δ)−G(t))− ε/8 ≤ Bn ≤ (G0(t+ δ)−G0(t)) + ε/8645

−ε/8− ε/8 = −ε/4 ≤ Bn ≤ ε/8 + ε/8 = ε/4.646
647

Finally, note that648

G(t)−Gn(t) = (G(t)−G0(t)) + (G0(t)−G0n(t)) + (G0n(t)−Gn(t)).649

Let n4 = max{n1, n2, n3}, then n ≥ n4 implies650

sup
t>η

(G(t)−Gn(t)) ≤ sup
t>η

(G(t)−G0(t)) + sup
t>η

(G0(t)−G0n(t)) + sup
t>η

(G0n(t)−Gn(t))651

≤ (ε/4 + ε/4) + ε/16 + 0 ≤ ε.652
653
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654

Appendix B. Additional Tables from the Simulation Study in Section 5655

Table B.5: Maximum average LRT distances under cellwise contamination. The sample size is
n = 10p.

Corr. p ε UBF- DDC- UBF-DDC-
GRE-C GRE-C GRE-C

Random 10 0 1.3 1.0 1.0
0.02 1.4 1.1 1.1
0.05 2.5 2.6 2.5

20 0 2.0 1.8 1.8
0.02 3.0 2.5 2.5
0.05 8.2 7.7 7.3

30 0 3.9 3.5 3.3
0.02 5.9 5.3 5.0
0.05 13.4 14.2 13.3

40 0 6.2 5.8 5.8
0.02 10.9 9.5 8.8
0.05 19.9 18.8 18.6

50 0 5.3 4.9 4.9
0.02 12.9 12.5 12.1
0.05 23.6 24.4 23.8

AR1(0.9) 10 0 1.2 1.1 1.0
0.02 1.3 1.1 1.0
0.05 1.4 1.3 1.3

20 0 1.9 1.8 1.7
0.02 2.1 2.0 1.9
0.05 2.8 2.1 2.5

30 0 3.4 3.6 3.2
0.02 3.4 3.5 3.3
0.05 5.5 3.4 3.6

40 0 5.7 5.8 5.5
0.02 5.7 6.0 5.6
0.05 12.4 6.1 5.9

50 0 5.2 4.6 5.0
0.02 6.4 6.4 7.8
0.05 20.4 7.9 8.9
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Table B.6: Maximum average LRT distances under casewise contamination. The sample size is
n = 10p.

Corr. p ε UBF- DDC- UBF-DDC-
GRE-C GRE-C GRE-C

Random 10 0 1.3 1.0 1.0
0.10 19.1 9.4 7.7
0.20 53.0 25.3 23.7

20 0 2.0 1.8 1.8
0.10 20.9 9.5 9.1
0.20 49.3 18.0 17.4

30 0 3.9 3.5 3.3
0.10 21.8 10.6 9.9
0.20 47.6 18.7 16.9

40 0 6.2 5.8 5.8
0.10 29.5 17.7 16.2
0.20 52.3 21.2 19.5

50 0 5.3 4.9 4.9
0.10 43.4 21.2 17.6
0.20 64.8 23.7 23.0

AR1(0.9) 10 0 1.2 1.1 1.0
0.10 3.6 3.0 2.9
0.20 8.4 6.8 6.9

20 0 1.9 1.8 1.7
0.10 4.3 3.3 3.3
0.20 10.5 6.0 6.0

30 0 3.4 3.6 3.2
0.10 5.1 4.2 4.1
0.20 13.3 6.9 6.8

40 0 5.7 5.8 5.5
0.10 7.3 5.8 6.4
0.20 17.4 8.9 8.7

50 0 5.2 4.6 5.0
0.10 8.1 7.5 7.9
0.20 21.2 10.0 8.8
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Appendix C. Supplementary Materials656

Additional simulation results and related supplementary material referenced in657

the article can be found in a separate document, “Supplementary Material”.658
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